metadata
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
widget:
- text: ' "Ein Tempolimit auf deutschen Autobahnen wäre ein Schlag ins Gesicht aller Autofahrer, die Freiheit und Unabhängigkeit schätzen."'
- text: >-
Die Bundesregierung prüft derzeit mehrere Gesetzesinitiativen, die ein
generelles Tempolimit auf deutschen Autobahnen vorsehen.
- text: ' Das Tempolimit auf Autobahnen würde die Freiheit der Autofahrer massiv einschränken!'
- text: >-
"Während sich unsere Politiker auf ihren Klimakonferenzen über die
Notwendigkeit neuer Heizungssysteme unterhalten, vergessen sie dabei
geflissentlich, dass die einfache Frau Schmidt oder der einfache Herr
Müller bald jeden zweiten Lohnscheck direkt in die Kasse des
Heizungsexperten oder des Energiekonzerns überweisen werden."
- text: ' "Das geplante Heizungsgesetz ist ein weiterer Schritt in Richtung staatlicher Bevormundung und wird die Bürger in die Armut treiben."'
metrics:
- accuracy
pipeline_tag: text-classification
library_name: setfit
inference: true
base_model: sentence-transformers/all-MiniLM-L6-v2
model-index:
- name: SetFit with sentence-transformers/all-MiniLM-L6-v2
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: Unknown
type: unknown
split: test
metrics:
- type: accuracy
value: 0.931899641577061
name: Accuracy
SetFit with sentence-transformers/all-MiniLM-L6-v2
This is a SetFit model that can be used for Text Classification. This SetFit model uses sentence-transformers/all-MiniLM-L6-v2 as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
- Fine-tuning a Sentence Transformer with contrastive learning.
- Training a classification head with features from the fine-tuned Sentence Transformer.
Model Details
Model Description
- Model Type: SetFit
- Sentence Transformer body: sentence-transformers/all-MiniLM-L6-v2
- Classification head: a LogisticRegression instance
- Maximum Sequence Length: 256 tokens
- Number of Classes: 3 classes
Model Sources
- Repository: SetFit on GitHub
- Paper: Efficient Few-Shot Learning Without Prompts
- Blogpost: SetFit: Efficient Few-Shot Learning Without Prompts
Model Labels
Label | Examples |
---|---|
neutral |
|
supportive |
|
opposed |
|
Evaluation
Metrics
Label | Accuracy |
---|---|
all | 0.9319 |
Uses
Direct Use for Inference
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("cbpuschmann/MiniLM-klimacoder_v0.5")
# Run inference
preds = model(" Das Tempolimit auf Autobahnen würde die Freiheit der Autofahrer massiv einschränken!")
Training Details
