|
--- |
|
base_model: microsoft/deberta-v3-small |
|
datasets: [] |
|
language: [] |
|
library_name: sentence-transformers |
|
metrics: |
|
- pearson_cosine |
|
- spearman_cosine |
|
- pearson_manhattan |
|
- spearman_manhattan |
|
- pearson_euclidean |
|
- spearman_euclidean |
|
- pearson_dot |
|
- spearman_dot |
|
- pearson_max |
|
- spearman_max |
|
- cosine_accuracy |
|
- cosine_accuracy_threshold |
|
- cosine_f1 |
|
- cosine_f1_threshold |
|
- cosine_precision |
|
- cosine_recall |
|
- cosine_ap |
|
- dot_accuracy |
|
- dot_accuracy_threshold |
|
- dot_f1 |
|
- dot_f1_threshold |
|
- dot_precision |
|
- dot_recall |
|
- dot_ap |
|
- manhattan_accuracy |
|
- manhattan_accuracy_threshold |
|
- manhattan_f1 |
|
- manhattan_f1_threshold |
|
- manhattan_precision |
|
- manhattan_recall |
|
- manhattan_ap |
|
- euclidean_accuracy |
|
- euclidean_accuracy_threshold |
|
- euclidean_f1 |
|
- euclidean_f1_threshold |
|
- euclidean_precision |
|
- euclidean_recall |
|
- euclidean_ap |
|
- max_accuracy |
|
- max_accuracy_threshold |
|
- max_f1 |
|
- max_f1_threshold |
|
- max_precision |
|
- max_recall |
|
- max_ap |
|
pipeline_tag: sentence-similarity |
|
tags: |
|
- sentence-transformers |
|
- sentence-similarity |
|
- feature-extraction |
|
- generated_from_trainer |
|
- dataset_size:116445 |
|
- loss:CachedGISTEmbedLoss |
|
widget: |
|
- source_sentence: what is the main purpose of the brain |
|
sentences: |
|
- Brain Physiologically, the function of the brain is to exert centralized control |
|
over the other organs of the body. The brain acts on the rest of the body both |
|
by generating patterns of muscle activity and by driving the secretion of chemicals |
|
called hormones. This centralized control allows rapid and coordinated responses |
|
to changes in the environment. Some basic types of responsiveness such as reflexes |
|
can be mediated by the spinal cord or peripheral ganglia, but sophisticated purposeful |
|
control of behavior based on complex sensory input requires the information integrating |
|
capabilities of a centralized brain. |
|
- How do scientists know that some mountains were once at the bottom of an ocean? |
|
- The Smiths Wiki | Fandom powered by Wikia Share Ad blocker interference detected! |
|
Wikia is a free-to-use site that makes money from advertising. We have a modified |
|
experience for viewers using ad blockers Wikia is not accessible if you’ve made |
|
further modifications. Remove the custom ad blocker rule(s) and the page will |
|
load as expected. The Smiths were an English rock band formed in Manchester in |
|
1982. Based on the songwriting partnership of Morrissey (vocals) and Johnny Marr |
|
(guitar), the band also included Andy Rourke (bass), Mike Joyce (drums) and for |
|
a brief time Craig Gannon (rhythm guitar). Critics have called them one of the |
|
most important alternative rock bands to emerge from the British independent music |
|
scene of the 1980s,and the group has had major influence on subsequent artists. |
|
Morrissey's lovelorn tales of alienation found an audience amongst youth culture |
|
bored by the ubiquitous synthesiser-pop bands of the early 1980s, while Marr's |
|
complex melodies helped return guitar-based music to popularity. The group were |
|
signed to the independent record label Rough Trade Records , for whom they released |
|
four studio albums and several compilations, as well as numerous non-LP singles. |
|
Although they had limited commercial success outside the UK while they were still |
|
together, and never released a single that charted higher than number 10 in their |
|
home country, The Smiths won a growing following, and they remain cult and commercial |
|
favourites. The band broke up in 1987 amid disagreements between Morrissey and |
|
Marr and has turned down several offers to reform. Welcome to The Smiths Wiki |
|
- source_sentence: There were 29 Muslims fatalities in the Cave of the Patriarchs |
|
massacre . |
|
sentences: |
|
- In August , after the end of the war in June 1902 , Higgins Southampton left the |
