klimacoder2_v0.4 / README.md
cbpuschmann's picture
Add SetFit model
0c7d72b verified
---
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
widget:
- text: Die Forderungen sind landesweit die gleichen. Es geht um die Wiedereinführung
eines 9-Euro-Tickets und ein Tempolimit von 100 km/h auf den Autobahnen. Außerdem
fordern wir die Einführung eines Gesellschaftsrats. Dieser soll Maßnahmen erarbeiten,
wie Deutschland bis 2030 emissionsfrei wird. Die Lösungsansätze sollen von der
Bundesregierung anerkannt und in der Politik umgesetzt werden.
- text: Die aktivist bezeichnen sich als ›DLG›. Sie fordern von Bundeswirtschaftsminister
Robert Habeck Grüne, auf fossile Energie zu verzichten. Zudem verlangen sie eine
Lebenserklärung der Rektorin der Leipziger Universität. Diese soll sich ›offiziell,
öffentlich und gerichtet an Robert Habeck gegen den Bau und die Finanzierung neuer
fossiler Infrastruktur aussprechen. Insbesondere gegen neue Ölbohrungen in der
Nordsee sowie neue Flüssiggas-Terminals›, hieß es in einer Mitteilung der Gruppe
am Donnerstag.
- text: Am Montag war es erneut das Amtsgericht Tiergarten, in dem ein Anwalt die
Aktionen der ›DLG› mit einem fragwürdigen historischen Vergleich rechtfertigte.
Verhandelt wurde an dem Tag gegen den 63-jährigen Winfried L. Wegen fünf Straßenblockaden,
bei denen er teilweise seine Hand auf der Straße angeklebt hatte, musste sich
L. wegen der Vorwürfe Nötigung und Widerstand gegen Vollstreckungsbeamte verantworten.
- text: 'In einer am Morgen verbreiteten Mitteilung begründete die Gruppe ihre Aktion.
Mit der Sitzblockade habe der "fossile Alltag" auf der Straße unterbrochen werden
sollen. Auf Transparenten seien Forderungen deutlich gemacht worden: ein 9-Euro-Ticket
für alle, ein Tempolimit von 100 Stundenkilometern auf Autobahnen und die Bildung
eines Gesellschaftsrats zum Thema Ende der fossilen Brennstoffe bis 2030.'
- text: 'aktivist feiern Festival für mehr Klimaschutz Xanten wer Die Ortsgruppe Xanten
von FFF hat am Freitagnachmittag wieder für mehr Klimaschutz protestiert – aber
anders als sonst. Die aktivist organisierten an der Kriemhildmühle im Kurpark
ein Festival mit Musik, Essen, Getränken und Vorträgen. Viele Menschen kamen,
genossen das schöne Wetter und die entspannte Atmosphäre, lauschten den Liedern
und sangen mit. Ansprachen gab es auch: Seit Jahrzehnten warne die Wissenschaft
vor den Folgen des Klimawandels, trotzdem unternehme die Politik zu wenig, und
die Bevölkerung müsse unter den Folgen wie Dürren, Überschwemmungen und Hitze
leiden, kritisierte Frederik Krohn von der Xantener Ortsgruppe der Klimaschutzbewegung.
Deshalb gehe FFF immer wieder auf die Straße, um der Politik zu sagen, dass es
so nicht weitergehe. Die große Teilnahme am Festival in Xanten und damit am Klimaschutz-Protest
sei ein ›starkes Zeichen›, sagte Krohn.'
metrics:
- accuracy
pipeline_tag: text-classification
library_name: setfit
inference: true
base_model: deutsche-telekom/gbert-large-paraphrase-cosine
---
# SetFit with deutsche-telekom/gbert-large-paraphrase-cosine
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [deutsche-telekom/gbert-large-paraphrase-cosine](https://huggingface.co/deutsche-telekom/gbert-large-paraphrase-cosine) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.