Training Set Metrics
Training set | Min | Median | Max |
---|---|---|---|
Word count | 11 | 25.5421 | 57 |
Label | Training Sample Count |
---|---|
neutral | 326 |
opposed | 394 |
supportive | 396 |
Training Hyperparameters
- batch_size: (32, 32)
- num_epochs: (1, 1)
- max_steps: -1
- sampling_strategy: oversampling
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- l2_weight: 0.01
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False
Training Results
Epoch | Step | Training Loss | Validation Loss |
---|---|---|---|
0.0000 | 1 | 0.2393 | - |
0.0019 | 50 | 0.2748 | - |
0.0039 | 100 | 0.2607 | - |
0.0058 | 150 | 0.2486 | - |
0.0077 | 200 | 0.2465 | - |
0.0097 | 250 | 0.246 | - |
0.0116 | 300 | 0.2454 | - |
0.0135 | 350 | 0.2406 | - |
0.0155 | 400 | 0.235 | - |
0.0174 | 450 | 0.2269 | - |
0.0193 | 500 | 0.2184 | - |
0.0213 | 550 | 0.2095 | - |
0.0232 | 600 | 0.1833 | - |
0.0251 | 650 | 0.1777 | - |
0.0271 | 700 | 0.1548 | - |
0.0290 | 750 | 0.1464 | - |
0.0310 | 800 | 0.1326 | - |
0.0329 | 850 | 0.1304 | - |
0.0348 | 900 | 0.1237 | - |
0.0368 | 950 | 0.1163 | - |
0.0387 | 1000 | 0.1129 | - |
0.0406 | 1050 | 0.1017 | - |
0.0426 | 1100 | 0.0907 | - |
0.0445 | 1150 | 0.0857 | - |
0.0464 | 1200 | 0.0645 | - |
0.0484 | 1250 | 0.0641 | - |
0.0503 | 1300 | 0.0514 | - |
0.0522 | 1350 | 0.0442 | - |
0.0542 | 1400 | 0.0342 | - |
0.0561 | 1450 | 0.0291 | - |
0.0580 | 1500 | 0.0243 | - |
0.0600 | 1550 | 0.0185 | - |
0.0619 | 1600 | 0.0142 | - |
0.0638 | 1650 | 0.0092 | - |
0.0658 | 1700 | 0.0112 | - |
0.0677 | 1750 | 0.0076 | - |
0.0696 | 1800 | 0.0046 | - |
0.0716 | 1850 | 0.0038 | - |
0.0735 | 1900 | 0.0025 | - |
0.0754 | 1950 | 0.0028 | - |
0.0774 | 2000 | 0.0034 | - |
0.0793 | 2050 | 0.0022 | - |
0.0812 | 2100 | 0.0028 | - |
0.0832 | 2150 | 0.0025 | - |
0.0851 | 2200 | 0.0025 | - |
0.0870 | 2250 | 0.0011 | - |
0.0890 | 2300 | 0.0013 | - |
0.0909 | 2350 | 0.0019 | - |
0.0929 | 2400 | 0.0006 | - |
0.0948 | 2450 | 0.0013 | - |
0.0967 | 2500 | 0.0005 | - |
0.0987 | 2550 | 0.0006 | - |
0.1006 | 2600 | 0.0012 | - |
0.1025 | 2650 | 0.0016 | - |
0.1045 | 2700 | 0.0005 | - |
0.1064 | 2750 | 0.0004 | - |
0.1083 | 2800 | 0.0003 | - |
0.1103 | 2850 | 0.0008 | - |
0.1122 | 2900 | 0.001 | - |
0.1141 | 2950 | 0.0018 | - |
0.1161 | 3000 | 0.0005 | - |
0.1180 | 3050 | 0.0002 | - |
0.1199 | 3100 | 0.0005 | - |
0.1219 | 3150 | 0.0006 | - |
0.1238 | 3200 | 0.0017 | - |
0.1257 | 3250 | 0.0009 | - |
0.1277 | 3300 | 0.0026 | - |
0.1296 | 3350 | 0.0008 | - |
0.1315 | 3400 | 0.0009 | - |