|
`` SSBavarian '' and returned to Cape Town the following month . |
|
- Between 29 and 52 Muslims were killed and more than 100 others wounded . [ Settlers |
|
remember gunman Goldstein ; Hebron riots continue ] . |
|
- 29 Muslims were killed and more than 100 others wounded . [ Settlers remember |
|
gunman Goldstein ; Hebron riots continue ] . |
|
- source_sentence: are tabby cats all male? |
|
sentences: |
|
- Did you know orange tabby cats are typically male? In fact, up to 80 percent of |
|
orange tabbies are male, making orange female cats a bit of a rarity. According |
|
to the BBC's Focus Magazine, the ginger gene in cats works a little differently |
|
compared to humans; it is on the X chromosome. |
|
- Shawnee Trails Council was formed from the merger of the Four Rivers Council and |
|
the Audubon Council . |
|
- 'A picture of a modern looking kitchen area |
|
|
|
' |
|
- source_sentence: Aamir Khan agreed to act immediately after reading Mehra 's screenplay |
|
in `` Rang De Basanti '' . |
|
sentences: |
|
- Chris Rea — Free listening, videos, concerts, stats and photos at Last.fm singer-songwriter |
|
Christopher Anton Rea (pronounced Ree-ah), born 4 March 1951, is a singer, songwriter, |
|
and guitarist from Middlesbrough, England. Rea's recording career began in 1978. |
|
Although he almost immediately had a US hit single with "Fool (If You Think It's |
|
Over)", Rea's initial focus was on continental Europe, releasing eight albums |
|
in the 1980s. It wasn't until 1985's Shamrock Diaries and the songs "Stainsby |
|
Girls" and "Josephine," that UK audiences began to take notice of him. Follow |
|
up albums… read more |
|
- "Healthy Fast Food Meal No. 1. Grilled Chicken Sandwich and Fruit Cup (Chick-fil-A)\ |
|
\ Several fast food chains offer a grilled chicken sandwich. The trick is ordering\ |
|
\ it without mayo or creamy sauce, and making sure itâ\x80\x99s served with a\ |
|
\ whole grain bun." |
|
- Aamir Khan agreed to act in `` Rang De Basanti '' immediately after reading Mehra |
|
's script . |
|
- source_sentence: 'A man wearing a blue bow tie and a fedora hat in a car. ' |
|
sentences: |
|
- A man takes a photo of himself wearing a bowtie and hat |
|
- Scientists explain the world based on what? |
|
- 'County of Angus - definition of County of Angus by The Free Dictionary County |
|
of Angus - definition of County of Angus by The Free Dictionary http://www.thefreedictionary.com/County+of+Angus |
|
(ăng′gəs) n. Any of a breed of hornless beef cattle that originated in Scotland |
|
and are usually black but also occur in a red variety. Also called Black Angus. |
|
[After Angus, former county of Scotland.] Angus (ˈæŋɡəs) n (Placename) a council |
|
area of E Scotland on the North Sea: the historical county of Angus became part |
|
of Tayside region in 1975; reinstated as a unitary authority (excluding City of |
|
Dundee) in 1996. Administrative centre: Forfar. Pop: 107 520 (2003 est). Area: |
|
2181 sq km (842 sq miles) An•gus' |
|
model-index: |
|
- name: SentenceTransformer based on microsoft/deberta-v3-small |
|
results: |
|
- task: |
|
type: semantic-similarity |
|
name: Semantic Similarity |
|
dataset: |
|
name: sts test |
|
type: sts-test |
|
metrics: |
|
- type: pearson_cosine |
|
value: 0.2589065791031549 |
|
name: Pearson Cosine |
|
- type: spearman_cosine |
|
value: 0.31323211323674593 |
|
name: Spearman Cosine |
|
- type: pearson_manhattan |
|
value: 0.27236487282828553 |
|
name: Pearson Manhattan |
|
- type: spearman_manhattan |
|
value: 0.29656486394161036 |
|
name: Spearman Manhattan |
|
- type: pearson_euclidean |
|
value: 0.2585939429800171 |
|
name: Pearson Euclidean |
|
- type: spearman_euclidean |
|
value: 0.2833925986586202 |
|
name: Spearman Euclidean |
|
- type: pearson_dot |
|
value: 0.28511212645281553 |
|
name: Pearson Dot |
|
- type: spearman_dot |
|
value: 0.2967423026930272 |
|
name: Spearman Dot |
|
- type: pearson_max |
|
value: 0.28511212645281553 |
|
name: Pearson Max |
|
- type: spearman_max |
|
value: 0.31323211323674593 |
|
