
autoevaluator
HF Staff
Add evaluation results on the sentiment config and test split of tweet_eval
e907b6b
language: en | |
datasets: | |
- tweet_eval | |
widget: | |
- text: Covid cases are increasing fast! | |
model-index: | |
- name: cardiffnlp/twitter-roberta-base-sentiment-latest | |
results: | |
- task: | |
type: text-classification | |
name: Text Classification | |
dataset: | |
name: tweet_eval | |
type: tweet_eval | |
config: sentiment | |
split: test | |
metrics: | |
- type: accuracy | |
value: 0.7219960924780202 | |
name: Accuracy | |
verified: true | |
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMGM1NzYxOTJjODg5MDllMzNkODk3NGE1NmNjNWJlOWViYWNmOGRjMGI3MTVlYjQyNDY3MzVjYzMyYmZiYzliMyIsInZlcnNpb24iOjF9.uWmmGJR83ee7_Fg5lG_atB8miVSheCmw7fhxZvJSdky1XcuHNSy9-SyRVg8kggNiMcL5vEBCsfFMrS7J134KBw | |
- type: f1 | |
value: 0.7241871382174582 | |
name: F1 Macro | |
verified: true | |
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiM2VmZDZkMTI4MDJlMDg5MGFhNDE3YTUxZTdlM2NmNjk5NDcwZDkwNjk4NDEzMzlkMDY5YWU5YTMyMTI3ZDlmNSIsInZlcnNpb24iOjF9.41oMX8kV6C9iICfZlNILOwLMODlYZQXr50sEHX88Eu8-Py2ZCR1raq_fWpTraRE56XBzdFZJQYIGEQxR6GAcCA | |
- type: f1 | |
value: 0.7219960924780202 | |
name: F1 Micro | |
verified: true | |
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMzI4NDljZDcyNGIzMzYwZDJjOWMzNWZkZDZkNWJkYWRkNGEzNGJiNmJiMmJkNDEwMWVhNzM2NDIwNTBjZjdjZCIsInZlcnNpb24iOjF9.Quplp1xsiPIYPLHy7GivJhn9c7BZWI6HfxZ8KimWUuFulkLbZxV0iVCrahyVMzfjitJAOE3P7Tt2PqLkkJwADQ | |
- type: f1 | |
value: 0.7208112218231548 | |
name: F1 Weighted | |
verified: true | |
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiZDU5YTBjZmUzNjI3NGFhNDdkYTM2NWMxZGMwMzM4YmUwNzI1NmZkOGM4OWM1NmNmNzE0ZjAwNWM5Y2JkNTNjYyIsInZlcnNpb24iOjF9.W2yb9xfWNXgj-h4vXvvybT28eI2HNY5-rCLRVtKeZ7hjsgrXO6uhIkm4azSkX17IOcvz89XicjGg9HeAuTroBQ | |
- type: precision | |
value: 0.7188694819994699 | |
name: Precision Macro | |
verified: true | |
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMjJiYTJjNmE2MTlhZjZkMDQwZTM3NGFkZDM3ZGZjMzEwZGViNDg2ZTk3NzAwNDEzYTNmNWM5M2U3YWRjYTcyNiIsInZlcnNpb24iOjF9.bUL4gT0f_MJ11k0D6HtoOPkLsqwnaR22ym7u4oDCcWN81HUXHjNHRG-v416yQ1cbRaRg4PgkiynS5UBxk8EMBQ | |
- type: precision | |
value: 0.7219960924780202 | |
name: Precision Micro | |
verified: true | |
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMzcwOTQ5MzM0ZWZjMDk3MzNmN2IxNTJkYjI3ZDY1NGU2MDMyMDJjMTcyYWYwNmIxZmMwMWJiZDQyODE4ODA1YyIsInZlcnNpb24iOjF9.c2iXrDnKQ_fIX017v1WhCcisAuLOCTRkct9_wIg59c8Wt7heKvL3kg8phfuOmUv9vzZtTctdhzoeXCurQcRsBA | |
- type: precision | |
value: 0.7260700483940776 | |
name: Precision Weighted | |
verified: true | |
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMDI3ZmI3OGE4MTI1MmI1ZDM4ZGRmNGI1NDMxMzkwNzkwYjhiNWZjZGE2MjEzZDY0NDIwMWI4ZWNlNDc0ZmJiNyIsInZlcnNpb24iOjF9.aaYwzGJLwDsfALehisQKoEO8cx7yazGAq3oktqL-hC9o4J3YH1mke8_ab3PeOtYiVwYy-Ek_jvo2JAfeanRYCw | |