## Model Details
### Model Description
- **Model Type:** SetFit
- **Sentence Transformer body:** [deutsche-telekom/gbert-large-paraphrase-cosine](https://huggingface.co/deutsche-telekom/gbert-large-paraphrase-cosine)
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
- **Maximum Sequence Length:** 512 tokens
- **Number of Classes:** 3 classes
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
### Model Labels
| Label | Examples |
|:-----------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| neutral | <ul><li>'Heizungsgesetz: Dialog zwischen Ministerien zur Förderung von Wärmepumpen\n\nIn einer gemeinsamen Erklärung haben das Bundeswirtschaftsministerium und das zuständige Klimaministerium ihren Dialog über die flächendeckende Einführung von Wärmepumpen fortgesetzt. Ziel ist es, einen Konsens zu finden, der den Übergang zu nachhaltigeren Heizsystemen vorantreibt. Die Initiativen zielen darauf ab, die Energieeffizienz zu steigern und den Klimaschutz zu fördern, ohne spezifische Details oder Zeitpläne zu nennen.'</li><li>'Die Einführung eines Heizungsgesetzes zur Förderung der Wärmepumpen-Nutzung ist ein viel diskutierter Schritt hin zu mehr Nachhaltigkeit im Wohnungsbau. Kritiker argumentieren jedoch, dass finanzielle Hürden für den Austausch älterer Heizsysteme bestehende Haushalte belasten könnten. Vergleichsportale für Heizöl zeigen aktuell große Preisunterschiede, was die Kosten für Verbraucher weiter ins Fokus rückt.'</li><li>'Die Ampel-Koalition diskutiert über eine flächendeckende Einführung von Wärmepumpen, bekannt als "Heizungsgesetz". Ein genauer Zeitplan ist noch unklar, da derzeit Verhandlungen zwischen den Fraktionen laufen. Die Initiative zielt darauf ab, die Energieeffizienz zu steigern und den Übergang zu erneuerbaren Energien im Heizsektor voranzutreiben.'</li></ul> |
| opposed | <ul><li>'Skeptische Reaktionen auf Heizungsgesetz: Kritiker sehen Nachbesserung als unzureichend\n\nDer Vorschlag zur flächendeckenden Einführung von Wärmepumpen stößt auf geteilte Meinungen. Während Befürworter die Energiewende vorantreiben wollen, zeigt sich Michael Kruse (FDP) skeptisch und spricht von einer "Nachbesserung durch die Hintertür". Er fordert eine umfassendere Überarbeitung des Gesetzes, um die Belange der Verbraucher und Wirtschaft besser zu berücksichtigen.'</li><li>'Skepsis gegenüber "Heizungsgesetz": Kritiker warnen vor zu schnellem Umstritt\n\nDer geplante Einsatz von Wärmepumpen als alternative Heizungslösung weckt gemischte Gefühle. FDP-Politiker Sami Musa kritisiert den Vorstoß scharf und warnt vor unerwünschten Konsequenzen. "Das Heizungsgesetz könnte am Ende zu einem teuren und umweltschädlichen Kraftakt führen", so Musa. Er bezieht sich auf mögliche finanzielle Belastungen für Hausbesitzer und die Frage, ob ein vollständiger Wechsel von Öl- und Gasheizungen tatsächlich nachhaltig ist.'</li><li>'Skeptische Reaktionen auf das Heizungsgesetz: Unternehmer sehen dunkle Zeiten kommen\n\nIn der deutschen Energiebranche wächst die Skepsis gegenüber den jüngsten Gesetzesinitiativen zur flächendeckenden Einführung von Wärmepumpen. Ein betroffener Unternehmer warnt vor den Folgen: "Das Heizungsgesetz und die aktuelle Förderpolitik könnten zu Werkschließungen und Entlassungen führen, besonders in Zeiten wirtschaftlicher Unsicherheit." Er kritisiert das Chaos und die widersprüchlichen Signale aus Berlin, die seiner Meinung nach Unternehmen in eine schwierige Lage bringen.'</li></ul> |
| supportive | <ul><li>'Die Ampelkoalition hat kurz vor den Sommerferien einen Durchbruch bei der Wärmepumpenpflicht erzielt. Das Heizungsgesetz soll Klimaschutz und soziale Verträglichkeit verbinden, wie SPD-Vizefraktionschefin Verena Hubertz betont. Dennoch bleibt ein bitterer Nachgeschmack: Die zähe Debatte zeigt die Herausforderungen einer koalitionären Einigung.'</li><li>'Obwohl die flächendeckende Einführung von Wärmepumpen durch das geplante "Heizungsgesetz" auf ein dringend nötiges Umdenken hinweist, weckt die Initiative gemischte Gefühle. Während SPD-Verhandler Matthias Miersch von einer Förderung klimafreundlicher Heizungstechnologien spricht, warnen Kritiker vor einer möglichen Belastung für Verbraucher und Mittelstand durch höhere Installationskosten. Ein ausgewogener Ansatz ist entscheidend, um eine effektive Energiewende zu gewährleisten.'</li><li>'Obwohl das geplante "Heizungsgesetz" auf gemischte Reaktionen stößt, ist es ein mutiger Schritt in Richtung Energiewende. Kritiker monieren mögliche finanzielle Belastungen für Hausbesitzer, doch Grünen-Fraktionsvorsitzende Katharina Dröge betont die langfristigen Vorteile für den Klimaschutz und die Energieunabhängigkeit. Der Entwurf zielt darauf ab, die Installation von Wärmepumpen zu fördern und könnte Deutschland bei der Sanierung seiner Gebäudeflotte voranbringen.'</li></ul> |
## Uses
### Direct Use for Inference
First install the SetFit library:
```bash
pip install setfit
```
Then you can load this model and run inference.