name: Spearman Max |
|
- task: |
|
type: binary-classification |
|
name: Binary Classification |
|
dataset: |
|
name: allNLI dev |
|
type: allNLI-dev |
|
metrics: |
|
- type: cosine_accuracy |
|
value: 0.66796875 |
|
name: Cosine Accuracy |
|
- type: cosine_accuracy_threshold |
|
value: 0.9721465110778809 |
|
name: Cosine Accuracy Threshold |
|
- type: cosine_f1 |
|
value: 0.5343511450381679 |
|
name: Cosine F1 |
|
- type: cosine_f1_threshold |
|
value: 0.85741126537323 |
|
name: Cosine F1 Threshold |
|
- type: cosine_precision |
|
value: 0.39886039886039887 |
|
name: Cosine Precision |
|
- type: cosine_recall |
|
value: 0.8092485549132948 |
|
name: Cosine Recall |
|
- type: cosine_ap |
|
value: 0.4140638596370657 |
|
name: Cosine Ap |
|
- type: dot_accuracy |
|
value: 0.666015625 |
|
name: Dot Accuracy |
|
- type: dot_accuracy_threshold |
|
value: 518.88671875 |
|
name: Dot Accuracy Threshold |
|
- type: dot_f1 |
|
value: 0.514018691588785 |
|
name: Dot F1 |
|
- type: dot_f1_threshold |
|
value: 323.9651184082031 |
|
name: Dot F1 Threshold |
|
- type: dot_precision |
|
value: 0.35181236673773986 |
|
name: Dot Precision |
|
- type: dot_recall |
|
value: 0.953757225433526 |
|
name: Dot Recall |
|
- type: dot_ap |
|
value: 0.3781233337023534 |
|
name: Dot Ap |
|
- type: manhattan_accuracy |
|
value: 0.671875 |
|
name: Manhattan Accuracy |
|
- type: manhattan_accuracy_threshold |
|
value: 114.41839599609375 |
|
name: Manhattan Accuracy Threshold |
|
- type: manhattan_f1 |
|
value: 0.5384615384615384 |
|
name: Manhattan F1 |
|
- type: manhattan_f1_threshold |
|
value: 226.82566833496094 |
|
name: Manhattan F1 Threshold |
|
- type: manhattan_precision |
|
value: 0.3941018766756032 |
|
name: Manhattan Precision |
|
- type: manhattan_recall |
|
value: 0.8497109826589595 |
|
name: Manhattan Recall |
|
- type: manhattan_ap |
|
value: 0.4272864144491257 |
|
name: Manhattan Ap |
|
- type: euclidean_accuracy |
|
value: 0.671875 |
|
name: Euclidean Accuracy |
|
- type: euclidean_accuracy_threshold |
|
value: 5.084325790405273 |
|
name: Euclidean Accuracy Threshold |
|
- type: euclidean_f1 |
|
value: 0.5404339250493098 |
|
name: Euclidean F1 |
|
- type: euclidean_f1_threshold |
|
value: 11.333902359008789 |
|
name: Euclidean F1 Threshold |
|
- type: euclidean_precision |
|
value: 0.4101796407185629 |
|
name: Euclidean Precision |
|
- type: euclidean_recall |
|
value: 0.791907514450867 |
|
name: Euclidean Recall |
|
- type: euclidean_ap |
|
value: 0.41769294415599645 |
|
name: Euclidean Ap |
|
- type: max_accuracy |
|
value: 0.671875 |
|
name: Max Accuracy |
|
- type: max_accuracy_threshold |
|
value: 518.88671875 |
|
name: Max Accuracy Threshold |
|
- type: max_f1 |
|
value: 0.5404339250493098 |
|
name: Max F1 |
|
- type: max_f1_threshold |
|
value: 323.9651184082031 |
|
name: Max F1 Threshold |
|
- type: max_precision |
|
value: 0.4101796407185629 |
|
name: Max Precision |
|
- type: max_recall |
|
value: 0.953757225433526 |
|
name: Max Recall |
|
- type: max_ap |
|
value: 0.4272864144491257 |
|
name: Max Ap |
|
- task: |
|
type: binary-classification |
|
name: Binary Classification |
|
dataset: |
|
name: Qnli dev |
|
type: Qnli-dev |
|
metrics: |
|
- type: cosine_accuracy |
|
value: 0.640625 |
|
name: Cosine Accuracy |
|
- type: cosine_accuracy_threshold |
|
value: 0.8695281744003296 |
|
name: Cosine Accuracy Threshold |
|
- type: cosine_f1 |
|
value: 0.6578512396694215 |
|
name: Cosine F1 |
|
- type: cosine_f1_threshold |
|
value: 0.7936367988586426 |
|
name: Cosine F1 Threshold |
|
- type: cosine_precision |
|
value: 0.5392953929539296 |
|
name: Cosine Precision |
|
- type: cosine_recall |
|
value: 0.8432203389830508 |
|
name: Cosine Recall |
|
- type: cosine_ap |
|
value: 0.6314640856589909 |
|
name: Cosine Ap |
|
- type: dot_accuracy |
|
value: 0.609375 |
|
name: Dot Accuracy |
|
- type: dot_accuracy_threshold |
|
value: 351.17626953125 |
|
name: Dot Accuracy Threshold |
|
- type: dot_f1 |
|
value: 0.6501650165016502 |
|
name: Dot F1 |
|
- type: dot_f1_threshold |
|
value: 316.48046875 |
|