0.1335 | 3450 | 0.0013 | - |
0.1354 | 3500 | 0.0009 | - |
0.1373 | 3550 | 0.0011 | - |
0.1393 | 3600 | 0.0008 | - |
0.1412 | 3650 | 0.0004 | - |
0.1431 | 3700 | 0.0009 | - |
0.1451 | 3750 | 0.0008 | - |
0.1470 | 3800 | 0.0012 | - |
0.1489 | 3850 | 0.001 | - |
0.1509 | 3900 | 0.0003 | - |
0.1528 | 3950 | 0.0005 | - |
0.1548 | 4000 | 0.0006 | - |
0.1567 | 4050 | 0.0007 | - |
0.1586 | 4100 | 0.0009 | - |
0.1606 | 4150 | 0.0003 | - |
0.1625 | 4200 | 0.0001 | - |
0.1644 | 4250 | 0.0011 | - |
0.1664 | 4300 | 0.0004 | - |
0.1683 | 4350 | 0.0005 | - |
0.1702 | 4400 | 0.001 | - |
0.1722 | 4450 | 0.0001 | - |
0.1741 | 4500 | 0.0001 | - |
0.1760 | 4550 | 0.0001 | - |
0.1780 | 4600 | 0.0007 | - |
0.1799 | 4650 | 0.0001 | - |
0.1818 | 4700 | 0.0 | - |
0.1838 | 4750 | 0.0 | - |
0.1857 | 4800 | 0.0001 | - |
0.1876 | 4850 | 0.0001 | - |
0.1896 | 4900 | 0.0 | - |
0.1915 | 4950 | 0.0002 | - |
0.1934 | 5000 | 0.0008 | - |
0.1954 | 5050 | 0.0006 | - |
0.1973 | 5100 | 0.0001 | - |
0.1992 | 5150 | 0.0 | - |
0.2012 | 5200 | 0.0 | - |
0.2031 | 5250 | 0.0006 | - |
0.2050 | 5300 | 0.0009 | - |
0.2070 | 5350 | 0.0001 | - |
0.2089 | 5400 | 0.0004 | - |
0.2108 | 5450 | 0.0032 | - |
0.2128 | 5500 | 0.0029 | - |
0.2147 | 5550 | 0.001 | - |
0.2167 | 5600 | 0.0014 | - |
0.2186 | 5650 | 0.0004 | - |
0.2205 | 5700 | 0.0034 | - |
0.2225 | 5750 | 0.0003 | - |
0.2244 | 5800 | 0.0002 | - |
0.2263 | 5850 | 0.0001 | - |
0.2283 | 5900 | 0.0 | - |
0.2302 | 5950 | 0.0 | - |
0.2321 | 6000 | 0.0 | - |
0.2341 | 6050 | 0.0 | - |
0.2360 | 6100 | 0.0 | - |
0.2379 | 6150 | 0.0 | - |
0.2399 | 6200 | 0.0 | - |
0.2418 | 6250 | 0.0 | - |
0.2437 | 6300 | 0.0001 | - |
0.2457 | 6350 | 0.0024 | - |
0.2476 | 6400 | 0.0009 | - |
0.2495 | 6450 | 0.0005 | - |
0.2515 | 6500 | 0.0016 | - |
0.2534 | 6550 | 0.0003 | - |
0.2553 | 6600 | 0.0001 | - |
0.2573 | 6650 | 0.0 | - |
0.2592 | 6700 | 0.0 | - |
0.2611 | 6750 | 0.0 | - |
0.2631 | 6800 | 0.0 | - |
0.2650 | 6850 | 0.0 | - |
0.2669 | 6900 | 0.0 | - |
0.2689 | 6950 | 0.0 | - |
0.2708 | 7000 | 0.0 | - |
0.2727 | 7050 | 0.0 | - |
0.2747 | 7100 | 0.0 | - |
0.2766 | 7150 | 0.0 | - |
0.2786 | 7200 | 0.0 | - |
0.2805 | 7250 | 0.0002 | - |
0.2824 | 7300 | 0.0006 | - |
0.2844 | 7350 | 0.0008 | - |
0.2863 | 7400 | 0.0013 | - |
0.2882 | 7450 | 0.0001 | - |
0.2902 | 7500 | 0.0005 | - |
0.2921 | 7550 | 0.0 | - |
0.2940 | 7600 | 0.0 | - |
0.2960 | 7650 | 0.0 | - |
0.2979 | 7700 | 0.0006 | - |
0.2998 | 7750 | 0.0 | - |
0.3018 | 7800 | 0.0 | - |
0.3037 | 7850 | 0.0 | - |
