klue-sbert-128d-v1 / README.md
bongsoo's picture
Update README.md
3c598a8
|
raw
history blame
2.56 kB
metadata
pipeline_tag: sentence-similarity
tags:
  - sentence-transformers
  - feature-extraction
  - sentence-similarity

klue-sbert-128d-v1

  • 기존 klue 모델을, 128 차원으로 축소하는 dense 추가하여 nli(3)-sts(10) 훈련 시킨 모델.

This is a sentence-transformers model: It maps sentences & paragraphs to a 128 dimensional dense vector space and can be used for tasks like clustering or semantic search.

Usage (Sentence-Transformers)

Using this model becomes easy when you have sentence-transformers installed:

pip install -U sentence-transformers

Then you can use the model like this:

from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]

model = SentenceTransformer('bongsoo/klue-sbert-128d-v1')
embeddings = model.encode(sentences)
print(embeddings)

Evaluation Results

For an automated evaluation of this model, see the Sentence Embeddings Benchmark: https://seb.sbert.net

Training

The model was trained with the parameters:

DataLoader:

torch.utils.data.dataloader.DataLoader of length 326 with parameters:

{'batch_size': 128, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}

Loss:

sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss

Parameters of the fit()-Method:

{
    "epochs": 10,
    "evaluation_steps": 651,
    "evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator",
    "max_grad_norm": 1,
    "optimizer_class": "<class 'transformers.optimization.AdamW'>",
    "optimizer_params": {
        "eps": 1e-06,
        "lr": 0.0001
    },
    "scheduler": "WarmupLinear",
    "steps_per_epoch": null,
    "warmup_steps": 326,
    "weight_decay": 0.01
}

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 72, 'do_lower_case': True}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
  (2): Dense({'in_features': 768, 'out_features': 128, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'})
)

Citing & Authors

bongsoo