name: Dot F1 Threshold |
|
- type: dot_precision |
|
value: 0.5324324324324324 |
|
name: Dot Precision |
|
- type: dot_recall |
|
value: 0.8347457627118644 |
|
name: Dot Recall |
|
- type: dot_ap |
|
value: 0.5366456296706419 |
|
name: Dot Ap |
|
- type: manhattan_accuracy |
|
value: 0.658203125 |
|
name: Manhattan Accuracy |
|
- type: manhattan_accuracy_threshold |
|
value: 206.32894897460938 |
|
name: Manhattan Accuracy Threshold |
|
- type: manhattan_f1 |
|
value: 0.652373660030628 |
|
name: Manhattan F1 |
|
- type: manhattan_f1_threshold |
|
value: 261.3590393066406 |
|
name: Manhattan F1 Threshold |
|
- type: manhattan_precision |
|
value: 0.5107913669064749 |
|
name: Manhattan Precision |
|
- type: manhattan_recall |
|
value: 0.902542372881356 |
|
name: Manhattan Recall |
|
- type: manhattan_ap |
|
value: 0.6679289689394285 |
|
name: Manhattan Ap |
|
- type: euclidean_accuracy |
|
value: 0.65234375 |
|
name: Euclidean Accuracy |
|
- type: euclidean_accuracy_threshold |
|
value: 10.764808654785156 |
|
name: Euclidean Accuracy Threshold |
|
- type: euclidean_f1 |
|
value: 0.6393210749646393 |
|
name: Euclidean F1 |
|
- type: euclidean_f1_threshold |
|
value: 15.096710205078125 |
|
name: Euclidean F1 Threshold |
|
- type: euclidean_precision |
|
value: 0.47983014861995754 |
|
name: Euclidean Precision |
|
- type: euclidean_recall |
|
value: 0.9576271186440678 |
|
name: Euclidean Recall |
|
- type: euclidean_ap |
|
value: 0.6460602994393339 |
|
name: Euclidean Ap |
|
- type: max_accuracy |
|
value: 0.658203125 |
|
name: Max Accuracy |
|
- type: max_accuracy_threshold |
|
value: 351.17626953125 |
|
name: Max Accuracy Threshold |
|
- type: max_f1 |
|
value: 0.6578512396694215 |
|
name: Max F1 |
|
- type: max_f1_threshold |
|
value: 316.48046875 |
|
name: Max F1 Threshold |
|
- type: max_precision |
|
value: 0.5392953929539296 |
|
name: Max Precision |
|
- type: max_recall |
|
value: 0.9576271186440678 |
|
name: Max Recall |
|
- type: max_ap |
|
value: 0.6679289689394285 |
|
name: Max Ap |
|
--- |
|
|
|
# SentenceTransformer based on microsoft/deberta-v3-small |
|
|
|
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [microsoft/deberta-v3-small](https://huggingface.co/microsoft/deberta-v3-small) on the bobox/enhanced_nli-50_k dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
- **Model Type:** Sentence Transformer |
|
- **Base model:** [microsoft/deberta-v3-small](https://huggingface.co/microsoft/deberta-v3-small) <!-- at revision a36c739020e01763fe789b4b85e2df55d6180012 --> |
|
- **Maximum Sequence Length:** 512 tokens |
|
- **Output Dimensionality:** 768 tokens |
|
- **Similarity Function:** Cosine Similarity |
|
- **Training Dataset:** |
|
- bobox/enhanced_nli-50_k |
|
<!-- - **Language:** Unknown --> |
|
<!-- - **License:** Unknown --> |
|
|
|
### Model Sources |
|
|
|
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net) |
|
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) |
|
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) |
|
|
|
### Full Model Architecture |
|
|
|
``` |
|
SentenceTransformer( |
|
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: DebertaV2Model |
|
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) |
|
) |
|
``` |
|
|
|
## Usage |
|
|
|
### Direct Usage (Sentence Transformers) |
|
|
|
First install the Sentence Transformers library: |
|
|
|
```bash |
|
pip install -U sentence-transformers |
|
``` |
|
|
|
Then you can load this model and run inference. |
|
```python |
|
from sentence_transformers import SentenceTransformer |
|
|
|
# Download from the 🤗 Hub |
|
model = SentenceTransformer("bobox/DeBERTa-small-ST-UnifiedDatasets-baseline-checkpoints-tmp") |
|
# Run inference |
|
sentences = [ |
|
'A man wearing a blue bow tie and a fedora hat in a car. ', |
|
'A man takes a photo of himself wearing a bowtie and hat', |
|