0.3056 | 7900 | 0.0 | - |
0.3076 | 7950 | 0.0 | - |
0.3095 | 8000 | 0.0 | - |
0.3114 | 8050 | 0.0 | - |
0.3134 | 8100 | 0.0 | - |
0.3153 | 8150 | 0.0 | - |
0.3172 | 8200 | 0.0 | - |
0.3192 | 8250 | 0.0 | - |
0.3211 | 8300 | 0.0 | - |
0.3230 | 8350 | 0.0 | - |
0.3250 | 8400 | 0.0 | - |
0.3269 | 8450 | 0.0 | - |
0.3288 | 8500 | 0.0 | - |
0.3308 | 8550 | 0.0 | - |
0.3327 | 8600 | 0.0 | - |
0.3346 | 8650 | 0.0004 | - |
0.3366 | 8700 | 0.0 | - |
0.3385 | 8750 | 0.0 | - |
0.3405 | 8800 | 0.0 | - |
0.3424 | 8850 | 0.0 | - |
0.3443 | 8900 | 0.0 | - |
0.3463 | 8950 | 0.0 | - |
0.3482 | 9000 | 0.0 | - |
0.3501 | 9050 | 0.0 | - |
0.3521 | 9100 | 0.0001 | - |
0.3540 | 9150 | 0.0037 | - |
0.3559 | 9200 | 0.0013 | - |
0.3579 | 9250 | 0.0007 | - |
0.3598 | 9300 | 0.0032 | - |
0.3617 | 9350 | 0.0006 | - |
0.3637 | 9400 | 0.0007 | - |
0.3656 | 9450 | 0.0 | - |
0.3675 | 9500 | 0.0006 | - |
0.3695 | 9550 | 0.0001 | - |
0.3714 | 9600 | 0.0004 | - |
0.3733 | 9650 | 0.0001 | - |
0.3753 | 9700 | 0.0001 | - |
0.3772 | 9750 | 0.0 | - |
0.3791 | 9800 | 0.0 | - |
0.3811 | 9850 | 0.0 | - |
0.3830 | 9900 | 0.0 | - |
0.3849 | 9950 | 0.0 | - |
0.3869 | 10000 | 0.0 | - |
0.3888 | 10050 | 0.0 | - |
0.3907 | 10100 | 0.0 | - |
0.3927 | 10150 | 0.0 | - |
0.3946 | 10200 | 0.0 | - |
0.3965 | 10250 | 0.0 | - |
0.3985 | 10300 | 0.0 | - |
0.4004 | 10350 | 0.0 | - |
0.4024 | 10400 | 0.0 | - |
0.4043 | 10450 | 0.0 | - |
0.4062 | 10500 | 0.0 | - |
0.4082 | 10550 | 0.0 | - |
0.4101 | 10600 | 0.0 | - |
0.4120 | 10650 | 0.0 | - |
0.4140 | 10700 | 0.0 | - |
0.4159 | 10750 | 0.0 | - |
0.4178 | 10800 | 0.0 | - |
0.4198 | 10850 | 0.0 | - |
0.4217 | 10900 | 0.0001 | - |
0.4236 | 10950 | 0.0 | - |
0.4256 | 11000 | 0.0 | - |
0.4275 | 11050 | 0.0007 | - |
0.4294 | 11100 | 0.0043 | - |
0.4314 | 11150 | 0.0011 | - |
0.4333 | 11200 | 0.0013 | - |
0.4352 | 11250 | 0.0005 | - |
0.4372 | 11300 | 0.0004 | - |
0.4391 | 11350 | 0.0001 | - |
0.4410 | 11400 | 0.0001 | - |
0.4430 | 11450 | 0.0 | - |
0.4449 | 11500 | 0.0001 | - |
0.4468 | 11550 | 0.0 | - |
0.4488 | 11600 | 0.0001 | - |
0.4507 | 11650 | 0.0004 | - |
0.4526 | 11700 | 0.0001 | - |
0.4546 | 11750 | 0.0 | - |
0.4565 | 11800 | 0.0013 | - |
0.4584 | 11850 | 0.0006 | - |
0.4604 | 11900 | 0.0001 | - |
0.4623 | 11950 | 0.0 | - |
0.4643 | 12000 | 0.0 | - |
0.4662 | 12050 | 0.0 | - |
0.4681 | 12100 | 0.0 | - |
0.4701 | 12150 | 0.0 | - |
0.4720 | 12200 | 0.0002 | - |
0.4739 | 12250 | 0.0 | - |
0.4759 | 12300 | 0.0 | - |
0.4778 | 12350 | 0.0 | - |
0.4797 | 12400 | 0.0 | - |
