File size: 9,594 Bytes
f1256a5 1825f87 7c8c226 1825f87 9f7e997 5bda505 9f7e997 1825f87 5bda505 9f7e997 92374fe 9f7e997 1825f87 982d908 9f7e997 8efbdc5 5bda505 92374fe 5bda505 92374fe 5bda505 92374fe 5bda505 92374fe df5eddd 92374fe 80d4469 4a30849 a8239d4 636c8e6 bc7b550 636c8e6 bc7b550 636c8e6 b5d0f61 d752709 b5d0f61 636c8e6 3b03cda 1920d52 3b03cda 89f8def 3b03cda 89f8def 3b03cda 89f8def 3b03cda 89f8def 3b03cda 89f8def 3b03cda 89f8def 3b03cda 89f8def 3b03cda 89f8def 3b03cda 89f8def 3b03cda 89f8def 3b03cda 89f8def 3b03cda 89f8def 3b03cda 92374fe |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 |
---
model_type: DynamicNeuralNetworkForCausalLM
architectures:
- DynamicNeuralNetworkForCausalLM
config:
adaptation_rate: 0.05
architectures:
- DynamicNeuralNetworkForCausalLM
complexity_metric: null
desired_improvement_rate: 0.02
ecosystem_dynamics:
environmental_volatility: 0.1
resource_pool: 1
embedding_dim: 768
growth_improvement_threshold: 0.01
hidden_dim: 2048
initial_neuron_count: 5000
innovative_growth_net:
adaptation_rate: 0.05
complexity_metric: null
initial_capacity: 250000
input_size: 2048
input_dimension: 768
low_stability_threshold: 0.01
max_complexity: 10000
max_neurons: 250000
max_sequence_length: 200
min_epochs_before_growth: 5
model_filename: pytorch_model.bin
model_type: llama
num_embeddings: 25000
pruning_improvement_threshold: 0.005
some_adaptation_rate: 0.05
stability_threshold: 0.02
start_token_index: 2
transformers_version: 4.34.0
license: apache-2.0
datasets:
- vicgalle/alpaca-gpt4
language:
- en
tags:
- text-generation-inference
metrics:
- accuracy
model: >-
from transformers import DynamicNeuralNetwork, DynamicNeuralNetworkConfig
custom_model = DynamicNeuralNetwork.from_pretrained("ayjays132/phillnet",
config=DynamicNeuralNetworkConfig.from_pretrained("ayjays132/phillnet"))
pipeline_tag: conversational
library_name: transformers
---
# Phillnet ๐
๐ Welcome to **Phillnet5b** ๐
Dive into the depths of AI with Phillnet, your 5 Billion-parameter titan! This colossal model is not just numbers; it's a labyrinth of knowledge, ready to unlock new realms of possibilities. ๐ง ๐ก
From text generation to complex problem-solving, Phillnet5b is your gateway to unparalleled AI power. Get ready to embark on a journey where every parameter is a pathway to innovation. ๐โจ
Let's revolutionize the world with **Phillnet5b** - where every bit counts and every neuron fires towards the future! ๐๐ฎ
## Model Overview
Phillnet, a marvel in the realm of language models, is a cutting-edge Dynamic Neural Network designed for advanced natural language processing tasks. Breaking away from conventional models, Phillnet exhibits dynamic adaptation and continuous evolution, showcasing its prowess in continual improvement. Crafted with a custom architecture, Phillnet seamlessly integrates an Innovative Growth Network, ushering in adaptability and innovation.
## Key Features
- **Model Type:** Dynamic Neural Network ๐ง
- **Embedding Dimension:** 768
- **Hidden Dimension:** 2048
- **Initial Neuron Count:** 5000
- **Input Dimension:** 768
- **Max Neurons:** 250000
- **Max Sequence Length:** 200
- **Num Embeddings:** 25000
- **Model Filename:** pytorch_model.bin
- **Transformers Version:** 4.34.0
## Ecosystem Dynamics ๐
Phillnet thrives in a dynamic ecosystem:
- **Environmental Volatility:** 0.1
- **Resource Pool:** 1.0
## Innovative Growth Network ๐ฑ
Empowered by an Innovative Growth Network for dynamic adaptation:
- **Adaptation Rate:** 0.05
- **Initial Capacity:** 250000
- **Input Size:** 2048
---
## Hyperparameters Overview
Here's a concise overview of the key hyperparameters used for training the model:
**Training Parameters**
- `max_neurons`: 250,000
- `epochs`: 50
- `clip`: 5
- `patience`: 7
- `adaptation_rate`: 0.05
- `sequence_length`: 200
- `max_sequence_length`: 200
- `weight_decay`: 0.005
- `num_embeddings`: 25,000
- `embedding_dim`: 768
- `hidden_dim`: 2048
- `learning_rate`: 1e-5
- `some_intermediate_size`: 3072
**Additional Parameters**
- `input_dimension`: 768
- `initial_neuron_count`: 5000
- `some_adaptation_rate`: 0.05
- `complexity_metric`: None
**New Parameters**
- `growth_improvement_threshold`: 0.01
- `pruning_improvement_threshold`: 0.005
- `stability_threshold`: 0.02
- `max_complexity`: 10,000
- `low_stability_threshold`: 0.01
- `min_epochs_before_growth`: 5
- `desired_improvement_rate`: 0.02
---
## Seamless Integration with Hugging Face ๐ค
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("ayjays132/phillnet")
tokenizer.add_special_tokens({'pad_token': '[PAD]'})
model = AutoModelForCausalLM.from_pretrained("ayjays132/phillnet")
# Example conversation
conversation_history = [
"Hello, how are you?",
"I'm doing well, thank you! How about you?",
"I'm good too. What's new with you?",
"Not much, just working on some projects. How can I help you today?"
