fonxlsr / README.md
chrisjay's picture
Update README.md
6e75ca4
|
raw
history blame
5.05 kB
metadata
language: fon
datasets:
  - fon_dataset
metrics:
  - wer
tags:
  - audio
  - automatic-speech-recognition
  - speech
  - xlsr-fine-tuning-week
license: apache-2.0
model-index:
  - name: Fon XLSR Wav2Vec2 Large 53
    results:
      - task:
          name: Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: fon
          type: fon_dataset
          args: fon
        metrics:
          - name: Test WER
            type: wer
            value: 14.97%

Wav2Vec2-Large-XLSR-53-Fon

Fine-tuned facebook/wav2vec2-large-xlsr-53 on Fon (or Fongbe) using the Fon Dataset.

When using this model, make sure that your speech input is sampled at 16kHz.

Usage

The model can be used directly (without a language model) as follows:

import json
import random
import torch
import torchaudio
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor


#Load test_dataset from saved files in folder
from datasets import load_dataset, load_metric

#for test
for root, dirs, files in os.walk(test/):
  test_dataset= load_dataset("json", data_files=[os.path.join(root,i) for i in files],split="train")

#Remove unnecessary chars
chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“\%\‘\”]'
def remove_special_characters(batch):
    batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() + " "
    return batch

test_dataset = test_dataset.map(remove_special_characters)

processor = Wav2Vec2Processor.from_pretrained("chrisjay/wav2vec2-large-xlsr-53-fon") 
model = Wav2Vec2ForCTC.from_pretrained("chrisjay/wav2vec2-large-xlsr-53-fon") 

#No need for resampling because audio dataset already at 16kHz
#resampler = torchaudio.transforms.Resample(48_000, 16_000)

# Preprocessing the datasets.
# We need to read the audio files as arrays
def speech_file_to_array_fn(batch):
  speech_array, sampling_rate = torchaudio.load(batch["path"])
  batch["speech"]=speech_array.squeeze().numpy()
  return batch

test_dataset = test_dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)

with torch.no_grad():
  tlogits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits

predicted_ids = torch.argmax(logits, dim=-1)

print("Prediction:", processor.batch_decode(predicted_ids))
print("Reference:", test_dataset["sentence"][:2])

Evaluation

The model can be evaluated as follows on our unique Fon test data.

import torch
import torchaudio
from datasets import load_dataset, load_metric
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
import re

for root, dirs, files in os.walk(test/):
  test_dataset = load_dataset("json", data_files=[os.path.join(root,i) for i in files],split="train")

chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“\%\‘\”]'
    batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() + " "
    return batch

test_dataset = test_dataset.map(remove_special_characters)
wer = load_metric("wer")

processor = Wav2Vec2Processor.from_pretrained("chrisjay/wav2vec2-large-xlsr-53-fon")
model = Wav2Vec2ForCTC.from_pretrained("chrisjay/wav2vec2-large-xlsr-53-fon")
model.to("cuda")

# Preprocessing the datasets.
# We need to read the aduio files as arrays
def speech_file_to_array_fn(batch):
    speech_array, sampling_rate = torchaudio.load(batch["path"])
    batch["speech"] = speech_array[0].numpy()
    batch["sampling_rate"] = sampling_rate
    batch["target_text"] = batch["sentence"]
    return batch

test_dataset = test_dataset.map(speech_file_to_array_fn)

#Evaluation on test dataset
def evaluate(batch):
  inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
  
  with torch.no_grad():
    logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
  
  pred_ids = torch.argmax(logits, dim=-1)
  batch["pred_strings"] = processor.batch_decode(pred_ids)
  return batch

result = test_dataset.map(evaluate, batched=True, batch_size=8)

print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))

Test Result: 14.97 %

Training

The Fon dataset was split into train(8235 samples), validation(1107 samples), and test(1061 samples).

The script used for training can be found here

Collaborators on this project

This is a joint project continuing our research on OkwuGbé: End-to-End Speech Recognition for Fon and Igbo