gmatrix-embedding1 / README.md
mssongit's picture
Update README.md
023985b verified
---
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- feature-extraction
- sentence-similarity
- transformers
datasets:
- kornlu
language:
- ko
license: cc-by-4.0
---
# bi-matrix/gmatrix-embedding
ํ•ด๋‹น ๋ชจ๋ธ์€ [KF-DeBERTa](https://huggingface.co/kakaobank/kf-deberta-base) ๋ชจ๋ธ๊ณผ KorSTS, KorNLI ๋ฐ์ดํ„ฐ์…‹์„ ํ™œ์šฉํ•˜์˜€์œผ๋ฉฐ, sentence-transformers์˜ ๊ณต์‹ ๋ฌธ์„œ ๋‚ด ์†Œ๊ฐœ๋œ [continue-learning](https://github.com/UKPLab/sentence-transformers/blob/master/examples/training/sts/training_stsbenchmark_continue_training.py) ๋ฐฉ๋ฒ•์„ ํ†ตํ•ด ์•„๋ž˜์™€ ๊ฐ™์ด ํ•™์Šต๋˜์—ˆ์Šต๋‹ˆ๋‹ค.
1. NLI ๋ฐ์ดํ„ฐ์…‹์„ ํ†ตํ•ด nagative sampling ํ›„ MultipleNegativeRankingLoss ํ™œ์šฉ ๋ฐ STS ๋ฐ์ดํ„ฐ์…‹์„ ํ†ตํ•ด CosineSimilarityLoss๋ฅผ ํ™œ์šฉํ•˜์—ฌ Multi-task Learning ํ•™์Šต 10epoch ์ง„ํ–‰
2. Learning Rate๋ฅผ 1e-06์œผ๋กœ ์ค„์—ฌ์„œ 4epoch ์ถ”๊ฐ€ Multi-task ํ•™์Šต ์ง„ํ–‰
---
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
<!--- Describe your model here -->
## Usage (Sentence-Transformers)
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
```
pip install -U sentence-transformers
```
Then you can use the model like this:
```python
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]
model = SentenceTransformer("bi-matrix/gmatrix-embedding")
embeddings = model.encode(sentences)
print(embeddings)
```
## Usage (HuggingFace Transformers)
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
```python
from transformers import AutoTokenizer, AutoModel
import torch
#Mean Pooling - Take attention mask into account for correct averaging
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
# Sentences we want sentence embeddings for
sentences = ['This is an example sentence', 'Each sentence is converted']
# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained("bi-matrix/gmatrix-embedding")
model = AutoModel.from_pretrained("bi-matrix/gmatrix-embedding")
# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
# Compute token embeddings
with torch.no_grad():
model_output = model(**encoded_input)
# Perform pooling. In this case, mean pooling.
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
print("Sentence embeddings:")
print(sentence_embeddings)
```
## Evaluation Results
<!--- Describe how your model was evaluated -->
KorSTS ํ‰๊ฐ€ ๋ฐ์ดํ„ฐ์…‹์œผ๋กœ ํ‰๊ฐ€ํ•œ ๊ฒฐ๊ณผ์ž…๋‹ˆ๋‹ค.
- Cosine Pearson: 85.77
- Cosine Spearman: 86.30
- Manhattan Pearson: 84.84
- Manhattan Spearman: 85.33
- Euclidean Pearson: 84.82
- Euclidean Spearman: 85.29
- Dot Pearson: 83.19
- Dot Spearman: 83.19
<br>
|model|cosine_pearson|cosine_spearman|euclidean_pearson|euclidean_spearman|manhattan_pearson|manhattan_spearman|dot_pearson|dot_spearman|
|:-------------------------|-----------------:|------------------:|--------------------:|---------------------:|--------------------:|---------------------:|--------------:|---------------:|
|[**gmatrix-embedding**](https://huggingface.co/bi-matrix/gmatrix-embedding)|**85.77**|**86.30**|**84.82**|**85.29**|**84.84**|**85.33**|**83.19**|**83.19**|
|[kf-deberta-multitask](https://huggingface.co/upskyy/kf-deberta-multitask)|85.75|86.25|84.79|85.25|84.80|85.27|82.93|82.86|
|[ko-sroberta-multitask](https://huggingface.co/jhgan/ko-sroberta-multitask)|84.77|85.6|83.71|84.40|83.70|84.38|82.42|82.33|
|[ko-sbert-multitask](https://huggingface.co/jhgan/ko-sbert-multitask)|84.13|84.71|82.42|82.66|82.41|82.69|80.05|79.69|
|[ko-sroberta-base-nli](https://huggingface.co/jhgan/ko-sroberta-nli)|82.83|83.85|82.87|83.29|82.88|83.28|80.34|79.69|
|[ko-sbert-nli](https://huggingface.co/jhgan/ko-sbert-multitask)|82.24|83.16|82.19|82.31|82.18|82.3|79.3|78.78|
|[ko-sroberta-sts](https://huggingface.co/jhgan/ko-sroberta-sts)|81.84|81.82|81.15|81.25|81.14|81.25|79.09|78.54|
|[ko-sbert-sts](https://huggingface.co/jhgan/ko-sbert-sts)|81.55|81.23|79.94|79.79|79.9|79.75|76.02|75.31|
<br>
<!--- Describe how your model was evaluated -->
G-MATRIX Embedding ๋ฐ์ดํ„ฐ์…‹ ์ธก์ • ๊ฒฐ๊ณผ์ž…๋‹ˆ๋‹ค.
