lewtun's picture
lewtun HF staff
Duplicate from autoevaluate/summarization
c8ed134
|
raw
history blame
1.87 kB
metadata
license: apache-2.0
tags:
  - generated_from_trainer
  - summarization
datasets:
  - xsum
  - autoevaluate/xsum-sample
metrics:
  - rouge
model-index:
  - name: summarization
    results:
      - task:
          name: Sequence-to-sequence Language Modeling
          type: text2text-generation
        dataset:
          name: xsum
          type: xsum
          args: default
        metrics:
          - name: Rouge1
            type: rouge
            value: 23.9405
duplicated_from: autoevaluate/summarization

summarization

This model is a fine-tuned version of t5-small on the xsum dataset. It achieves the following results on the evaluation set:

  • Loss: 2.6690
  • Rouge1: 23.9405
  • Rouge2: 5.0879
  • Rougel: 18.4981
  • Rougelsum: 18.5032
  • Gen Len: 18.7376

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • training_steps: 1000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Gen Len
2.9249 0.08 1000 2.6690 23.9405 5.0879 18.4981 18.5032 18.7376

Framework versions

  • Transformers 4.19.2
  • Pytorch 1.11.0+cu113
  • Datasets 2.2.2
  • Tokenizers 0.12.1