- type: recall | |
value: 0.7350898220292059 | |
name: Recall Macro | |
verified: true | |
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMjdiZDVjZTVhYzEyNjM1ZTMyZjVkOTljYjIwMTM0YmQxYjU5OGY3ZGE5NjYwZWRlOGEyMDg0NjNlODJiYTkzOCIsInZlcnNpb24iOjF9.zpUj26PoWaX8tgIv_PM1xAwGsezVF1sEAkpGY9YY98z3wec67765MVSWGFwk6mzdQQD5S0hLfvmgSyus1qJpCQ | |
- type: recall | |
value: 0.7219960924780202 | |
name: Recall Micro | |
verified: true | |
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMDliYTA5ZDQ0YjZjN2NjMmI0Y2NhYTQzMjM2MWYzYjUzMjg3NjkyOWQzYmU0NmVhYWZlYmJkNzdmMWJkZDJiMiIsInZlcnNpb24iOjF9.BLIIEbAnz72FSwxC7GaBGJp1T1kMb23rR1owVfJE7pcVHcALRpSH-ztdYHgs_dQw7_uZibYRXcoCtIfwHzaFBg | |
- type: recall | |
value: 0.7219960924780202 | |
name: Recall Weighted | |
verified: true | |
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiYTllZWVhMzVjNjZlNWI5MzIyM2E4YjI4ZjFkZDgwNDAwNWYyYWY0ZTM0MzE5MTJhNmYyMjIwMTFiN2ExNzYxZSIsInZlcnNpb24iOjF9.9F7TUcFAWutxhWAEoJMz-ExjL8Zr-KPAYaUxYpQiGTDuhSfWAgIi580-S8QoS_pSsIoAOjD3J5tG8GDLC4-2Cw | |
- type: loss | |
value: 0.6139620542526245 | |
name: loss | |
verified: true | |
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiYjA4MDcyNTA3ODRhMmZiNDBlMGU3YTk4MzBmY2NlYWYzM2YzYjRkZDEwNWJhOTM2M2VkZDQ1ZjdhOGFkMDAxNiIsInZlcnNpb24iOjF9.VuIi5ytIm14OrN1mrgEgYu1nu2GHhK6KWcrwfKEzzF_1CXmkXQnmOK_NIdstTvbHrqPnkwEwAqctbO37Tr-GDg | |
# Twitter-roBERTa-base for Sentiment Analysis - UPDATED (2022) | |
This is a RoBERTa-base model trained on ~124M tweets from January 2018 to December 2021, and finetuned for sentiment analysis with the TweetEval benchmark. | |
The original Twitter-based RoBERTa model can be found [here](https://huggingface.co/cardiffnlp/twitter-roberta-base-2021-124m) and the original reference paper is [TweetEval](https://github.com/cardiffnlp/tweeteval). This model is suitable for English. | |
- Reference Paper: [TimeLMs paper](https://arxiv.org/abs/2202.03829). | |
- Git Repo: [TimeLMs official repository](https://github.com/cardiffnlp/timelms). | |
<b>Labels</b>: | |
0 -> Negative; | |
1 -> Neutral; | |
2 -> Positive | |
This sentiment analysis model has been integrated into [TweetNLP](https://github.com/cardiffnlp/tweetnlp). You can access the demo [here](https://tweetnlp.org). | |
## Example Pipeline | |
```python | |
from transformers import pipeline | |
sentiment_task = pipeline("sentiment-analysis", model=model_path, tokenizer=model_path) | |
sentiment_task("Covid cases are increasing fast!") | |
``` | |
``` | |
[{'label': 'Negative', 'score': 0.7236}] | |
``` | |
## Full classification example | |
```python | |
from transformers import AutoModelForSequenceClassification | |
from transformers import TFAutoModelForSequenceClassification | |
from transformers import AutoTokenizer, AutoConfig | |
import numpy as np | |
from scipy.special import softmax | |
