metadata
language: fon
datasets:
- fon_dataset
metrics:
- wer
tags:
- audio
- automatic-speech-recognition
- speech
- xlsr-fine-tuning-week
license: apache-2.0
model-index:
- name: Fon XLSR Wav2Vec2 Large 53
results:
- task:
name: Speech Recognition
type: automatic-speech-recognition
dataset:
name: fon
type: fon_dataset
args: fon
metrics:
- name: Test WER
type: wer
value: 14.97%
Wav2Vec2-Large-XLSR-53-Fon
Fine-tuned facebook/wav2vec2-large-xlsr-53 on Fon (or Fongbe) using the Fon Dataset.
When using this model, make sure that your speech input is sampled at 16kHz.
Usage
The model can be used directly (without a language model) as follows:
import json
import random
import torch
import torchaudio
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
#Load test_dataset from saved files in folder
from datasets import load_dataset, load_metric
#for test
for root, dirs, files in os.walk(test/):
test_dataset= load_dataset("json", data_files=[os.path.join(root,i) for i in files],split="train")
#Remove unnecessary chars
chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“\%\‘\”]'
def remove_special_characters(batch):
batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() + " "
return batch
test_dataset = test_dataset.map(remove_special_characters)
processor = Wav2Vec2Processor.from_pretrained("chrisjay/wav2vec2-large-xlsr-53-fon")
model = Wav2Vec2ForCTC.from_pretrained("chrisjay/wav2vec2-large-xlsr-53-fon")
#No need for resampling because audio dataset already at 16kHz
#resampler = torchaudio.transforms.Resample(48_000, 16_000)
# Preprocessing the datasets.
# We need to read the audio files as arrays
def speech_file_to_array_fn(batch):
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"]=speech_array.squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
tlogits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
predicted_ids = torch.argmax(logits, dim=-1)
print("Prediction:", processor.batch_decode(predicted_ids))
print("Reference:", test_dataset["sentence"][:2])
Evaluation
The model can be evaluated as follows on our unique Fon test data.
import torch
import torchaudio
from datasets import load_dataset, load_metric
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
import re
for root, dirs, files in os.walk(test/):
test_dataset = load_dataset("json", data_files=[os.path.join(root,i) for i in files],split="train")
chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“\%\‘\”]'
batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() + " "
return batch
test_dataset = test_dataset.map(remove_special_characters)
wer = load_metric("wer")
processor = Wav2Vec2Processor.from_pretrained("chrisjay/wav2vec2-large-xlsr-53-fon")
model = Wav2Vec2ForCTC.from_pretrained("chrisjay/wav2vec2-large-xlsr-53-fon")
model.to("cuda")
# Preprocessing the datasets.
# We need to read the aduio files as arrays
def speech_file_to_array_fn(batch):
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = speech_array[0].numpy()
batch["sampling_rate"] = sampling_rate
batch["target_text"] = batch["sentence"]
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
#Evaluation on test dataset
def evaluate(batch):
inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
pred_ids = torch.argmax(logits, dim=-1)
batch["pred_strings"] = processor.batch_decode(pred_ids)
return batch
result = test_dataset.map(evaluate, batched=True, batch_size=8)
print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
Test Result: 14.97 %
Training
The Fon dataset was split into train
(8235 samples), validation
(1107 samples), and test
(1061 samples).
The script used for training can be found here
Collaborators on this project
- Chris C. Emezue (Twitter)([email protected])
- Bonaventure F.P. Dossou (Twitter)([email protected])