FungiCLEF2024 / 07_data_augmentation.py
chirmy's picture
Upload 07_data_augmentation.py
863fd3a verified
# import os
# import pandas as pd
# from PIL import Image, ImageOps
# import numpy as np
# from tqdm import tqdm
# from multiprocessing import Pool, cpu_count
# # 读取CSV文件
# csv_path = '/data/cjm/FungiCLEF2024/Dataset/06_new_train_valmetadata.csv'
# data = pd.read_csv(csv_path)
# # 设置根目录
# root_dir = '/data/cjm/FungiCLEF2024/Dataset/DF20_21_300'
# # 过滤poisonous为1的数据
# poisonous_data = data[data['poisonous'] == 1]
# # 创建保存增强数据的DataFrame,并包含原始数据
# new_data = data.copy()
# # 定义数据增强函数
# def augment_image(args):
# row, root_dir = args
# image_path = row['image_path']
# full_path = os.path.join(root_dir, image_path)
# augmented_rows = []
# if os.path.exists(full_path):
# image = Image.open(full_path)
# w, h = image.size
# # 定义旋转和翻转操作
# transformations = {
# 'r90': image.rotate(90, expand=True),
# 'r180': image.rotate(180, expand=True),
# 'r270': image.rotate(270, expand=True),
# 'fh': ImageOps.mirror(image),
# 'fv': ImageOps.flip(image),
# }
# for suffix, img in transformations.items():
# # 裁剪图片以去除旋转后的黑边
# if suffix in ['r90', 'r270']:
# img = img.crop((0, 0, h, w))
# new_image_path = os.path.splitext(image_path)[0] + f'_{suffix}.JPG'
# new_full_path = os.path.join(root_dir, new_image_path)
# img.save(new_full_path)
# new_row = row.copy()
# new_row['image_path'] = new_image_path
# augmented_rows.append(new_row)
# return augmented_rows
# # 准备多进程处理
# num_processes = cpu_count()
# pool = Pool(processes=num_processes)
# # 使用tqdm显示进度
# augmented_data = []
# for augmented_rows in tqdm(pool.imap_unordered(augment_image, [(row, root_dir) for _, row in poisonous_data.iterrows()]), total=len(poisonous_data)):
# augmented_data.extend(augmented_rows)
# # 关闭进程池
# pool.close()
# pool.join()
# # 将增强后的数据添加到new_data中
# new_data = new_data.append(augmented_data, ignore_index=True)
# # 将数据保存到新的CSV文件中
# new_csv_path = '/data/cjm/FungiCLEF2024/Dataset/07_new_train_valmetadata.csv'
# new_data.to_csv(new_csv_path, index=False)
import os
import pandas as pd
from PIL import Image, ImageOps
import numpy as np
from tqdm import tqdm
from multiprocessing import Pool, cpu_count
import random
# 读取CSV文件
csv_path = '/data/cjm/FungiCLEF2024/Dataset/06_new_train_valmetadata.csv'
data = pd.read_csv(csv_path)
# 设置根目录
root_dir = '/data/cjm/FungiCLEF2024/Dataset/DF20_21_300'
# 过滤poisonous为1的数据
poisonous_data = data[data['poisonous'] == 1]
# 创建保存增强数据的DataFrame,并包含原始数据
new_data = data.copy()
# 定义数据增强函数
def augment_image(args):
row, root_dir = args
image_path = row['image_path']
full_path = os.path.join(root_dir, image_path)
augmented_rows = []
if os.path.exists(full_path):
image = Image.open(full_path)
w, h = image.size
# 定义旋转和翻转操作
transformations = {
'r90': image.rotate(90, expand=True),
'r180': image.rotate(180, expand=True),
'r270': image.rotate(270, expand=True),
'fh': ImageOps.mirror(image),
'fv': ImageOps.flip(image),
}
# 添加随机裁剪操作
for i in range(4):
rand = random.uniform(0.7, 0.8)
new_w = int(w * rand)
new_h = int(h * rand)
left = random.randint(0, w - new_w)
top = random.randint(0, h - new_h)
right = left + new_w
bottom = top + new_h
cropped_image = image.crop((left, top, right, bottom))
# cropped_image = cropped_image.resize((w, h)) # 调整回原始尺寸
new_image_path = os.path.splitext(image_path)[0] + f'_crop{rand}.JPG'
new_full_path = os.path.join(root_dir, new_image_path)
cropped_image.save(new_full_path)
new_row = row.copy()
new_row['image_path'] = new_image_path
augmented_rows.append(new_row)
for suffix, img in transformations.items():
# 裁剪图片以去除旋转后的黑边
if suffix in ['r90', 'r270']:
img = img.crop((0, 0, h, w))
new_image_path = os.path.splitext(image_path)[0] + f'_{suffix}.JPG'
new_full_path = os.path.join(root_dir, new_image_path)
img.save(new_full_path)
new_row = row.copy()
new_row['image_path'] = new_image_path
augmented_rows.append(new_row)
return augmented_rows
# 准备多进程处理
num_processes = cpu_count()
pool = Pool(processes=num_processes)
# 使用tqdm显示进度
augmented_data = []
for augmented_rows in tqdm(pool.imap_unordered(augment_image, [(row, root_dir) for _, row in poisonous_data.iterrows()]), total=len(poisonous_data)):
augmented_data.extend(augmented_rows)
# 关闭进程池
pool.close()
pool.join()
# 将增强后的数据添加到new_data中
new_data = new_data.append(augmented_data, ignore_index=True)
# 将数据保存到新的CSV文件中
new_csv_path = '/data/cjm/FungiCLEF2024/Dataset/07_new_train_valmetadata.csv'
new_data.to_csv(new_csv_path, index=False)