```python
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("cbpuschmann/klimacoder2_v0.4")
# Run inference
preds = model("Die Forderungen sind landesweit die gleichen. Es geht um die Wiedereinführung eines 9-Euro-Tickets und ein Tempolimit von 100 km/h auf den Autobahnen. Außerdem fordern wir die Einführung eines Gesellschaftsrats. Dieser soll Maßnahmen erarbeiten, wie Deutschland bis 2030 emissionsfrei wird. Die Lösungsansätze sollen von der Bundesregierung anerkannt und in der Politik umgesetzt werden.")
```
<!--
### Downstream Use
*List how someone could finetune this model on their own dataset.*
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Set Metrics
| Training set | Min | Median | Max |
|:-------------|:----|:--------|:----|
| Word count | 24 | 61.6794 | 191 |
| Label | Training Sample Count |
|:-----------|:----------------------|
| supportive | 210 |
| opposed | 210 |
| neutral | 210 |
### Training Hyperparameters
- batch_size: (8, 8)
- num_epochs: (3, 3)
- max_steps: -1
- sampling_strategy: oversampling
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- l2_weight: 0.01
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: True
### Training Results
| Epoch | Step | Training Loss | Validation Loss |
|:------:|:-----:|:-------------:|:---------------:|
| 0.0001 | 1 | 0.2556 | - |
| 0.0060 | 50 | 0.2575 | - |
| 0.0121 | 100 | 0.2404 | - |
| 0.0181 | 150 | 0.2165 | - |
| 0.0242 | 200 | 0.1432 | - |
| 0.0302 | 250 | 0.0634 | - |
| 0.0363 | 300 | 0.0156 | - |
| 0.0423 | 350 | 0.004 | - |
| 0.0484 | 400 | 0.001 | - |
| 0.0544 | 450 | 0.0005 | - |
| 0.0605 | 500 | 0.0004 | - |
| 0.0665 | 550 | 0.0003 | - |
| 0.0726 | 600 | 0.0002 | - |
| 0.0786 | 650 | 0.0002 | - |
| 0.0847 | 700 | 0.0001 | - |
| 0.0907 | 750 | 0.0012 | - |
| 0.0967 | 800 | 0.0024 | - |
| 0.1028 | 850 | 0.0018 | - |
| 0.1088 | 900 | 0.0001 | - |
| 0.1149 | 950 | 0.0001 | - |
| 0.1209 | 1000 | 0.0001 | - |
| 0.1270 | 1050 | 0.0001 | - |
| 0.1330 | 1100 | 0.0001 | - |
| 0.1391 | 1150 | 0.0 | - |
| 0.1451 | 1200 | 0.0 | - |
| 0.1512 | 1250 | 0.0 | - |
| 0.1572 | 1300 | 0.0 | - |
| 0.1633 | 1350 | 0.0 | - |
| 0.1693 | 1400 | 0.0 | - |
| 0.1754 | 1450 | 0.0 | - |
| 0.1814 | 1500 | 0.0 | - |
| 0.1874 | 1550 | 0.0 | - |
| 0.1935 | 1600 | 0.0 | - |
| 0.1995 | 1650 | 0.0 | - |
| 0.2056 | 1700 | 0.0 | - |
| 0.2116 | 1750 | 0.0 | - |
| 0.2177 | 1800 | 0.0 | - |
| 0.2237 | 1850 | 0.0 | - |
| 0.2298 | 1900 | 0.0 | - |
| 0.2358 | 1950 | 0.0 | - |
| 0.2419 | 2000 | 0.0 | - |
| 0.2479 | 2050 | 0.0 | - |
| 0.2540 | 2100 | 0.0 | - |
| 0.2600 | 2150 | 0.0 | - |
| 0.2661 | 2200 | 0.0 | - |
| 0.2721 | 2250 | 0.0 | - |
| 0.2781 | 2300 | 0.0 | - |
