|
--- |
|
license: apache-2.0 |
|
library_name: peft |
|
tags: |
|
- axolotl |
|
- generated_from_trainer |
|
base_model: mistralai/Mistral-7B-v0.1 |
|
model-index: |
|
- name: mimic3-mistral-7B-v0.1 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl) |
|
<details><summary>See axolotl config</summary> |
|
|
|
axolotl version: `0.4.0` |
|
```yaml |
|
base_model: mistralai/Mistral-7B-v0.1 |
|
hub_model_id: chaosIsRythmic/mimic3-mistral-7B-v0.1 |
|
|
|
load_in_8bit: false |
|
load_in_4bit: false |
|
strict: false |
|
|
|
datasets: |
|
# This will be the path used for the data when it is saved to the Volume in the cloud. |
|
- path: data.jsonl |
|
ds_type: json |
|
type: |
|
# JSONL file contains question, context, answer fields per line. |
|
# This gets mapped to instruction, input, output axolotl tags. |
|
field_instruction: question |
|
field_input: context |
|
field_output: answer |
|
# Format is used by axolotl to generate the prompt. |
|
format: |- |
|
[INST] Using the medical notes below, assign the right ICD-9 codes. |
|
{input} |
|
{instruction} [/INST] |
|
|
|
tokens: # add new control tokens from the dataset to the model |
|
- "[INST]" |
|
- " [/INST]" |
|
- "[SQL]" |
|
- " [/SQL]" |
|
|
|
dataset_prepared_path: last_run_prepared |
|
val_set_size: 0.2 |
|
output_dir: ./lora-out |
|
|
|
sequence_len: 4096 |
|
sample_packing: false |
|
eval_sample_packing: false |
|
pad_to_sequence_len: false |
|
pad_to_sequence_len: true |
|
|
|
adapter: lora |
|
lora_model_dir: |
|
lora_r: 16 |
|
lora_alpha: 32 |
|
lora_dropout: 0.05 |
|
lora_target_linear: true |
|
lora_fan_in_fan_out: |
|
lora_modules_to_save: # required when adding new tokens to LLaMA/Mistral |
|
- embed_tokens |
|
- lm_head |
|
|
|
wandb_project: mimic3 |
|
wandb_entity: |
|
wandb_watch: |
|
wandb_run_id: |
|
|
|
loss_watchdog_threshold: 5.0 |
|
loss_watchdog_patience: 3 |
|
|
|
gradient_accumulation_steps: 1 |
|
micro_batch_size: 6 |
|
num_epochs: 6 |
|
optimizer: adamw_torch |
|
lr_scheduler: cosine |
|
learning_rate: 0.0001 |
|
|
|
bf16: auto |
|
fp16: false |
|
tf32: false |
|
train_on_inputs: false |
|
group_by_length: false |
|
|
|
gradient_checkpointing: true |
|
early_stopping_patience: |
|
resume_from_checkpoint: |
|
local_rank: |
|
logging_steps: 1 |
|
xformers_attention: |
|
flash_attention: true |
|
|
|
warmup_steps: 10 |
|
saves_per_epoch: 1 |
|
evals_per_epoch: 4 |
|
eval_max_new_tokens: 128 |
|
debug: |
|
deepspeed: /workspace/axolotl/deepspeed_configs/zero3_bf16.json |
|
weight_decay: 0.0 |
|
fsdp: |
|
fsdp_config: |
|
special_tokens: |
|
bos_token: "<s>" |
|
eos_token: "</s>" |
|
unk_token: "<unk>" |
|
|
|
``` |
|
|
|
</details><br> |
|
|
|
# mimic3-mistral-7B-v0.1 |
|
|
|
This model is a fine-tuned version of [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.6757 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0001 |
|
- train_batch_size: 6 |
|
- eval_batch_size: 6 |
|
- seed: 42 |
|
- distributed_type: multi-GPU |
|
- num_devices: 2 |
|
- total_train_batch_size: 12 |
|
- total_eval_batch_size: 12 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: cosine |
|
- lr_scheduler_warmup_steps: 10 |
|
- num_epochs: 6 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | |
|
|:-------------:|:------:|:----:|:---------------:| |
|
| 1.9923 | 0.0013 | 1 | 2.1006 | |
|
| 0.3728 | 0.2506 | 200 | 0.3790 | |
|
| 0.3122 | 0.5013 | 400 | 0.3571 | |
|
| 0.305 | 0.7519 | 600 | 0.3203 | |
|
| 0.2929 | 1.0025 | 800 | 0.3158 | |
|
| 0.2873 | 1.2531 | 1000 | 0.3000 | |
|
| 0.2654 | 1.5038 | 1200 | 0.2971 | |
|
| 0.3343 | 1.7544 | 1400 | 0.2846 | |
|
| 0.2272 | 2.0050 | 1600 | 0.2901 | |
|
| 0.1976 | 2.2556 | 1800 | 0.2900 | |
|
| 0.2315 | 2.5063 | 2000 | 0.2829 | |
|
| 0.1913 | 2.7569 | 2200 | 0.2852 | |
|
| 0.2578 | 3.0075 | 2400 | 0.2809 | |
|
| 0.1614 | 3.2581 | 2600 | 0.3104 | |
|
| 0.1526 | 3.5088 | 2800 | 0.3171 | |
|
| 0.1712 | 3.7594 | 3000 | 0.3042 | |
|
| 0.1016 | 4.0100 | 3200 | 0.3367 | |
|
| 0.0658 | 4.2607 | 3400 | 0.4388 | |
|
| 0.0636 | 4.5113 | 3600 | 0.4601 | |
|
| 0.0534 | 4.7619 | 3800 | 0.4398 | |
|
| 0.0363 | 5.0125 | 4000 | 0.4785 | |
|
| 0.0016 | 5.2632 | 4200 | 0.6498 | |
|
| 0.0183 | 5.5138 | 4400 | 0.6769 | |
|
| 0.0185 | 5.7644 | 4600 | 0.6757 | |
|
|
|
|
|
### Framework versions |
|
|
|
- PEFT 0.10.0 |
|
- Transformers 4.40.2 |
|
- Pytorch 2.2.2+cu121 |
|
- Datasets 2.19.1 |
|
- Tokenizers 0.19.1 |