'County of Angus - definition of County of Angus by The Free Dictionary County of Angus - definition of County of Angus by The Free Dictionary http://www.thefreedictionary.com/County+of+Angus \xa0(ăng′gəs) n. Any of a breed of hornless beef cattle that originated in Scotland and are usually black but also occur in a red variety. Also called Black Angus. [After Angus, former county of Scotland.] Angus (ˈæŋɡəs) n (Placename) a council area of E Scotland on the North Sea: the historical county of Angus became part of Tayside region in 1975; reinstated as a unitary authority (excluding City of Dundee) in 1996. Administrative centre: Forfar. Pop: 107 520 (2003 est). Area: 2181 sq km (842 sq miles) An•gus', |
|
] |
|
embeddings = model.encode(sentences) |
|
print(embeddings.shape) |
|
# [3, 768] |
|
|
|
# Get the similarity scores for the embeddings |
|
similarities = model.similarity(embeddings, embeddings) |
|
print(similarities.shape) |
|
# [3, 3] |
|
``` |
|
|
|
<!-- |
|
### Direct Usage (Transformers) |
|
|
|
<details><summary>Click to see the direct usage in Transformers</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Downstream Usage (Sentence Transformers) |
|
|
|
You can finetune this model on your own dataset. |
|
|
|
<details><summary>Click to expand</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Out-of-Scope Use |
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
--> |
|
|
|
## Evaluation |
|
|
|
### Metrics |
|
|
|
#### Semantic Similarity |
|
* Dataset: `sts-test` |
|
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| pearson_cosine | 0.2589 | |
|
| **spearman_cosine** | **0.3132** | |
|
| pearson_manhattan | 0.2724 | |
|
| spearman_manhattan | 0.2966 | |
|
| pearson_euclidean | 0.2586 | |
|
| spearman_euclidean | 0.2834 | |
|
| pearson_dot | 0.2851 | |
|
| spearman_dot | 0.2967 | |
|
| pearson_max | 0.2851 | |
|
| spearman_max | 0.3132 | |
|
|
|
#### Binary Classification |
|
* Dataset: `allNLI-dev` |
|
* Evaluated with [<code>BinaryClassificationEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.BinaryClassificationEvaluator) |
|
|
|
| Metric | Value | |
|
|:-----------------------------|:-----------| |
|
| cosine_accuracy | 0.668 | |
|
| cosine_accuracy_threshold | 0.9721 | |
|
| cosine_f1 | 0.5344 | |
|
| cosine_f1_threshold | 0.8574 | |
|
| cosine_precision | 0.3989 | |
|
| cosine_recall | 0.8092 | |
|
| cosine_ap | 0.4141 | |
|
| dot_accuracy | 0.666 | |
|
| dot_accuracy_threshold | 518.8867 | |
|
| dot_f1 | 0.514 | |
|
| dot_f1_threshold | 323.9651 | |
|
| dot_precision | 0.3518 | |
|
| dot_recall | 0.9538 | |
|
| dot_ap | 0.3781 | |
|
| manhattan_accuracy | 0.6719 | |
|
| manhattan_accuracy_threshold | 114.4184 | |
|
| manhattan_f1 | 0.5385 | |
|
| manhattan_f1_threshold | 226.8257 | |
|
| manhattan_precision | 0.3941 | |
|
| manhattan_recall | 0.8497 | |
|
| manhattan_ap | 0.4273 | |
|
| euclidean_accuracy | 0.6719 | |
|
| euclidean_accuracy_threshold | 5.0843 | |
|
| euclidean_f1 | 0.5404 | |
|
| euclidean_f1_threshold | 11.3339 | |
|
| euclidean_precision | 0.4102 | |
|
| euclidean_recall | 0.7919 | |
|
| euclidean_ap | 0.4177 | |
|
| max_accuracy | 0.6719 | |
|
| max_accuracy_threshold | 518.8867 | |
|
| max_f1 | 0.5404 | |
|
| max_f1_threshold | 323.9651 | |
|
| max_precision | 0.4102 | |
|
| max_recall | 0.9538 | |
|
| **max_ap** | **0.4273** | |
|
|
|
#### Binary Classification |
|
* Dataset: `Qnli-dev` |
|
* Evaluated with [<code>BinaryClassificationEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.BinaryClassificationEvaluator) |
|
|
|
| Metric | Value | |
|
|:-----------------------------|:-----------| |
|
| cosine_accuracy | 0.6406 | |
|
| cosine_accuracy_threshold | 0.8695 | |
|
| cosine_f1 | 0.6579 | |
|
| cosine_f1_threshold | 0.7936 | |
|
| cosine_precision | 0.5393 | |
|
| cosine_recall | 0.8432 | |
|
| cosine_ap | 0.6315 | |
|
| dot_accuracy | 0.6094 | |
|
| dot_accuracy_threshold | 351.1763 | |
|
| dot_f1 | 0.6502 | |
|
| dot_f1_threshold | 316.4805 | |
|
| dot_precision | 0.5324 | |
|
| dot_recall | 0.8347 | |
|
| dot_ap | 0.5366 | |
|
| manhattan_accuracy | 0.6582 | |
|
| manhattan_accuracy_threshold | 206.3289 | |
|
| manhattan_f1 | 0.6524 | |
|
| manhattan_f1_threshold | 261.359 | |
|
| manhattan_precision | 0.5108 | |
|
| manhattan_recall | 0.9025 | |