| 0.2842 | 2350 | 0.0 | - |
| 0.2902 | 2400 | 0.0 | - |
| 0.2963 | 2450 | 0.0 | - |
| 0.3023 | 2500 | 0.0 | - |
| 0.3084 | 2550 | 0.0 | - |
| 0.3144 | 2600 | 0.0 | - |
| 0.3205 | 2650 | 0.0 | - |
| 0.3265 | 2700 | 0.0 | - |
| 0.3326 | 2750 | 0.0 | - |
| 0.3386 | 2800 | 0.0 | - |
| 0.3447 | 2850 | 0.0 | - |
| 0.3507 | 2900 | 0.0 | - |
| 0.3568 | 2950 | 0.0 | - |
| 0.3628 | 3000 | 0.0 | - |
| 0.3688 | 3050 | 0.0 | - |
| 0.3749 | 3100 | 0.0 | - |
| 0.3809 | 3150 | 0.0 | - |
| 0.3870 | 3200 | 0.0 | - |
| 0.3930 | 3250 | 0.0 | - |
| 0.3991 | 3300 | 0.0 | - |
| 0.4051 | 3350 | 0.0 | - |
| 0.4112 | 3400 | 0.0 | - |
| 0.4172 | 3450 | 0.0 | - |
| 0.4233 | 3500 | 0.0 | - |
| 0.4293 | 3550 | 0.0 | - |
| 0.4354 | 3600 | 0.0 | - |
| 0.4414 | 3650 | 0.0 | - |
| 0.4475 | 3700 | 0.0 | - |
| 0.4535 | 3750 | 0.0 | - |
| 0.4595 | 3800 | 0.0 | - |
| 0.4656 | 3850 | 0.0 | - |
| 0.4716 | 3900 | 0.0 | - |
| 0.4777 | 3950 | 0.0 | - |
| 0.4837 | 4000 | 0.0 | - |
| 0.4898 | 4050 | 0.0 | - |
| 0.4958 | 4100 | 0.0 | - |
| 0.5019 | 4150 | 0.0 | - |
| 0.5079 | 4200 | 0.0 | - |
| 0.5140 | 4250 | 0.0 | - |
| 0.5200 | 4300 | 0.0 | - |
| 0.5261 | 4350 | 0.0 | - |
| 0.5321 | 4400 | 0.0 | - |
| 0.5382 | 4450 | 0.0 | - |
| 0.5442 | 4500 | 0.0 | - |
| 0.5502 | 4550 | 0.0187 | - |
| 0.5563 | 4600 | 0.1473 | - |
| 0.5623 | 4650 | 0.1667 | - |
| 0.5684 | 4700 | 0.0401 | - |
| 0.5744 | 4750 | 0.0112 | - |
| 0.5805 | 4800 | 0.0074 | - |
| 0.5865 | 4850 | 0.0021 | - |
| 0.5926 | 4900 | 0.0017 | - |
| 0.5986 | 4950 | 0.0 | - |
| 0.6047 | 5000 | 0.0 | - |
| 0.6107 | 5050 | 0.0 | - |
| 0.6168 | 5100 | 0.0 | - |
| 0.6228 | 5150 | 0.0 | - |
| 0.6289 | 5200 | 0.0 | - |
| 0.6349 | 5250 | 0.0 | - |
| 0.6409 | 5300 | 0.0 | - |
| 0.6470 | 5350 | 0.0 | - |
| 0.6530 | 5400 | 0.0 | - |
| 0.6591 | 5450 | 0.0 | - |
| 0.6651 | 5500 | 0.0 | - |
| 0.6712 | 5550 | 0.0 | - |
| 0.6772 | 5600 | 0.0 | - |
| 0.6833 | 5650 | 0.0 | - |
| 0.6893 | 5700 | 0.0 | - |
| 0.6954 | 5750 | 0.0 | - |
| 0.7014 | 5800 | 0.0 | - |
| 0.7075 | 5850 | 0.0 | - |
| 0.7135 | 5900 | 0.0 | - |
| 0.7196 | 5950 | 0.0 | - |
| 0.7256 | 6000 | 0.0 | - |
| 0.7316 | 6050 | 0.0 | - |
| 0.7377 | 6100 | 0.0 | - |
| 0.7437 | 6150 | 0.0 | - |
| 0.7498 | 6200 | 0.0 | - |
| 0.7558 | 6250 | 0.0 | - |
| 0.7619 | 6300 | 0.0 | - |
| 0.7679 | 6350 | 0.0 | - |
| 0.7740 | 6400 | 0.0 | - |
| 0.7800 | 6450 | 0.0 | - |
| 0.7861 | 6500 | 0.0 | - |
| 0.7921 | 6550 | 0.0 | - |
| 0.7982 | 6600 | 0.0 | - |
| 0.8042 | 6650 | 0.0 | - |
| 0.8103 | 6700 | 0.0 | - |
| 0.8163 | 6750 | 0.0 | - |
| 0.8223 | 6800 | 0.0 | - |
| 0.8284 | 6850 | 0.0 | - |
| 0.8344 | 6900 | 0.0 | - |
| 0.8405 | 6950 | 0.0 | - |
| 0.8465 | 7000 | 0.0 | - |