]
# Concatenate the conversation strings
conversation_text = " ".join(conversation_history)
# Tokenize and pad the input
input_ids = tokenizer.encode(conversation_text, return_tensors="pt", padding=True, truncation=True)
# Generate a response
output_ids = model.generate(input_ids, max_length=150, num_return_sequences=1, pad_token_id=tokenizer.eos_token_id)
# Decode the generated response
generated_response = tokenizer.decode(output_ids[0], skip_special_tokens=True)
# Print the generated response
print("Generated Response:", generated_response)
## Experience the Magic โจ
- **Adaptive Learning:** Phillnet dynamically adapts to data patterns, continually enhancing its performance.
- **Innovative Growth:** The model evolves through an Innovative Growth Network, ensuring continuous enhancement.
- **Custom Architecture:** Crafted with a dynamic custom architecture for unparalleled language understanding.
๐ **Welcome to the CustomModelLoader.py Odyssey!** ๐
Embark on a scholarly quest to unlock the potential of your AI model, "ayjays132/phillnet", with our elegantly crafted script. Designed for the curious minds in AI, this guide is your beacon through the realm of machine learning. Let's dive into the script that's set to revolutionize your AI journey! ๐
### The Script Unveiled: CustomModelLoader.py
This script is your trusty companion in the AI landscape, designed to effortlessly awaken your pre-trained model from its slumber in the Hugging Face Hub. Here's a peek into its core:
```
# CustomModelLoader.py
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
import logging
# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
def load_custom_model(model_name, device):
try:
# Load the model directly from Hugging Face Hub
model = AutoModelForCausalLM.from_pretrained(model_name).to(device)
logger.info(f"Model loaded successfully from {model_name}")
return model
except Exception as e:
logger.error(f"An error occurred while loading the model: {e}")
raise
def load_tokenizer(tokenizer_name):
try:
# Load the tokenizer
tokenizer = AutoTokenizer.from_pretrained(tokenizer_name)
logger.info(f"Tokenizer loaded successfully from {tokenizer_name}")
return tokenizer
except Exception as e:
logger.error(f"An error occurred while loading the tokenizer: {e}")
raise
def inspect_model_layers(model):
logger.info("Inspecting model layers and weights...")
for name, param in model.named_parameters():
logger.debug(f"Layer: {name} | Size: {param.size()} | Values : {param[:2]}...\n")
if __name__ == "__main__":
# Define device
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
logger.info(f"Using {'CUDA' if device.type == 'cuda' else 'CPU'}")
# Model name or path in Hugging Face Hub
model_name = "ayjays132/phillnet"
tokenizer_name = model_name # Assuming tokenizer is at the same path
try:
# Load the tokenizer and model
tokenizer = load_tokenizer(tokenizer_name)
model = load_custom_model(model_name, device)
# Inspect the model layers and weights
inspect_model_layers(model)
# Perform a simple test to verify model weights are loaded correctly (Optional)
input_ids = tokenizer.encode("Hello, world!", return_tensors="pt").to(device)
with torch.no_grad():
outputs = model(input_ids)
logger.info("Model test run completed successfully.")
print("Custom model and tokenizer loaded successfully.")
except Exception as e:
logger.error(f"An error occurred: {e}")
```
### With `CustomModelLoader.py` at your side, you're not just loading a model; you're unlocking a world of possibilities. Whether you're fine-tuning for accuracy or predicting the unknown, your AI journey is about to get a whole lot smoother. So, scholars and AI enthusiasts, let the odyssey begin! ๐ฉโจ
### ๐ How It Works: The Mechanics
1. **Setting the Stage**: Our script begins by checking whether to summon the powers of CUDA or settle in the CPU realm.
2. **Summoning the Model & Tokenizer**: It then gracefully calls upon the `AutoModelForCausalLM` and `AutoTokenizer` from the Hugging Face Hub, ensuring your model and tokenizer are at the ready.
3. **Error Handling Like a Pro**: Should any mischiefs arise, our script is well-armed with try-except blocks to catch and log any spells gone awry, keeping you informed every step of the way.
### ๐ For the AI Scholars:
This script isn't just a tool; it's a companion designed to make your AI endeavors more productive and enjoyable. Here's how you can harness its power:
- **Plug & Play**: Simply place this script in your project, and it's ready to go. No complicated setup required!
- **Error Logs**: Detailed logging ensures you're always in the know, making troubleshooting a breeze.
- **Flexibility**: Designed with customization in mind, feel free to tweak the script to fit the unique needs of your scholarly pursuits.
--- |