|
| manhattan_ap | 0.6679 | |
|
| euclidean_accuracy | 0.6523 | |
|
| euclidean_accuracy_threshold | 10.7648 | |
|
| euclidean_f1 | 0.6393 | |
|
| euclidean_f1_threshold | 15.0967 | |
|
| euclidean_precision | 0.4798 | |
|
| euclidean_recall | 0.9576 | |
|
| euclidean_ap | 0.6461 | |
|
| max_accuracy | 0.6582 | |
|
| max_accuracy_threshold | 351.1763 | |
|
| max_f1 | 0.6579 | |
|
| max_f1_threshold | 316.4805 | |
|
| max_precision | 0.5393 | |
|
| max_recall | 0.9576 | |
|
| **max_ap** | **0.6679** | |
|
|
|
<!-- |
|
## Bias, Risks and Limitations |
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
--> |
|
|
|
<!-- |
|
### Recommendations |
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
--> |
|
|
|
## Training Details |
|
|
|
### Training Dataset |
|
|
|
#### bobox/enhanced_nli-50_k |
|
|
|
* Dataset: bobox/enhanced_nli-50_k |
|
* Size: 116,445 training samples |
|
* Columns: <code>sentence1</code> and <code>sentence2</code> |
|
* Approximate statistics based on the first 1000 samples: |
|
| | sentence1 | sentence2 | |
|
|:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------| |
|
| type | string | string | |
|
| details | <ul><li>min: 4 tokens</li><li>mean: 33.67 tokens</li><li>max: 338 tokens</li></ul> | <ul><li>min: 2 tokens</li><li>mean: 51.48 tokens</li><li>max: 512 tokens</li></ul> | |
|
* Samples: |
|
| sentence1 | sentence2 | |
|
|:---------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| |
|
| <code>who is darnell from my name is earl</code> | <code>Eddie Steeples Eddie Steeples (born November 25, 1973)[1] is an American actor known for his roles as the "Rubberband Man" in an advertising campaign for OfficeMax, and as Darnell Turner on the NBC sitcom My Name Is Earl.</code> | |
|
| <code>Ferrell and the Chili Peppers toured together in 2013 .</code> | <code>Ferrell and the Chili Peppers wrapped up I 'm With You World Tour in April 2013 .</code> | |
|
| <code>Cells have four cycles.</code> | <code>How many cycles do cells have?</code> | |
|
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters: |
|
```json |
|
{'guide': SentenceTransformer( |
|
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel |
|
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) |
|
(2): Normalize() |
|
), 'temperature': 0.025} |
|
``` |
|
|
|
### Evaluation Dataset |
|
|
|
#### bobox/enhanced_nli-50_k |
|
|
|
* Dataset: bobox/enhanced_nli-50_k |
|
* Size: 1,506 evaluation samples |
|
* Columns: <code>sentence1</code> and <code>sentence2</code> |
|
* Approximate statistics based on the first 1000 samples: |
|
| | sentence1 | sentence2 | |
|
|:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------| |
|
| type | string | string | |
|
| details | <ul><li>min: 3 tokens</li><li>mean: 32.36 tokens</li><li>max: 341 tokens</li></ul> | <ul><li>min: 2 tokens</li><li>mean: 61.99 tokens</li><li>max: 431 tokens</li></ul> | |
|
* Samples: |
|
| sentence1 | sentence2 | |
|
|:----------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| |
|
| <code>Interestingly, snakes use their forked tongues to smell.</code> | <code>Snakes use their tongue to smell things.</code> | |
|
| <code>Soil is a renewable resource that can take thousand of years to form.</code> | <code>What is a renewable resource that can take thousand of years to form?</code> | |
|
| <code>As of March 22 , there were more than 321,000 cases with over 13,600 deaths and more than 96,000 recoveries reported worldwide .</code> | <code>As of 22 March , more than 321,000 cases of COVID-19 have been reported in over 180 countries and territories , resulting in more than 13,600 deaths and 96,000 recoveries .</code> | |
|
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters: |
|
```json |
|
{'guide': SentenceTransformer( |
|
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel |
|
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) |
|
(2): Normalize() |
|
), 'temperature': 0.025} |
|
``` |
|
|
|
### Training Hyperparameters |
|
#### Non-Default Hyperparameters |
|
|
|
- `eval_strategy`: steps |
|