| 0.8526 | 7050 | 0.0 | - |
| 0.8586 | 7100 | 0.0 | - |
| 0.8647 | 7150 | 0.0 | - |
| 0.8707 | 7200 | 0.0 | - |
| 0.8768 | 7250 | 0.0 | - |
| 0.8828 | 7300 | 0.0 | - |
| 0.8889 | 7350 | 0.0 | - |
| 0.8949 | 7400 | 0.0 | - |
| 0.9010 | 7450 | 0.0 | - |
| 0.9070 | 7500 | 0.0 | - |
| 0.9130 | 7550 | 0.0 | - |
| 0.9191 | 7600 | 0.0 | - |
| 0.9251 | 7650 | 0.0 | - |
| 0.9312 | 7700 | 0.0 | - |
| 0.9372 | 7750 | 0.0 | - |
| 0.9433 | 7800 | 0.0 | - |
| 0.9493 | 7850 | 0.0 | - |
| 0.9554 | 7900 | 0.0 | - |
| 0.9614 | 7950 | 0.0 | - |
| 0.9675 | 8000 | 0.0 | - |
| 0.9735 | 8050 | 0.0 | - |
| 0.9796 | 8100 | 0.0 | - |
| 0.9856 | 8150 | 0.0 | - |
| 0.9917 | 8200 | 0.0 | - |
| 0.9977 | 8250 | 0.0 | - |
| 1.0 | 8269 | - | 0.3465 |
| 1.0037 | 8300 | 0.0 | - |
| 1.0098 | 8350 | 0.0 | - |
| 1.0158 | 8400 | 0.0 | - |
| 1.0219 | 8450 | 0.0 | - |
| 1.0279 | 8500 | 0.0 | - |
| 1.0340 | 8550 | 0.0 | - |
| 1.0400 | 8600 | 0.0 | - |
| 1.0461 | 8650 | 0.0 | - |
| 1.0521 | 8700 | 0.0 | - |
| 1.0582 | 8750 | 0.0 | - |
| 1.0642 | 8800 | 0.0 | - |
| 1.0703 | 8850 | 0.0 | - |
| 1.0763 | 8900 | 0.0 | - |
| 1.0824 | 8950 | 0.0 | - |
| 1.0884 | 9000 | 0.0 | - |
| 1.0944 | 9050 | 0.0 | - |
| 1.1005 | 9100 | 0.0 | - |
| 1.1065 | 9150 | 0.0 | - |
| 1.1126 | 9200 | 0.0 | - |
| 1.1186 | 9250 | 0.0 | - |
| 1.1247 | 9300 | 0.0 | - |
| 1.1307 | 9350 | 0.0 | - |
| 1.1368 | 9400 | 0.0 | - |
| 1.1428 | 9450 | 0.0 | - |
| 1.1489 | 9500 | 0.0 | - |
| 1.1549 | 9550 | 0.0 | - |
| 1.1610 | 9600 | 0.0 | - |
| 1.1670 | 9650 | 0.0 | - |
| 1.1731 | 9700 | 0.0 | - |
| 1.1791 | 9750 | 0.0 | - |
| 1.1851 | 9800 | 0.0 | - |
| 1.1912 | 9850 | 0.0 | - |
| 1.1972 | 9900 | 0.0 | - |
| 1.2033 | 9950 | 0.0 | - |
| 1.2093 | 10000 | 0.0 | - |
| 1.2154 | 10050 | 0.0 | - |
| 1.2214 | 10100 | 0.0 | - |
| 1.2275 | 10150 | 0.0 | - |
| 1.2335 | 10200 | 0.0 | - |
| 1.2396 | 10250 | 0.0 | - |
| 1.2456 | 10300 | 0.0 | - |
| 1.2517 | 10350 | 0.0 | - |
| 1.2577 | 10400 | 0.0 | - |
| 1.2638 | 10450 | 0.0 | - |
| 1.2698 | 10500 | 0.0 | - |
| 1.2758 | 10550 | 0.0 | - |
| 1.2819 | 10600 | 0.0 | - |
| 1.2879 | 10650 | 0.0 | - |
| 1.2940 | 10700 | 0.0 | - |
| 1.3000 | 10750 | 0.0 | - |
| 1.3061 | 10800 | 0.0 | - |
| 1.3121 | 10850 | 0.0 | - |
| 1.3182 | 10900 | 0.0 | - |
| 1.3242 | 10950 | 0.0 | - |
| 1.3303 | 11000 | 0.0 | - |
| 1.3363 | 11050 | 0.0 | - |
| 1.3424 | 11100 | 0.0 | - |
| 1.3484 | 11150 | 0.0 | - |
| 1.3545 | 11200 | 0.0 | - |
| 1.3605 | 11250 | 0.0 | - |
| 1.3665 | 11300 | 0.0 | - |
| 1.3726 | 11350 | 0.0137 | - |
| 1.3786 | 11400 | 0.0211 | - |
| 1.3847 | 11450 | 0.0047 | - |
| 1.3907 | 11500 | 0.0048 | - |
| 1.3968 | 11550 | 0.0008 | - |
| 1.4028 | 11600 | 0.0 | - |