# Preprocess text (username and link placeholders) | |
def preprocess(text): | |
new_text = [] | |
for t in text.split(" "): | |
t = '@user' if t.startswith('@') and len(t) > 1 else t | |
t = 'http' if t.startswith('http') else t | |
new_text.append(t) | |
return " ".join(new_text) | |
MODEL = f"cardiffnlp/twitter-roberta-base-sentiment-latest" | |
tokenizer = AutoTokenizer.from_pretrained(MODEL) | |
config = AutoConfig.from_pretrained(MODEL) | |
# PT | |
model = AutoModelForSequenceClassification.from_pretrained(MODEL) | |
#model.save_pretrained(MODEL) | |
text = "Covid cases are increasing fast!" | |
text = preprocess(text) | |
encoded_input = tokenizer(text, return_tensors='pt') | |
output = model(**encoded_input) | |
scores = output[0][0].detach().numpy() | |
scores = softmax(scores) | |
# # TF | |
# model = TFAutoModelForSequenceClassification.from_pretrained(MODEL) | |
# model.save_pretrained(MODEL) | |
# text = "Covid cases are increasing fast!" | |
# encoded_input = tokenizer(text, return_tensors='tf') | |
# output = model(encoded_input) | |
# scores = output[0][0].numpy() | |
# scores = softmax(scores) | |
# Print labels and scores | |
ranking = np.argsort(scores) | |
ranking = ranking[::-1] | |
for i in range(scores.shape[0]): | |
l = config.id2label[ranking[i]] | |
s = scores[ranking[i]] | |
print(f"{i+1}) {l} {np.round(float(s), 4)}") | |
``` | |
Output: | |
``` | |
1) Negative 0.7236 | |
2) Neutral 0.2287 | |
3) Positive 0.0477 | |
``` | |
### References | |
``` | |
@inproceedings{camacho-collados-etal-2022-tweetnlp, | |
title = "{T}weet{NLP}: Cutting-Edge Natural Language Processing for Social Media", | |
author = "Camacho-collados, Jose and | |
Rezaee, Kiamehr and | |
Riahi, Talayeh and | |
Ushio, Asahi and | |
Loureiro, Daniel and | |
Antypas, Dimosthenis and | |
Boisson, Joanne and | |
Espinosa Anke, Luis and | |
Liu, Fangyu and | |
Mart{\'\i}nez C{\'a}mara, Eugenio" and others, | |
booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing: System Demonstrations", | |
month = dec, | |
year = "2022", | |
address = "Abu Dhabi, UAE", | |
publisher = "Association for Computational Linguistics", | |
url = "https://aclanthology.org/2022.emnlp-demos.5", | |
pages = "38--49" | |
} | |
``` | |
``` | |
@inproceedings{loureiro-etal-2022-timelms, | |
title = "{T}ime{LM}s: Diachronic Language Models from {T}witter", | |
author = "Loureiro, Daniel and | |
Barbieri, Francesco and | |
Neves, Leonardo and | |
Espinosa Anke, Luis and | |
Camacho-collados, Jose", | |
booktitle = "Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics: System Demonstrations", | |
month = may, | |
year = "2022", | |
address = "Dublin, Ireland", | |
publisher = "Association for Computational Linguistics", | |
url = "https://aclanthology.org/2022.acl-demo.25", | |
doi = "10.18653/v1/2022.acl-demo.25", | |
pages = "251--260" | |
} | |
``` | |