- `per_device_train_batch_size`: 640 |
|
- `per_device_eval_batch_size`: 128 |
|
- `learning_rate`: 3.75e-05 |
|
- `weight_decay`: 0.0005 |
|
- `lr_scheduler_type`: cosine_with_min_lr |
|
- `lr_scheduler_kwargs`: {'num_cycles': 0.5, 'min_lr': 7.499999999999999e-06} |
|
- `warmup_ratio`: 0.33 |
|
- `save_safetensors`: False |
|
- `fp16`: True |
|
- `push_to_hub`: True |
|
- `hub_model_id`: bobox/DeBERTa-small-ST-UnifiedDatasets-baseline-checkpoints-tmp |
|
- `hub_strategy`: all_checkpoints |
|
- `batch_sampler`: no_duplicates |
|
|
|
#### All Hyperparameters |
|
<details><summary>Click to expand</summary> |
|
|
|
- `overwrite_output_dir`: False |
|
- `do_predict`: False |
|
- `eval_strategy`: steps |
|
- `prediction_loss_only`: True |
|
- `per_device_train_batch_size`: 640 |
|
- `per_device_eval_batch_size`: 128 |
|
- `per_gpu_train_batch_size`: None |
|
- `per_gpu_eval_batch_size`: None |
|
- `gradient_accumulation_steps`: 1 |
|
- `eval_accumulation_steps`: None |
|
- `torch_empty_cache_steps`: None |
|
- `learning_rate`: 3.75e-05 |
|
- `weight_decay`: 0.0005 |
|
- `adam_beta1`: 0.9 |
|
- `adam_beta2`: 0.999 |
|
- `adam_epsilon`: 1e-08 |
|
- `max_grad_norm`: 1.0 |
|
- `num_train_epochs`: 3 |
|
- `max_steps`: -1 |
|
- `lr_scheduler_type`: cosine_with_min_lr |
|
- `lr_scheduler_kwargs`: {'num_cycles': 0.5, 'min_lr': 7.499999999999999e-06} |
|
- `warmup_ratio`: 0.33 |
|
- `warmup_steps`: 0 |
|
- `log_level`: passive |
|
- `log_level_replica`: warning |
|
- `log_on_each_node`: True |
|
- `logging_nan_inf_filter`: True |
|
- `save_safetensors`: False |
|
- `save_on_each_node`: False |
|
- `save_only_model`: False |
|
- `restore_callback_states_from_checkpoint`: False |
|
- `no_cuda`: False |
|
- `use_cpu`: False |
|
- `use_mps_device`: False |
|
- `seed`: 42 |
|
- `data_seed`: None |
|
- `jit_mode_eval`: False |
|
- `use_ipex`: False |
|
- `bf16`: False |
|
- `fp16`: True |
|
- `fp16_opt_level`: O1 |
|
- `half_precision_backend`: auto |
|
- `bf16_full_eval`: False |
|
- `fp16_full_eval`: False |
|
- `tf32`: None |
|
- `local_rank`: 0 |
|
- `ddp_backend`: None |
|
- `tpu_num_cores`: None |
|
- `tpu_metrics_debug`: False |
|
- `debug`: [] |
|
- `dataloader_drop_last`: False |
|
- `dataloader_num_workers`: 0 |
|
- `dataloader_prefetch_factor`: None |
|
- `past_index`: -1 |
|
- `disable_tqdm`: False |
|
- `remove_unused_columns`: True |
|
- `label_names`: None |
|
- `load_best_model_at_end`: False |
|
- `ignore_data_skip`: False |
|
- `fsdp`: [] |
|
- `fsdp_min_num_params`: 0 |
|
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} |
|
- `fsdp_transformer_layer_cls_to_wrap`: None |
|
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} |
|
- `deepspeed`: None |
|
- `label_smoothing_factor`: 0.0 |
|
- `optim`: adamw_torch |
|
- `optim_args`: None |
|
- `adafactor`: False |
|
- `group_by_length`: False |
|
- `length_column_name`: length |
|
- `ddp_find_unused_parameters`: None |
|
- `ddp_bucket_cap_mb`: None |
|
- `ddp_broadcast_buffers`: False |
|
- `dataloader_pin_memory`: True |
|
- `dataloader_persistent_workers`: False |
|
- `skip_memory_metrics`: True |
|
- `use_legacy_prediction_loop`: False |
|
- `push_to_hub`: True |
|
- `resume_from_checkpoint`: None |
|
- `hub_model_id`: bobox/DeBERTa-small-ST-UnifiedDatasets-baseline-checkpoints-tmp |
|
- `hub_strategy`: all_checkpoints |
|
- `hub_private_repo`: False |
|
- `hub_always_push`: False |
|
- `gradient_checkpointing`: False |
|
- `gradient_checkpointing_kwargs`: None |
|
- `include_inputs_for_metrics`: False |
|
- `eval_do_concat_batches`: True |
|
- `fp16_backend`: auto |
|
- `push_to_hub_model_id`: None |
|
- `push_to_hub_organization`: None |
|
- `mp_parameters`: |
|
- `auto_find_batch_size`: False |
|
- `full_determinism`: False |
|
- `torchdynamo`: None |
|
- `ray_scope`: last |
|
- `ddp_timeout`: 1800 |
|
- `torch_compile`: False |
|
- `torch_compile_backend`: None |
|
- `torch_compile_mode`: None |
|
- `dispatch_batches`: None |
|
- `split_batches`: None |
|
- `include_tokens_per_second`: False |
|
- `include_num_input_tokens_seen`: False |
|