0.4817 | 12450 | 0.0 | - |
0.4836 | 12500 | 0.0 | - |
0.4855 | 12550 | 0.0 | - |
0.4875 | 12600 | 0.0 | - |
0.4894 | 12650 | 0.0 | - |
0.4913 | 12700 | 0.0 | - |
0.4933 | 12750 | 0.0 | - |
0.4952 | 12800 | 0.0 | - |
0.4971 | 12850 | 0.0 | - |
0.4991 | 12900 | 0.0 | - |
0.5010 | 12950 | 0.0 | - |
0.5029 | 13000 | 0.0 | - |
0.5049 | 13050 | 0.0 | - |
0.5068 | 13100 | 0.0 | - |
0.5087 | 13150 | 0.0 | - |
0.5107 | 13200 | 0.0 | - |
0.5126 | 13250 | 0.0 | - |
0.5145 | 13300 | 0.0 | - |
0.5165 | 13350 | 0.0 | - |
0.5184 | 13400 | 0.0 | - |
0.5203 | 13450 | 0.0 | - |
0.5223 | 13500 | 0.0 | - |
0.5242 | 13550 | 0.0 | - |
0.5262 | 13600 | 0.0 | - |
0.5281 | 13650 | 0.0 | - |
0.5300 | 13700 | 0.0 | - |
0.5320 | 13750 | 0.0 | - |
0.5339 | 13800 | 0.0 | - |
0.5358 | 13850 | 0.0 | - |
0.5378 | 13900 | 0.0 | - |
0.5397 | 13950 | 0.0 | - |
0.5416 | 14000 | 0.0 | - |
0.5436 | 14050 | 0.0 | - |
0.5455 | 14100 | 0.0 | - |
0.5474 | 14150 | 0.0 | - |
0.5494 | 14200 | 0.0 | - |
0.5513 | 14250 | 0.0 | - |
0.5532 | 14300 | 0.0 | - |
0.5552 | 14350 | 0.0 | - |
0.5571 | 14400 | 0.0 | - |
0.5590 | 14450 | 0.0 | - |
0.5610 | 14500 | 0.0 | - |
0.5629 | 14550 | 0.0 | - |
0.5648 | 14600 | 0.0 | - |
0.5668 | 14650 | 0.0 | - |
0.5687 | 14700 | 0.0 | - |
0.5706 | 14750 | 0.0 | - |
0.5726 | 14800 | 0.0 | - |
0.5745 | 14850 | 0.0 | - |
0.5764 | 14900 | 0.0 | - |
0.5784 | 14950 | 0.0 | - |
0.5803 | 15000 | 0.0 | - |
0.5823 | 15050 | 0.0 | - |
0.5842 | 15100 | 0.0 | - |
0.5861 | 15150 | 0.0009 | - |
0.5881 | 15200 | 0.0006 | - |
0.5900 | 15250 | 0.0 | - |
0.5919 | 15300 | 0.0 | - |
0.5939 | 15350 | 0.0 | - |
0.5958 | 15400 | 0.0 | - |
0.5977 | 15450 | 0.0 | - |
0.5997 | 15500 | 0.0 | - |
0.6016 | 15550 | 0.0 | - |
0.6035 | 15600 | 0.0 | - |
0.6055 | 15650 | 0.0 | - |
0.6074 | 15700 | 0.0 | - |
0.6093 | 15750 | 0.0006 | - |
0.6113 | 15800 | 0.0007 | - |
0.6132 | 15850 | 0.0 | - |
0.6151 | 15900 | 0.0 | - |
0.6171 | 15950 | 0.0 | - |
0.6190 | 16000 | 0.0 | - |
0.6209 | 16050 | 0.0 | - |
0.6229 | 16100 | 0.0 | - |
0.6248 | 16150 | 0.0 | - |
0.6267 | 16200 | 0.0 | - |
0.6287 | 16250 | 0.0 | - |
0.6306 | 16300 | 0.0 | - |
0.6325 | 16350 | 0.0 | - |
0.6345 | 16400 | 0.0 | - |
0.6364 | 16450 | 0.0 | - |
0.6383 | 16500 | 0.0 | - |
0.6403 | 16550 | 0.0 | - |
0.6422 | 16600 | 0.0 | - |
0.6442 | 16650 | 0.0 | - |
0.6461 | 16700 | 0.0 | - |
0.6480 | 16750 | 0.0 | - |
0.6500 | 16800 | 0.0 | - |
0.6519 | 16850 | 0.0 | - |
0.6538 | 16900 | 0.0 | - |
0.6558 | 16950 | 0.0 | - |
0.6577 | 17000 | 0.0 | - |
