mLongT5HeSum-base / README.md
anonymous-acl-2024
Update README.md
5776c3c verified
metadata
license: apache-2.0
base_model: agemagician/mlong-t5-tglobal-base
tags:
  - generated_from_trainer
metrics:
  - rouge
model-index:
  - name: mlong-t5-tglobal-base
    results: []

mlong-t5-tglobal-base

This model is a fine-tuned version of agemagician/mlong-t5-tglobal-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 2.1553
  • Rouge1: 32.0603
  • Rouge2: 13.4985
  • Rougel: 24.0775
  • Rougelsum: 25.9692
  • Gen Len: 72.828

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 1
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 30

Training results

Training Loss Epoch Step Gen Len Validation Loss Rouge1 Rouge2 Rougel Rougelsum
No log 1.0 500 18.987 2.2709 20.5043 8.1518 16.9526 17.5001
2.8714 2.0 1000 18.982 2.2022 21.4051 8.7445 17.7534 18.3191
2.8714 3.0 1500 18.99 2.1608 21.6609 9.1753 18.0374 18.6176
2.5137 4.0 2000 18.993 2.1555 21.6818 9.1814 18.0382 18.6198
2.5137 5.0 2500 18.994 2.1462 21.9708 9.2033 18.3919 18.9535
2.3717 6.0 3000 18.996 2.1258 22.0583 9.2987 18.4379 19.0322
2.3717 7.0 3500 18.989 2.1278 21.8245 9.0474 18.1979 18.8038
2.2633 8.0 4000 18.996 2.1207 21.6273 8.8847 18.024 18.6049
2.2633 9.0 4500 18.994 2.1180 22.2004 9.6253 18.6373 19.1721
2.1886 10.0 5000 18.988 2.1220 22.1619 9.6206 18.5069 19.0856
2.1886 11.0 5500 18.987 2.1161 22.1518 9.4522 18.4695 19.0552
2.1144 12.0 6000 18.995 2.1103 22.0395 9.4185 18.4314 19.0305
2.1144 13.0 6500 18.992 2.1150 22.2404 9.4722 18.5482 19.1747
2.054 14.0 7000 19.0 2.1091 22.1466 9.3434 18.3443 18.9233
2.0526 1.0 8000 62.488 2.1580 30.4149 12.0774 22.9493 24.4478
2.1236 2.0 16000 64.797 2.1621 31.3101 13.3237 23.8249 25.526
2.0776 3.0 24000 57.059 2.1607 30.9902 12.3753 23.0243 24.8308
1.9843 4.0 32000 72.828 2.1553 32.0603 13.4985 24.0775 25.9692

Framework versions

  • Transformers 4.38.2
  • Pytorch 1.13.1+cu117
  • Datasets 2.18.0
  • Tokenizers 0.15.2