- `neftune_noise_alpha`: None |
|
- `optim_target_modules`: None |
|
- `batch_eval_metrics`: False |
|
- `eval_on_start`: False |
|
- `eval_use_gather_object`: False |
|
- `batch_sampler`: no_duplicates |
|
- `multi_dataset_batch_sampler`: proportional |
|
|
|
</details> |
|
|
|
### Training Logs |
|
| Epoch | Step | Training Loss | loss | Qnli-dev_max_ap | allNLI-dev_max_ap | sts-test_spearman_cosine | |
|
|:------:|:----:|:-------------:|:------:|:---------------:|:-----------------:|:------------------------:| |
|
| 0.0055 | 1 | 8.8159 | - | - | - | - | |
|
| 0.0110 | 2 | 9.1259 | - | - | - | - | |
|
| 0.0165 | 3 | 8.9017 | - | - | - | - | |
|
| 0.0220 | 4 | 9.1969 | - | - | - | - | |
|
| 0.0275 | 5 | 9.3716 | 1.3746 | 0.6067 | 0.3706 | 0.1943 | |
|
| 0.0330 | 6 | 9.0425 | - | - | - | - | |
|
| 0.0385 | 7 | 8.7309 | - | - | - | - | |
|
| 0.0440 | 8 | 9.0123 | - | - | - | - | |
|
| 0.0495 | 9 | 8.8095 | - | - | - | - | |
|
| 0.0549 | 10 | 9.3194 | 1.3227 | 0.6089 | 0.3721 | 0.1976 | |
|
| 0.0604 | 11 | 8.9873 | - | - | - | - | |
|
| 0.0659 | 12 | 8.5575 | - | - | - | - | |
|
| 0.0714 | 13 | 8.8096 | - | - | - | - | |
|
| 0.0769 | 14 | 8.0996 | - | - | - | - | |
|
| 0.0824 | 15 | 8.1942 | 1.2244 | 0.6140 | 0.3743 | 0.2085 | |
|
| 0.0879 | 16 | 8.1654 | - | - | - | - | |
|
| 0.0934 | 17 | 7.7336 | - | - | - | - | |
|
| 0.0989 | 18 | 7.9535 | - | - | - | - | |
|
| 0.1044 | 19 | 7.9322 | - | - | - | - | |
|
| 0.1099 | 20 | 7.6812 | 1.1301 | 0.6199 | 0.3790 | 0.2233 | |
|
| 0.1154 | 21 | 7.551 | - | - | - | - | |
|
| 0.1209 | 22 | 7.3788 | - | - | - | - | |
|
| 0.1264 | 23 | 7.1746 | - | - | - | - | |
|
| 0.1319 | 24 | 7.1849 | - | - | - | - | |
|
| 0.1374 | 25 | 7.1085 | 1.0723 | 0.6195 | 0.3852 | 0.2357 | |
|
| 0.1429 | 26 | 7.3926 | - | - | - | - | |
|
| 0.1484 | 27 | 7.1817 | - | - | - | - | |
|
| 0.1538 | 28 | 7.239 | - | - | - | - | |
|
| 0.1593 | 29 | 7.0023 | - | - | - | - | |
|
| 0.1648 | 30 | 6.9898 | 1.0282 | 0.6215 | 0.3898 | 0.2477 | |
|
| 0.1703 | 31 | 6.9776 | - | - | - | - | |
|
| 0.1758 | 32 | 6.8088 | - | - | - | - | |
|
| 0.1813 | 33 | 6.8916 | - | - | - | - | |
|
| 0.1868 | 34 | 6.6931 | - | - | - | - | |
|
| 0.1923 | 35 | 6.5707 | 0.9846 | 0.6253 | 0.3952 | 0.2608 | |
|
| 0.1978 | 36 | 6.6231 | - | - | - | - | |
|
| 0.2033 | 37 | 6.4951 | - | - | - | - | |
|
| 0.2088 | 38 | 6.4607 | - | - | - | - | |
|
| 0.2143 | 39 | 6.4504 | - | - | - | - | |
|
| 0.2198 | 40 | 6.3649 | 0.9314 | 0.6299 | 0.4041 | 0.2738 | |
|
| 0.2253 | 41 | 6.2244 | - | - | - | - | |
|
| 0.2308 | 42 | 6.007 | - | - | - | - | |
|
| 0.2363 | 43 | 5.977 | - | - | - | - | |
|
| 0.2418 | 44 | 6.0748 | - | - | - | - | |
|
| 0.2473 | 45 | 5.7946 | 0.8549 | 0.6404 | 0.4116 | 0.2847 | |
|
| 0.2527 | 46 | 5.8751 | - | - | - | - | |
|
| 0.2582 | 47 | 5.543 | - | - | - | - | |
|
| 0.2637 | 48 | 5.5511 | - | - | - | - | |
|
| 0.2692 | 49 | 5.411 | - | - | - | - | |
|
| 0.2747 | 50 | 5.378 | 0.7943 | 0.6557 | 0.4159 | 0.2866 | |
|
| 0.2802 | 51 | 5.3831 | - | - | - | - | |
|
| 0.2857 | 52 | 4.9729 | - | - | - | - | |
|
| 0.2912 | 53 | 5.0425 | - | - | - | - | |
|
| 0.2967 | 54 | 4.9446 | - | - | - | - | |
|
| 0.3022 | 55 | 4.9288 | 0.7178 | 0.6679 | 0.4273 | 0.3132 | |
|
|
|
|
|
### Framework Versions |
|
- Python: 3.10.14 |
|
- Sentence Transformers: 3.0.1 |
|
- Transformers: 4.44.0 |
|
- PyTorch: 2.4.0 |
|
- Accelerate: 0.33.0 |
|
- Datasets: 2.21.0 |
|
- Tokenizers: 0.19.1 |
|
|
|
## Citation |
|
|
|
### BibTeX |
|
|
|
#### Sentence Transformers |
|
```bibtex |
|
@inproceedings{reimers-2019-sentence-bert, |
|
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", |
|
author = "Reimers, Nils and Gurevych, Iryna", |
|
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", |
|
month = "11", |
|
year = "2019", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://arxiv.org/abs/1908.10084", |
|
} |
|
``` |
|
|
|
<!-- |
|
## Glossary |
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Authors |
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Contact |
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
--> |