emotion_classifier / README.md
ayooke97's picture
End of training
1a1b629 verified
metadata
library_name: transformers
license: apache-2.0
base_model: google/vit-base-patch16-224-in21k
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: emotion_classifier
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.4125

emotion_classifier

This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.6092
  • Accuracy: 0.4125

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 10
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 40 2.0750 0.15
No log 2.0 80 2.0046 0.1875
No log 3.0 120 1.8909 0.3063
No log 4.0 160 1.7726 0.3563
No log 5.0 200 1.6970 0.3438
No log 6.0 240 1.6562 0.3937
No log 7.0 280 1.6269 0.4062
No log 8.0 320 1.6092 0.4125
No log 9.0 360 1.6012 0.4125
No log 10.0 400 1.5955 0.4125

Framework versions

  • Transformers 4.49.0
  • Pytorch 2.5.1+cpu
  • Datasets 3.2.0
  • Tokenizers 0.21.0