| 1.4089 | 11650 | 0.0 | - |
| 1.4149 | 11700 | 0.0 | - |
| 1.4210 | 11750 | 0.0 | - |
| 1.4270 | 11800 | 0.0 | - |
| 1.4331 | 11850 | 0.0 | - |
| 1.4391 | 11900 | 0.0 | - |
| 1.4452 | 11950 | 0.0 | - |
| 1.4512 | 12000 | 0.0 | - |
| 1.4572 | 12050 | 0.0 | - |
| 1.4633 | 12100 | 0.0 | - |
| 1.4693 | 12150 | 0.0 | - |
| 1.4754 | 12200 | 0.0 | - |
| 1.4814 | 12250 | 0.0 | - |
| 1.4875 | 12300 | 0.0 | - |
| 1.4935 | 12350 | 0.0 | - |
| 1.4996 | 12400 | 0.0 | - |
| 1.5056 | 12450 | 0.0 | - |
| 1.5117 | 12500 | 0.0 | - |
| 1.5177 | 12550 | 0.0 | - |
| 1.5238 | 12600 | 0.0 | - |
| 1.5298 | 12650 | 0.0 | - |
| 1.5359 | 12700 | 0.0 | - |
| 1.5419 | 12750 | 0.0 | - |
| 1.5480 | 12800 | 0.0 | - |
| 1.5540 | 12850 | 0.0 | - |
| 1.5600 | 12900 | 0.0 | - |
| 1.5661 | 12950 | 0.0 | - |
| 1.5721 | 13000 | 0.0 | - |
| 1.5782 | 13050 | 0.0 | - |
| 1.5842 | 13100 | 0.0 | - |
| 1.5903 | 13150 | 0.0 | - |
| 1.5963 | 13200 | 0.0 | - |
| 1.6024 | 13250 | 0.0 | - |
| 1.6084 | 13300 | 0.0 | - |
| 1.6145 | 13350 | 0.0 | - |
| 1.6205 | 13400 | 0.0 | - |
| 1.6266 | 13450 | 0.0 | - |
| 1.6326 | 13500 | 0.0 | - |
| 1.6387 | 13550 | 0.0 | - |
| 1.6447 | 13600 | 0.0 | - |
| 1.6507 | 13650 | 0.0 | - |
| 1.6568 | 13700 | 0.0 | - |
| 1.6628 | 13750 | 0.0 | - |
| 1.6689 | 13800 | 0.0 | - |
| 1.6749 | 13850 | 0.0 | - |
| 1.6810 | 13900 | 0.0 | - |
| 1.6870 | 13950 | 0.0 | - |
| 1.6931 | 14000 | 0.0 | - |
| 1.6991 | 14050 | 0.0 | - |
| 1.7052 | 14100 | 0.0 | - |
| 1.7112 | 14150 | 0.0 | - |
| 1.7173 | 14200 | 0.0 | - |
| 1.7233 | 14250 | 0.0 | - |
| 1.7294 | 14300 | 0.0 | - |
| 1.7354 | 14350 | 0.0 | - |
| 1.7414 | 14400 | 0.0 | - |
| 1.7475 | 14450 | 0.0 | - |
| 1.7535 | 14500 | 0.0 | - |
| 1.7596 | 14550 | 0.0 | - |
| 1.7656 | 14600 | 0.0 | - |
| 1.7717 | 14650 | 0.0 | - |
| 1.7777 | 14700 | 0.0 | - |
| 1.7838 | 14750 | 0.0 | - |
| 1.7898 | 14800 | 0.0 | - |
| 1.7959 | 14850 | 0.0 | - |
| 1.8019 | 14900 | 0.0 | - |
| 1.8080 | 14950 | 0.0 | - |
| 1.8140 | 15000 | 0.0 | - |
| 1.8201 | 15050 | 0.0 | - |
| 1.8261 | 15100 | 0.0 | - |
| 1.8321 | 15150 | 0.0 | - |
| 1.8382 | 15200 | 0.0 | - |
| 1.8442 | 15250 | 0.0 | - |
| 1.8503 | 15300 | 0.0 | - |
| 1.8563 | 15350 | 0.0 | - |
| 1.8624 | 15400 | 0.0 | - |
| 1.8684 | 15450 | 0.0 | - |
| 1.8745 | 15500 | 0.0 | - |
| 1.8805 | 15550 | 0.0 | - |
| 1.8866 | 15600 | 0.0 | - |
| 1.8926 | 15650 | 0.0 | - |
| 1.8987 | 15700 | 0.0 | - |
| 1.9047 | 15750 | 0.0 | - |
| 1.9108 | 15800 | 0.0 | - |
| 1.9168 | 15850 | 0.0 | - |
| 1.9228 | 15900 | 0.0 | - |
| 1.9289 | 15950 | 0.0 | - |
| 1.9349 | 16000 | 0.0 | - |
| 1.9410 | 16050 | 0.0 | - |
| 1.9470 | 16100 | 0.0 | - |
| 1.9531 | 16150 | 0.0 | - |
| 1.9591 | 16200 | 0.0 | - |