0.6596 | 17050 | 0.0 | - |
0.6616 | 17100 | 0.0 | - |
0.6635 | 17150 | 0.0 | - |
0.6654 | 17200 | 0.0 | - |
0.6674 | 17250 | 0.0 | - |
0.6693 | 17300 | 0.0 | - |
0.6712 | 17350 | 0.0 | - |
0.6732 | 17400 | 0.0 | - |
0.6751 | 17450 | 0.0 | - |
0.6770 | 17500 | 0.0 | - |
0.6790 | 17550 | 0.0 | - |
0.6809 | 17600 | 0.0 | - |
0.6828 | 17650 | 0.0 | - |
0.6848 | 17700 | 0.0 | - |
0.6867 | 17750 | 0.0 | - |
0.6886 | 17800 | 0.0 | - |
0.6906 | 17850 | 0.0 | - |
0.6925 | 17900 | 0.0 | - |
0.6944 | 17950 | 0.0 | - |
0.6964 | 18000 | 0.0 | - |
0.6983 | 18050 | 0.0007 | - |
0.7002 | 18100 | 0.0 | - |
0.7022 | 18150 | 0.0 | - |
0.7041 | 18200 | 0.0 | - |
0.7061 | 18250 | 0.0 | - |
0.7080 | 18300 | 0.0 | - |
0.7099 | 18350 | 0.0 | - |
0.7119 | 18400 | 0.0 | - |
0.7138 | 18450 | 0.0 | - |
0.7157 | 18500 | 0.0001 | - |
0.7177 | 18550 | 0.0 | - |
0.7196 | 18600 | 0.0 | - |
0.7215 | 18650 | 0.0004 | - |
0.7235 | 18700 | 0.0 | - |
0.7254 | 18750 | 0.0 | - |
0.7273 | 18800 | 0.0 | - |
0.7293 | 18850 | 0.0 | - |
0.7312 | 18900 | 0.0 | - |
0.7331 | 18950 | 0.0 | - |
0.7351 | 19000 | 0.0 | - |
0.7370 | 19050 | 0.0 | - |
0.7389 | 19100 | 0.0 | - |
0.7409 | 19150 | 0.0 | - |
0.7428 | 19200 | 0.0 | - |
0.7447 | 19250 | 0.0 | - |
0.7467 | 19300 | 0.0 | - |
0.7486 | 19350 | 0.0 | - |
0.7505 | 19400 | 0.0 | - |
0.7525 | 19450 | 0.0 | - |
0.7544 | 19500 | 0.0 | - |
0.7563 | 19550 | 0.0 | - |
0.7583 | 19600 | 0.0 | - |
0.7602 | 19650 | 0.0 | - |
0.7621 | 19700 | 0.0 | - |
0.7641 | 19750 | 0.0 | - |
0.7660 | 19800 | 0.0 | - |
0.7680 | 19850 | 0.0 | - |
0.7699 | 19900 | 0.0 | - |
0.7718 | 19950 | 0.0 | - |
0.7738 | 20000 | 0.0 | - |
0.7757 | 20050 | 0.0 | - |
0.7776 | 20100 | 0.0 | - |
0.7796 | 20150 | 0.0 | - |
0.7815 | 20200 | 0.0 | - |
0.7834 | 20250 | 0.0 | - |
0.7854 | 20300 | 0.0 | - |
0.7873 | 20350 | 0.0 | - |
0.7892 | 20400 | 0.0 | - |
0.7912 | 20450 | 0.0 | - |
0.7931 | 20500 | 0.0 | - |
0.7950 | 20550 | 0.0 | - |
0.7970 | 20600 | 0.0 | - |
0.7989 | 20650 | 0.0 | - |
0.8008 | 20700 | 0.0 | - |
0.8028 | 20750 | 0.0 | - |
0.8047 | 20800 | 0.0 | - |
0.8066 | 20850 | 0.0 | - |
0.8086 | 20900 | 0.0 | - |
0.8105 | 20950 | 0.0 | - |
0.8124 | 21000 | 0.0 | - |
0.8144 | 21050 | 0.0 | - |
0.8163 | 21100 | 0.0 | - |
0.8182 | 21150 | 0.0 | - |
0.8202 | 21200 | 0.0 | - |
0.8221 | 21250 | 0.0 | - |
0.8240 | 21300 | 0.0 | - |
0.8260 | 21350 | 0.0 | - |
0.8279 | 21400 | 0.0 | - |
0.8299 | 21450 | 0.0 | - |
0.8318 | 21500 | 0.0 | - |
0.8337 | 21550 | 0.0 | - |
0.8357 | 21600 | 0.0 | - |
