sulaimank's picture
End of training
2d7580a verified
metadata
library_name: transformers
license: apache-2.0
base_model: facebook/wav2vec2-xls-r-300m
tags:
  - generated_from_trainer
datasets:
  - fleurs
metrics:
  - wer
model-index:
  - name: wav2vec2-xls-r-300m-lg-CV-Fleurs_filtered-100hrs-v13
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: fleurs
          type: fleurs
          config: lg_ug
          split: None
          args: lg_ug
        metrics:
          - name: Wer
            type: wer
            value: 0.44538386783284745

wav2vec2-xls-r-300m-lg-CV-Fleurs_filtered-100hrs-v13

This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the fleurs dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4759
  • Wer: 0.4454
  • Cer: 0.0854

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 4
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 8
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 70
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Cer
0.7277 1.0 7125 0.4018 0.4833 0.1016
0.3225 2.0 14250 0.3800 0.4945 0.1067
0.2726 3.0 21375 0.3745 0.4588 0.0919
0.2416 4.0 28500 0.3439 0.4419 0.0885
0.2188 5.0 35625 0.3353 0.4657 0.0906
0.2024 6.0 42750 0.3289 0.4563 0.0881
0.1888 7.0 49875 0.3272 0.4451 0.0863
0.1767 8.0 57000 0.3267 0.4226 0.0830
0.1668 9.0 64125 0.3354 0.4305 0.0837
0.1568 10.0 71250 0.3277 0.4297 0.0857
0.1483 11.0 78375 0.3310 0.4425 0.0857
0.1398 12.0 85500 0.3433 0.4299 0.0836
0.1323 13.0 92625 0.3448 0.4472 0.0870
0.125 14.0 99750 0.3585 0.4388 0.0849
0.1174 15.0 106875 0.3623 0.4250 0.0828
0.1121 16.0 114000 0.3813 0.4333 0.0843
0.1059 17.0 121125 0.3788 0.4251 0.0825
0.0996 18.0 128250 0.3882 0.4434 0.0863
0.0944 19.0 135375 0.4082 0.4444 0.0860
0.0889 20.0 142500 0.4227 0.4446 0.0848
0.0846 21.0 149625 0.4323 0.4422 0.0852
0.081 22.0 156750 0.4540 0.4506 0.0881
0.0767 23.0 163875 0.4759 0.4454 0.0854

Framework versions

  • Transformers 4.46.2
  • Pytorch 2.1.0+cu118
  • Datasets 3.1.0
  • Tokenizers 0.20.3