license: apache-2.0 | |
tags: | |
- generated_from_trainer | |
- summarization | |
datasets: | |
- xsum | |
- autoevaluate/xsum-sample | |
metrics: | |
- rouge | |
model-index: | |
- name: summarization | |
results: | |
- task: | |
name: Sequence-to-sequence Language Modeling | |
type: text2text-generation | |
dataset: | |
name: xsum | |
type: xsum | |
args: default | |
metrics: | |
- name: Rouge1 | |
type: rouge | |
value: 23.9405 | |
duplicated_from: autoevaluate/summarization | |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You | |
should probably proofread and complete it, then remove this comment. --> | |
# summarization | |
This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the xsum dataset. | |
It achieves the following results on the evaluation set: | |
- Loss: 2.6690 | |
- Rouge1: 23.9405 | |
- Rouge2: 5.0879 | |
- Rougel: 18.4981 | |
- Rougelsum: 18.5032 | |
- Gen Len: 18.7376 | |
## Model description | |
More information needed | |
## Intended uses & limitations | |
More information needed | |
## Training and evaluation data | |
More information needed | |
## Training procedure | |
### Training hyperparameters | |
The following hyperparameters were used during training: | |
- learning_rate: 2e-05 | |
- train_batch_size: 16 | |
- eval_batch_size: 16 | |
- seed: 42 | |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 | |
- lr_scheduler_type: linear | |
- training_steps: 1000 | |
- mixed_precision_training: Native AMP | |
### Training results | |
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | | |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:-------:|:---------:|:-------:| | |
| 2.9249 | 0.08 | 1000 | 2.6690 | 23.9405 | 5.0879 | 18.4981 | 18.5032 | 18.7376 | | |
### Framework versions | |
- Transformers 4.19.2 | |
- Pytorch 1.11.0+cu113 | |
- Datasets 2.2.2 | |
- Tokenizers 0.12.1 | |