cheaptrix's picture
cheaptrix/TokenizerTestingMTSUFall2024SoftwareEngineering-Removed members in datasaet with empty text boxes; Used new tokenizer lengths for the input and output; and used the new combined dataset of Senate and House bills and summaries.
b0034b2 verified
metadata
library_name: transformers
license: apache-2.0
base_model: google-t5/t5-small
tags:
  - generated_from_trainer
metrics:
  - rouge
model-index:
  - name: TokenizerTestingMTSUFall2024SoftwareEngineering
    results: []

TokenizerTestingMTSUFall2024SoftwareEngineering

This model is a fine-tuned version of google-t5/t5-small on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.5198
  • Rouge1: 0.2778
  • Rouge2: 0.2234
  • Rougel: 0.2686
  • Rougelsum: 0.2686
  • Gen Len: 18.9697

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 4
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Gen Len
1.8333 1.0 12429 1.6354 0.2717 0.2139 0.262 0.262 18.9751
1.7368 2.0 24858 1.5610 0.2763 0.2208 0.267 0.267 18.9735
1.6978 3.0 37287 1.5291 0.2777 0.2227 0.2683 0.2682 18.9699
1.7008 4.0 49716 1.5198 0.2778 0.2234 0.2686 0.2686 18.9697

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.1+cu121
  • Datasets 3.0.1
  • Tokenizers 0.19.1