|
--- |
|
pipeline_tag: sentence-similarity |
|
tags: |
|
- sentence-transformers |
|
- feature-extraction |
|
- sentence-similarity |
|
- transformers |
|
datasets: |
|
- kornlu |
|
language: |
|
- ko |
|
license: cc-by-4.0 |
|
--- |
|
|
|
# bi-matrix/gmatrix-embedding |
|
|
|
ํด๋น ๋ชจ๋ธ์ [KF-DeBERTa](https://huggingface.co/kakaobank/kf-deberta-base) ๋ชจ๋ธ๊ณผ KorSTS, KorNLI ๋ฐ์ดํฐ์
์ ํ์ฉํ์์ผ๋ฉฐ, sentence-transformers์ ๊ณต์ ๋ฌธ์ ๋ด ์๊ฐ๋ [continue-learning](https://github.com/UKPLab/sentence-transformers/blob/master/examples/training/sts/training_stsbenchmark_continue_training.py) ๋ฐฉ๋ฒ์ ํตํด ์๋์ ๊ฐ์ด ํ์ต๋์์ต๋๋ค. |
|
1. NLI ๋ฐ์ดํฐ์
์ ํตํด nagative sampling ํ MultipleNegativeRankingLoss ํ์ฉ ๋ฐ STS ๋ฐ์ดํฐ์
์ ํตํด CosineSimilarityLoss๋ฅผ ํ์ฉํ์ฌ Multi-task Learning ํ์ต 10epoch ์งํ |
|
2. Learning Rate๋ฅผ 1e-06์ผ๋ก ์ค์ฌ์ 4epoch ์ถ๊ฐ Multi-task ํ์ต ์งํ |
|
|
|
--- |
|
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. |
|
|
|
<!--- Describe your model here --> |
|
|
|
## Usage (Sentence-Transformers) |
|
|
|
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: |
|
|
|
``` |
|
pip install -U sentence-transformers |
|
``` |
|
|
|
Then you can use the model like this: |
|
|
|
```python |
|
from sentence_transformers import SentenceTransformer |
|
sentences = ["This is an example sentence", "Each sentence is converted"] |
|
|
|
model = SentenceTransformer("bi-matrix/gmatrix-embedding") |
|
embeddings = model.encode(sentences) |
|
print(embeddings) |
|
``` |
|
|
|
|
|
|
|
## Usage (HuggingFace Transformers) |
|
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. |
|
|
|
```python |
|
from transformers import AutoTokenizer, AutoModel |
|
import torch |
|
|
|
|
|
#Mean Pooling - Take attention mask into account for correct averaging |
|
def mean_pooling(model_output, attention_mask): |
|
token_embeddings = model_output[0] #First element of model_output contains all token embeddings |
|
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() |
|
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) |
|
|
|
|
|
# Sentences we want sentence embeddings for |
|
sentences = ['This is an example sentence', 'Each sentence is converted'] |
|
|
|
# Load model from HuggingFace Hub |
|
tokenizer = AutoTokenizer.from_pretrained("bi-matrix/gmatrix-embedding") |
|
model = AutoModel.from_pretrained("bi-matrix/gmatrix-embedding") |
|
|
|
# Tokenize sentences |
|
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') |
|
|
|
# Compute token embeddings |
|
with torch.no_grad(): |
|
model_output = model(**encoded_input) |
|
|
|
# Perform pooling. In this case, mean pooling. |
|
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) |
|
|
|
print("Sentence embeddings:") |
|
print(sentence_embeddings) |
|
``` |
|
|
|
|
|
## Evaluation Results |
|
|
|
<!--- Describe how your model was evaluated --> |
|
|
|
KorSTS ํ๊ฐ ๋ฐ์ดํฐ์
์ผ๋ก ํ๊ฐํ ๊ฒฐ๊ณผ์
๋๋ค. |
|
|
|
- Cosine Pearson: 85.77 |
|
- Cosine Spearman: 86.30 |
|
- Manhattan Pearson: 84.84 |
|
- Manhattan Spearman: 85.33 |
|
- Euclidean Pearson: 84.82 |
|
- Euclidean Spearman: 85.29 |
|
- Dot Pearson: 83.19 |
|
- Dot Spearman: 83.19 |
|
|
|
<br> |
|
|
|
|model|cosine_pearson|cosine_spearman|euclidean_pearson|euclidean_spearman|manhattan_pearson|manhattan_spearman|dot_pearson|dot_spearman| |
|
|:-------------------------|-----------------:|------------------:|--------------------:|---------------------:|--------------------:|---------------------:|--------------:|---------------:| |
|
