|
--- |
|
license: apache-2.0 |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- rouge |
|
model-index: |
|
- name: t5-base-finetune-thai-to-romanized |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# t5-base-finetune-thai-to-romanized |
|
|
|
This model is a fine-tuned version of [t5-base](https://huggingface.co/t5-base) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 5.5823 |
|
- Rouge1: 0.0533 |
|
- Rouge2: 0.0 |
|
- Rougel: 0.0543 |
|
- Rougelsum: 0.0541 |
|
- Gen Len: 11.3346 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 10 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |
|
|:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:| |
|
| 6.2299 | 1.0 | 1500 | 6.0909 | 0.0 | 0.0 | 0.0 | 0.0 | 12.4211 | |
|
| 6.0799 | 2.0 | 3000 | 5.9716 | 0.0058 | 0.0 | 0.006 | 0.0062 | 11.1185 | |
|
| 5.9595 | 3.0 | 4500 | 5.9016 | 0.0081 | 0.0 | 0.0082 | 0.008 | 12.1465 | |
|
| 5.8423 | 4.0 | 6000 | 5.7665 | 0.0364 | 0.0017 | 0.0367 | 0.0365 | 11.6982 | |
|
| 5.7915 | 5.0 | 7500 | 5.7470 | 0.0441 | 0.0013 | 0.0445 | 0.0442 | 10.7897 | |
|
| 5.7114 | 6.0 | 9000 | 5.6844 | 0.0472 | 0.0013 | 0.0476 | 0.0478 | 10.5441 | |
|
| 5.6555 | 7.0 | 10500 | 5.6416 | 0.0549 | 0.0013 | 0.0552 | 0.0552 | 11.1098 | |
|
| 5.6362 | 8.0 | 12000 | 5.6036 | 0.0493 | 0.0013 | 0.0501 | 0.0498 | 12.7922 | |
|
| 5.5941 | 9.0 | 13500 | 5.5895 | 0.0535 | 0.0 | 0.0544 | 0.0542 | 11.5989 | |
|
| 5.569 | 10.0 | 15000 | 5.5823 | 0.0533 | 0.0 | 0.0543 | 0.0541 | 11.3346 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.26.1 |
|
- Pytorch 1.13.1+cu116 |
|
- Datasets 2.9.0 |
|
- Tokenizers 0.13.2 |
|
|