| 1.9652 | 16250 | 0.0 | - |
| 1.9712 | 16300 | 0.0 | - |
| 1.9773 | 16350 | 0.0 | - |
| 1.9833 | 16400 | 0.0 | - |
| 1.9894 | 16450 | 0.0 | - |
| 1.9954 | 16500 | 0.0 | - |
| 2.0 | 16538 | - | 0.3646 |
| 2.0015 | 16550 | 0.0 | - |
| 2.0075 | 16600 | 0.0 | - |
| 2.0135 | 16650 | 0.0 | - |
| 2.0196 | 16700 | 0.0 | - |
| 2.0256 | 16750 | 0.0 | - |
| 2.0317 | 16800 | 0.0 | - |
| 2.0377 | 16850 | 0.0 | - |
| 2.0438 | 16900 | 0.0 | - |
| 2.0498 | 16950 | 0.0 | - |
| 2.0559 | 17000 | 0.0 | - |
| 2.0619 | 17050 | 0.0 | - |
| 2.0680 | 17100 | 0.0 | - |
| 2.0740 | 17150 | 0.0 | - |
| 2.0801 | 17200 | 0.0 | - |
| 2.0861 | 17250 | 0.0 | - |
| 2.0922 | 17300 | 0.0 | - |
| 2.0982 | 17350 | 0.0 | - |
| 2.1042 | 17400 | 0.0 | - |
| 2.1103 | 17450 | 0.0 | - |
| 2.1163 | 17500 | 0.0 | - |
| 2.1224 | 17550 | 0.0 | - |
| 2.1284 | 17600 | 0.0 | - |
| 2.1345 | 17650 | 0.0 | - |
| 2.1405 | 17700 | 0.0 | - |
| 2.1466 | 17750 | 0.0 | - |
| 2.1526 | 17800 | 0.0 | - |
| 2.1587 | 17850 | 0.0 | - |
| 2.1647 | 17900 | 0.0 | - |
| 2.1708 | 17950 | 0.0 | - |
| 2.1768 | 18000 | 0.0 | - |
| 2.1829 | 18050 | 0.0 | - |
| 2.1889 | 18100 | 0.0 | - |
| 2.1949 | 18150 | 0.0 | - |
| 2.2010 | 18200 | 0.0 | - |
| 2.2070 | 18250 | 0.0 | - |
| 2.2131 | 18300 | 0.0 | - |
| 2.2191 | 18350 | 0.0 | - |
| 2.2252 | 18400 | 0.0 | - |
| 2.2312 | 18450 | 0.0 | - |
| 2.2373 | 18500 | 0.0 | - |
| 2.2433 | 18550 | 0.0 | - |
| 2.2494 | 18600 | 0.0 | - |
| 2.2554 | 18650 | 0.0 | - |
| 2.2615 | 18700 | 0.0 | - |
| 2.2675 | 18750 | 0.0 | - |
| 2.2736 | 18800 | 0.0 | - |
| 2.2796 | 18850 | 0.0 | - |
| 2.2856 | 18900 | 0.0 | - |
| 2.2917 | 18950 | 0.0 | - |
| 2.2977 | 19000 | 0.0 | - |
| 2.3038 | 19050 | 0.0 | - |
| 2.3098 | 19100 | 0.0 | - |
| 2.3159 | 19150 | 0.0 | - |
| 2.3219 | 19200 | 0.0 | - |
| 2.3280 | 19250 | 0.0 | - |
| 2.3340 | 19300 | 0.0 | - |
| 2.3401 | 19350 | 0.0 | - |
| 2.3461 | 19400 | 0.0 | - |
| 2.3522 | 19450 | 0.0 | - |
| 2.3582 | 19500 | 0.0 | - |
| 2.3643 | 19550 | 0.0 | - |
| 2.3703 | 19600 | 0.0 | - |
| 2.3763 | 19650 | 0.0 | - |
| 2.3824 | 19700 | 0.0 | - |
| 2.3884 | 19750 | 0.0 | - |
| 2.3945 | 19800 | 0.0 | - |
| 2.4005 | 19850 | 0.0 | - |
| 2.4066 | 19900 | 0.0 | - |
| 2.4126 | 19950 | 0.0 | - |
| 2.4187 | 20000 | 0.0 | - |
| 2.4247 | 20050 | 0.0 | - |
| 2.4308 | 20100 | 0.0 | - |
| 2.4368 | 20150 | 0.0 | - |
| 2.4429 | 20200 | 0.0 | - |
| 2.4489 | 20250 | 0.0 | - |
| 2.4550 | 20300 | 0.0 | - |
| 2.4610 | 20350 | 0.0 | - |
| 2.4670 | 20400 | 0.0 | - |
| 2.4731 | 20450 | 0.0 | - |
| 2.4791 | 20500 | 0.0 | - |
| 2.4852 | 20550 | 0.0 | - |
| 2.4912 | 20600 | 0.0 | - |
| 2.4973 | 20650 | 0.0 | - |
| 2.5033 | 20700 | 0.0 | - |
