cartesinus's picture
Update README.md
d2971ae
metadata
license: mit
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - f1
model-index:
  - name: fedcsis_translated-intent_baseline-xlm_r-pl
    results: []

fedcsis_translated-intent_baseline-xlm_r-pl

This model is a fine-tuned version of xlm-roberta-base on the leyzer-fedcsis-translated dataset.

Results on untranslated test set:

  • Accuracy: 0.8769

It achieves the following results on the evaluation set:

  • Loss: 0.5478
  • Accuracy: 0.8769
  • F1: 0.8769

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy F1
3.505 1.0 814 1.8819 0.5979 0.5979
1.5056 2.0 1628 1.1033 0.7611 0.7611
1.0892 3.0 2442 0.7402 0.8470 0.8470
0.648 4.0 3256 0.5263 0.8902 0.8902
0.423 5.0 4070 0.4253 0.9152 0.9152
0.3429 6.0 4884 0.3654 0.9194 0.9194
0.2464 7.0 5698 0.3213 0.9273 0.9273
0.1873 8.0 6512 0.3065 0.9328 0.9328
0.1666 9.0 7326 0.3046 0.9345 0.9345
0.1459 10.0 8140 0.2911 0.9370 0.9370

Framework versions

  • Transformers 4.27.3
  • Pytorch 1.13.1+cu116
  • Datasets 2.10.1
  • Tokenizers 0.13.2