0.8376 | 21650 | 0.0 | - |
0.8395 | 21700 | 0.0 | - |
0.8415 | 21750 | 0.0 | - |
0.8434 | 21800 | 0.0 | - |
0.8453 | 21850 | 0.0 | - |
0.8473 | 21900 | 0.0 | - |
0.8492 | 21950 | 0.0 | - |
0.8511 | 22000 | 0.0 | - |
0.8531 | 22050 | 0.0 | - |
0.8550 | 22100 | 0.0 | - |
0.8569 | 22150 | 0.0 | - |
0.8589 | 22200 | 0.0 | - |
0.8608 | 22250 | 0.0 | - |
0.8627 | 22300 | 0.0 | - |
0.8647 | 22350 | 0.0 | - |
0.8666 | 22400 | 0.0 | - |
0.8685 | 22450 | 0.0 | - |
0.8705 | 22500 | 0.0 | - |
0.8724 | 22550 | 0.0 | - |
0.8743 | 22600 | 0.0 | - |
0.8763 | 22650 | 0.0 | - |
0.8782 | 22700 | 0.0 | - |
0.8801 | 22750 | 0.0 | - |
0.8821 | 22800 | 0.0 | - |
0.8840 | 22850 | 0.0 | - |
0.8859 | 22900 | 0.0 | - |
0.8879 | 22950 | 0.0 | - |
0.8898 | 23000 | 0.0 | - |
0.8918 | 23050 | 0.0 | - |
0.8937 | 23100 | 0.0 | - |
0.8956 | 23150 | 0.0 | - |
0.8976 | 23200 | 0.0 | - |
0.8995 | 23250 | 0.0 | - |
0.9014 | 23300 | 0.0 | - |
0.9034 | 23350 | 0.0 | - |
0.9053 | 23400 | 0.0 | - |
0.9072 | 23450 | 0.0 | - |
0.9092 | 23500 | 0.0 | - |
0.9111 | 23550 | 0.0 | - |
0.9130 | 23600 | 0.0 | - |
0.9150 | 23650 | 0.0 | - |
0.9169 | 23700 | 0.0 | - |
0.9188 | 23750 | 0.0 | - |
0.9208 | 23800 | 0.0 | - |
0.9227 | 23850 | 0.0 | - |
0.9246 | 23900 | 0.0 | - |
0.9266 | 23950 | 0.0 | - |
0.9285 | 24000 | 0.0 | - |
0.9304 | 24050 | 0.0 | - |
0.9324 | 24100 | 0.0 | - |
0.9343 | 24150 | 0.0 | - |
0.9362 | 24200 | 0.0 | - |
0.9382 | 24250 | 0.0 | - |
0.9401 | 24300 | 0.0 | - |
0.9420 | 24350 | 0.0 | - |
0.9440 | 24400 | 0.0 | - |
0.9459 | 24450 | 0.0 | - |
0.9478 | 24500 | 0.0 | - |
0.9498 | 24550 | 0.0 | - |
0.9517 | 24600 | 0.0 | - |
0.9537 | 24650 | 0.0 | - |
0.9556 | 24700 | 0.0 | - |
0.9575 | 24750 | 0.0 | - |
0.9595 | 24800 | 0.0 | - |
0.9614 | 24850 | 0.0 | - |
0.9633 | 24900 | 0.0 | - |
0.9653 | 24950 | 0.0 | - |
0.9672 | 25000 | 0.0 | - |
0.9691 | 25050 | 0.0 | - |
0.9711 | 25100 | 0.0 | - |
0.9730 | 25150 | 0.0 | - |
0.9749 | 25200 | 0.0 | - |
0.9769 | 25250 | 0.0 | - |
0.9788 | 25300 | 0.0 | - |
0.9807 | 25350 | 0.0 | - |
0.9827 | 25400 | 0.0 | - |
0.9846 | 25450 | 0.0 | - |
0.9865 | 25500 | 0.0 | - |
0.9885 | 25550 | 0.0 | - |
0.9904 | 25600 | 0.0 | - |
0.9923 | 25650 | 0.0 | - |
0.9943 | 25700 | 0.0 | - |
0.9962 | 25750 | 0.0 | - |
0.9981 | 25800 | 0.0 | - |
Framework Versions
- Python: 3.10.12
- SetFit: 1.1.0
- Sentence Transformers: 3.3.1
- Transformers: 4.42.2
- PyTorch: 2.5.1+cu121
- Datasets: 3.2.0
- Tokenizers: 0.19.1
Citation
BibTeX
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}