|[**gmatrix-embedding**](https://huggingface.co/bi-matrix/gmatrix-embedding)|**85.77**|**86.30**|**84.82**|**85.29**|**84.84**|**85.33**|**83.19**|**83.19**| |
|
|[kf-deberta-multitask](https://huggingface.co/upskyy/kf-deberta-multitask)|85.75|86.25|84.79|85.25|84.80|85.27|82.93|82.86| |
|
|[ko-sroberta-multitask](https://huggingface.co/jhgan/ko-sroberta-multitask)|84.77|85.6|83.71|84.40|83.70|84.38|82.42|82.33| |
|
|[ko-sbert-multitask](https://huggingface.co/jhgan/ko-sbert-multitask)|84.13|84.71|82.42|82.66|82.41|82.69|80.05|79.69| |
|
|[ko-sroberta-base-nli](https://huggingface.co/jhgan/ko-sroberta-nli)|82.83|83.85|82.87|83.29|82.88|83.28|80.34|79.69| |
|
|[ko-sbert-nli](https://huggingface.co/jhgan/ko-sbert-multitask)|82.24|83.16|82.19|82.31|82.18|82.3|79.3|78.78| |
|
|[ko-sroberta-sts](https://huggingface.co/jhgan/ko-sroberta-sts)|81.84|81.82|81.15|81.25|81.14|81.25|79.09|78.54| |
|
|[ko-sbert-sts](https://huggingface.co/jhgan/ko-sbert-sts)|81.55|81.23|79.94|79.79|79.9|79.75|76.02|75.31| |
|
|
|
<br> |
|
|
|
|
|
<!--- Describe how your model was evaluated --> |
|
|
|
G-MATRIX Embedding ๋ฐ์ดํฐ์
์ธก์ ๊ฒฐ๊ณผ์
๋๋ค. |
|
์ฌ๋ 3๋ช
์ด์ 0~5์ ์ผ๋ก ๋ ๋ฌธ์ฅ๊ฐ์ ์ ์ฌ๋๋ฅผ ์ธก์ ํ์ฌ ์ ์๋ฅผ ๋ด๊ณ ํ๊ท ์ ๊ตฌํ์ฌ ๊ฐ ๋ชจ๋ธ์ ์๋ฒ ๋ฉ๊ฐ์ ํตํด |
|
|
|
์ฝ์ฌ์ธ ์ ์ฌ๋, ์ ํด๋ฆฌ๋์ ๊ฑฐ๋ฆฌ, ๋งจํํ ๊ฑฐ๋ฆฌ, Dot-product๋ฅผ ๊ตฌํ์ฌ ํผ์ด์จ, ์คํผ์ด๋ง ์๊ด๊ณ์๋ฅผ ๊ตฌํ ๊ฐ์
๋๋ค. |
|
|
|
- Cosine Pearson: 75.86 |
|
- Cosine Spearman: 65.75 |
|
- Manhattan Pearson: 72.65 |
|
- Manhattan Spearman: 65.20 |
|
- Euclidean Pearson: 72.48 |
|
- Euclidean Spearman: 65.32 |
|
- Dot Pearson: 64.71 |
|
- Dot Spearman: 53.90 |
|
|
|
<br> |
|
|
|
model|cosine_pearson|cosine_spearman|euclidean_pearson|euclidean_spearman|manhattan_pearson|manhattan_spearman|dot_pearson|dot_spearman| |
|
|:-------------------------|-----------------:|------------------:|--------------------:|---------------------:|--------------------:|---------------------:|--------------:|---------------:| |
|
|[**gmatrix-embedding**](https://huggingface.co/bi-matrix/gmatrix-embedding)|**75.86**|**65.75**|**72.65**|**65.20**|**72.48**|**65.32**|**64.71**|**53.90**| |
|
|[ko-sroberta-multitask](https://huggingface.co/jhgan/ko-sroberta-multitask)|71.78|63.16|70.80|63.47|70.89|63.72|53.57|44.23| |
|
|[bge-m3](https://huggingface.co/BAAI/bge-m3)|64.15|60.65|61.88|60.68|61.88|60.19|64.16|60.71| |
|
|
|
<br> |
|
|
|
|
|
|
|
 |
|
|
|
<br> |
|
|
|
## G-MATRIX Embedding ๋ ์ด๋ธ๋ง ํ๋จ ๊ธฐ์ค (KLUE-RoBERTa์ STS ๋ฐ์ดํฐ ์์ฑ ์ฐธ๊ณ ) |
|
1. ๋ ๋ฌธ์ฅ์ ์ ์ฌํ ์ ๋๋ฅผ ๋ณด๊ณ 0~5์ ์ผ๋ก ํ๋จ |
|
2. ๋ง์ถค๋ฒ, ๋์ด์ฐ๊ธฐ, ์จ์ ์ด๋ ์ผํ ์ฐจ์ด๋ ํ๋จ ๋์์ด ์๋ |
|
3. ๋ฌธ์ฅ์ ์๋, ํํ์ด ๋ด๊ณ ์๋ ์๋ฏธ๋ฅผ ๋น๊ต |
|
4. ๋ ๋ฌธ์ฅ์ ๊ณตํต์ ์ผ๋ก ์ฌ์ฉ๋ ๋จ์ด์ ์ ๋ฌด๋ฅผ ์ฐพ๋ ๊ฒ์ด ์๋, ๋ฌธ์ฅ์ ์๋ฏธ๊ฐ ์ ์ฌํ์ง๋ฅผ ๋น๊ต |
|
5. 0์ ์๋ฏธ์ ์ ์ฌ์ฑ์ด ์๋ ๊ฒฝ์ฐ์ด๊ณ , 5๋ ์๋ฏธ์ ์ผ๋ก ๋๋ฑํจ์ ๋ปํจ |
|
|
|
|
|
|
|
## Training |
|
The model was trained with the parameters: |
|
|
|
**DataLoader**: |
|
|
|
`torch.utils.data.dataloader.DataLoader` of length 329 with parameters: |
|
``` |
|
{'batch_size': 32, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} |
|
``` |
|
|
|
**Loss**: |
|
|
|
`sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` |
|
|
|
|
|
## Full Model Architecture |
|
``` |
|
SentenceTransformer( |
|
(0): Transformer({'max_seq_length': 128, 'do_lower_case': True}) with Transformer model: DeBERTaV2Model |
|
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) |
|
) |
|
``` |
|
|
|
## Citing & Authors |
|
|
|
<!--- Describe where people can find more information --> |
|
[MINSANG SONG] at [BI-Matrix](https://www.bimatrix.co.kr/) |