์‚ฌ๋žŒ 3๋ช…์ด์„œ 0~5์ ์œผ๋กœ ๋‘ ๋ฌธ์žฅ๊ฐ„์˜ ์œ ์‚ฌ๋„๋ฅผ ์ธก์ •ํ•˜์—ฌ ์ ์ˆ˜๋ฅผ ๋‚ด๊ณ  ํ‰๊ท ์„ ๊ตฌํ•˜์—ฌ ๊ฐ ๋ชจ๋ธ์˜ ์ž„๋ฒ ๋”ฉ๊ฐ’์„ ํ†ตํ•ด
์ฝ”์‚ฌ์ธ ์œ ์‚ฌ๋„, ์œ ํด๋ฆฌ๋””์•ˆ ๊ฑฐ๋ฆฌ, ๋งจํ•˜ํƒ„ ๊ฑฐ๋ฆฌ, Dot-product๋ฅผ ๊ตฌํ•˜์—ฌ ํ”ผ์–ด์Šจ, ์Šคํ”ผ์–ด๋งŒ ์ƒ๊ด€๊ณ„์ˆ˜๋ฅผ ๊ตฌํ•œ ๊ฐ’์ž…๋‹ˆ๋‹ค.
- Cosine Pearson: 75.86
- Cosine Spearman: 65.75
- Manhattan Pearson: 72.65
- Manhattan Spearman: 65.20
- Euclidean Pearson: 72.48
- Euclidean Spearman: 65.32
- Dot Pearson: 64.71
- Dot Spearman: 53.90
<br>
model|cosine_pearson|cosine_spearman|euclidean_pearson|euclidean_spearman|manhattan_pearson|manhattan_spearman|dot_pearson|dot_spearman|
|:-------------------------|-----------------:|------------------:|--------------------:|---------------------:|--------------------:|---------------------:|--------------:|---------------:|
|[**gmatrix-embedding**](https://huggingface.co/bi-matrix/gmatrix-embedding)|**75.86**|**65.75**|**72.65**|**65.20**|**72.48**|**65.32**|**64.71**|**53.90**|
|[ko-sroberta-multitask](https://huggingface.co/jhgan/ko-sroberta-multitask)|71.78|63.16|70.80|63.47|70.89|63.72|53.57|44.23|
|[bge-m3](https://huggingface.co/BAAI/bge-m3)|64.15|60.65|61.88|60.68|61.88|60.19|64.16|60.71|
<br>
![image/png](https://cdn-uploads.huggingface.co/production/uploads/6350f6750b94548566da3279/CcK0QL3oQAz7sJOCtH6PB.png)
<br>
## G-MATRIX Embedding ๋ ˆ์ด๋ธ”๋ง ํŒ๋‹จ ๊ธฐ์ค€ (KLUE-RoBERTa์˜ STS ๋ฐ์ดํ„ฐ ์ƒ์„ฑ ์ฐธ๊ณ )
1. ๋‘ ๋ฌธ์žฅ์˜ ์œ ์‚ฌํ•œ ์ •๋„๋ฅผ ๋ณด๊ณ  0~5์ ์œผ๋กœ ํŒ๋‹จ
2. ๋งž์ถค๋ฒ•, ๋„์–ด์“ฐ๊ธฐ, ์˜จ์ ์ด๋‚˜ ์‰ผํ‘œ ์ฐจ์ด๋Š” ํŒ๋‹จ ๋Œ€์ƒ์ด ์•„๋‹˜
3. ๋ฌธ์žฅ์˜ ์˜๋„, ํ‘œํ˜„์ด ๋‹ด๊ณ  ์žˆ๋Š” ์˜๋ฏธ๋ฅผ ๋น„๊ต
4. ๋‘ ๋ฌธ์žฅ์— ๊ณตํ†ต์ ์œผ๋กœ ์‚ฌ์šฉ๋œ ๋‹จ์–ด์˜ ์œ ๋ฌด๋ฅผ ์ฐพ๋Š” ๊ฒƒ์ด ์•„๋‹Œ, ๋ฌธ์žฅ์˜ ์˜๋ฏธ๊ฐ€ ์œ ์‚ฌํ•œ์ง€๋ฅผ ๋น„๊ต
5. 0์€ ์˜๋ฏธ์  ์œ ์‚ฌ์„ฑ์ด ์—†๋Š” ๊ฒฝ์šฐ์ด๊ณ , 5๋Š” ์˜๋ฏธ์ ์œผ๋กœ ๋™๋“ฑํ•จ์„ ๋œปํ•จ
## Training
The model was trained with the parameters:
**DataLoader**:
`torch.utils.data.dataloader.DataLoader` of length 329 with parameters:
```
{'batch_size': 32, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
```
**Loss**:
`sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss`
## Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': True}) with Transformer model: DeBERTaV2Model
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
)
```
## Citing & Authors
<!--- Describe where people can find more information -->
[MINSANG SONG] at [BI-Matrix](https://www.bimatrix.co.kr/)