| 2.5094 | 20750 | 0.0 | - |
| 2.5154 | 20800 | 0.0 | - |
| 2.5215 | 20850 | 0.0 | - |
| 2.5275 | 20900 | 0.0 | - |
| 2.5336 | 20950 | 0.0 | - |
| 2.5396 | 21000 | 0.0 | - |
| 2.5457 | 21050 | 0.0 | - |
| 2.5517 | 21100 | 0.0 | - |
| 2.5577 | 21150 | 0.0 | - |
| 2.5638 | 21200 | 0.0 | - |
| 2.5698 | 21250 | 0.0 | - |
| 2.5759 | 21300 | 0.0 | - |
| 2.5819 | 21350 | 0.0 | - |
| 2.5880 | 21400 | 0.0 | - |
| 2.5940 | 21450 | 0.0 | - |
| 2.6001 | 21500 | 0.0 | - |
| 2.6061 | 21550 | 0.0 | - |
| 2.6122 | 21600 | 0.0 | - |
| 2.6182 | 21650 | 0.0 | - |
| 2.6243 | 21700 | 0.0 | - |
| 2.6303 | 21750 | 0.0 | - |
| 2.6364 | 21800 | 0.0 | - |
| 2.6424 | 21850 | 0.0 | - |
| 2.6484 | 21900 | 0.0 | - |
| 2.6545 | 21950 | 0.0 | - |
| 2.6605 | 22000 | 0.0 | - |
| 2.6666 | 22050 | 0.0 | - |
| 2.6726 | 22100 | 0.0 | - |
| 2.6787 | 22150 | 0.0 | - |
| 2.6847 | 22200 | 0.0 | - |
| 2.6908 | 22250 | 0.0 | - |
| 2.6968 | 22300 | 0.0 | - |
| 2.7029 | 22350 | 0.0 | - |
| 2.7089 | 22400 | 0.0 | - |
| 2.7150 | 22450 | 0.0 | - |
| 2.7210 | 22500 | 0.0 | - |
| 2.7271 | 22550 | 0.0 | - |
| 2.7331 | 22600 | 0.0 | - |
| 2.7391 | 22650 | 0.0 | - |
| 2.7452 | 22700 | 0.0 | - |
| 2.7512 | 22750 | 0.0 | - |
| 2.7573 | 22800 | 0.0 | - |
| 2.7633 | 22850 | 0.0 | - |
| 2.7694 | 22900 | 0.0 | - |
| 2.7754 | 22950 | 0.0 | - |
| 2.7815 | 23000 | 0.0 | - |
| 2.7875 | 23050 | 0.0 | - |
| 2.7936 | 23100 | 0.0 | - |
| 2.7996 | 23150 | 0.0 | - |
| 2.8057 | 23200 | 0.0 | - |
| 2.8117 | 23250 | 0.0 | - |
| 2.8178 | 23300 | 0.0 | - |
| 2.8238 | 23350 | 0.0 | - |
| 2.8298 | 23400 | 0.0 | - |
| 2.8359 | 23450 | 0.0 | - |
| 2.8419 | 23500 | 0.0 | - |
| 2.8480 | 23550 | 0.0 | - |
| 2.8540 | 23600 | 0.0 | - |
| 2.8601 | 23650 | 0.0 | - |
| 2.8661 | 23700 | 0.0 | - |
| 2.8722 | 23750 | 0.0 | - |
| 2.8782 | 23800 | 0.0 | - |
| 2.8843 | 23850 | 0.0 | - |
| 2.8903 | 23900 | 0.0 | - |
| 2.8964 | 23950 | 0.0 | - |
| 2.9024 | 24000 | 0.0 | - |
| 2.9085 | 24050 | 0.0 | - |
| 2.9145 | 24100 | 0.0 | - |
| 2.9205 | 24150 | 0.0 | - |
| 2.9266 | 24200 | 0.0 | - |
| 2.9326 | 24250 | 0.0 | - |
| 2.9387 | 24300 | 0.0 | - |
| 2.9447 | 24350 | 0.0 | - |
| 2.9508 | 24400 | 0.0 | - |
| 2.9568 | 24450 | 0.0 | - |
| 2.9629 | 24500 | 0.0 | - |
| 2.9689 | 24550 | 0.0 | - |
| 2.9750 | 24600 | 0.0 | - |
| 2.9810 | 24650 | 0.0 | - |
| 2.9871 | 24700 | 0.0 | - |
| 2.9931 | 24750 | 0.0 | - |
| 2.9992 | 24800 | 0.0 | - |
| 3.0 | 24807 | - | 0.3517 |
### Framework Versions
- Python: 3.11.11
- SetFit: 1.1.1
- Sentence Transformers: 3.4.1
- Transformers: 4.49.0
- PyTorch: 2.4.1.post300
- Datasets: 3.4.0
- Tokenizers: 0.21.0
## Citation
### BibTeX
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->