nghodki's picture
Upload 2 files
cf9284c verified
raw
history blame
8.65 kB
import time
from transformers import (
AutoModelForCausalLM,
AutoTokenizer,
BitsAndBytesConfig,
pipeline,
logging,
)
import torch
import json
import re
# Activate 4-bit precision base model loading
use_4bit = True
# Compute dtype for 4-bit base models
bnb_4bit_compute_dtype = "float16"
# Quantization type (fp4 or nf4)
bnb_4bit_quant_type = "nf4"
use_nested_quant = False
# Load the entire model on the GPU 0
device_map = {"": 0}
compute_dtype = getattr(torch, bnb_4bit_compute_dtype)
bnb_config = BitsAndBytesConfig(
load_in_4bit=use_4bit,
bnb_4bit_quant_type=bnb_4bit_quant_type,
bnb_4bit_compute_dtype=compute_dtype,
bnb_4bit_use_double_quant=use_nested_quant,
)
model_name = "cjsanjay/llama-3-8B-gorilla-meraki_v2"
model = AutoModelForCausalLM.from_pretrained(
model_name,
quantization_config=bnb_config,
device_map=device_map
)
# Load LLaMA tokenizer
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
tokenizer.pad_token = tokenizer.eos_token
tokenizer.padding_side = "right"
# tokenizer.add_tokens(["<START_Q>", "<END_Q>", "<START_A>", "<END_A>"], special_tokens=True)
logging.set_verbosity(logging.CRITICAL)
# model.resize_token_embeddings(len(tokenizer))
# def get_question_prompt_old(data):
# instruction = f"### Instruction\n{data['Instruction']}"
# context = f"### Context\n{data['Functions']}" if len(data["Functions"]) > 0 else None
# # join all the parts together
# prompt = "\n\n".join([i for i in [instruction, context] if i is not None])
# return prompt
#
#
# # def generate_prompt_for_llama3(data):
# # system = "You are an AI programming assistant, utilizing the finetuned LLM model you only answer questions related to function calling using the provided functions. For politically sensitive questions, security and privacy issues, and other non-computer science questions, you will refuse to answer."
# # output_string = json.dumps(data['Output'])
# # functions_string = json.dumps(data['Functions'])
# # prompt = f"""<|start_header_id|>system<|end_header_id|> {system}\n### Instruction: <<functions>> {functions_string} <|eot_id|><|start_header_id|>user<|end_header_id|> This is the question: {data['Instruction']}<|eot_id|><|start_header_id|>assistant<|end_header_id|> {output_string}<|eot_id|>"""
# # return prompt
#
#
# def generate_prompt_for_llama3_test(data):
#
# functions_string = json.dumps(data['Functions'])
# prompt = f"""<|start_header_id|>system<|end_header_id|> {system}\n### Instruction: <<functions>> {functions_string} <|eot_id|><|start_header_id|>user<|end_header_id|> This is the question: {data['Instruction']}<|eot_id|><|start_header_id|>assistant<|end_header_id|>"""
# return prompt
#
with open('meraki_full_unknown_fn_dataset_llama_v1.json', 'r') as json_file:
known_test_dataset_gorilla = json.load(json_file)
matched = 0
skipped = 0
failed = 0
total = len(known_test_dataset_gorilla)
failed_questions = []
skipped_questions = []
accuracy = {}
i = 0
processed_questions = []
pattern = r'<|im_start|>assistant(.*?)(?:<|im_end|>|$)'
system = ("You are an AI programming assistant, utilizing the finetuned LLM model you only answer questions related to "
"function calling using the provided functions. For politically sensitive questions, security and privacy "
"issues, and other non-computer science questions, you will refuse to answer. Use ")
def extract_assistant_function_response(r_patter, generated_text):
"""
:param r_patter:
:param generated_text:
:return:
"""
m_result = re.findall(pattern, seq['generated_text'], re.DOTALL)
# # Remove leading and trailing whitespace from the matches
m_result = [match.strip() for match in m_result]
for match in m_result:
if match.find("api_name") > -1:
return match.strip()
return None
for d in known_test_dataset_gorilla:
i += 1
# prompt = generate_prompt_for_llama3_test(d)
# tokenized_input = tokenizer.tokenize(prompt)
# if len(tokenized_input) > 4096:
# skipped += 1
# skipped_questions.append(d)
# print (f"Skipped: {i}, token_size: {len(tokenized_input)}")
# continue
functions_string = json.dumps(d['Functions'])
messages = [
{"role": "system", "content": f"{system}\n### Instruction: <<functions>> {functions_string}"},
{"role": "user", "content": d['Instruction']},
]
processed_questions.append(d)
pipeline1 = pipeline(
"text-generation",
model=model,
model_kwargs={"torch_dtype": torch.bfloat16},
device_map="auto",
tokenizer=tokenizer
)
prompt = pipeline1.tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
terminators = [
pipeline1.tokenizer.eos_token_id,
pipeline1.tokenizer.convert_tokens_to_ids("<|eot_id|>")
]
outputs = pipeline1(
prompt,
max_new_tokens=512,
eos_token_id=terminators,
do_sample=True,
temperature=0.6,
top_p=0.9,
)
final_assistant_response = None
assistant_raw_response = ""
for seq in outputs:
assistant_raw_response = seq['generated_text']
final_assistant_response = extract_assistant_function_response(pattern, seq['generated_text'])
try:
if final_assistant_response is None:
d["GotOutput"] = str(assistant_raw_response)
failed_questions.append(d)
failed += 1
print(f"Improper response from assistant Expected: {d['Output']}, Got: {assistant_raw_response}")
output_data = final_assistant_response
try:
output_data_json = json.loads(final_assistant_response)
if "arguments" in output_data_json:
try:
arg_dict_ans = json.loads(output_data_json["arguments"].replace("'", '"').replace("True", "true").replace("False", "false"))
arg_dict_input = json.loads(d["Output"]["arguments"].replace("'", '"').replace("True", "true").replace("False", "false"))
except Exception as ex:
print (f"Json loading failed for args string: {str(ex)}, Falling back to string comparison, args_string: {output_data_json['arguments']}")
raise
if output_data_json["api_name"] == d["Output"]["api_name"] and arg_dict_ans == arg_dict_input:
matched += 1
print ("Matched")
else:
d["GotOutput"] = str(output_data)
failed_questions.append(d)
failed += 1
print(f"JSON mismatch Expected: {d['Output']}, Got: {output_data_json}")
else:
if output_data_json == d["Output"]:
matched += 1
print ("Matched")
else:
d["GotOutput"] = str(output_data)
failed_questions.append(d)
failed += 1
print(f"JSON mismatch Expected: {d['Output']}, Got: {output_data_json}")
except Exception as ex:
print (f"Json loading failed: {str(ex)}, Falling back to string comparison")
if str(output_data) == str(d["Output"]):
matched += 1
print ("Matched")
else:
d["GotOutput"] = str(output_data)
failed_questions.append(d)
failed += 1
print(f"Expected: {d['Output']}, Got: {output_data}")
except Exception as ex:
print(f"Expected: {d['Output']}, Got: {output_data}, error: {str(ex)}")
failed_questions.append(d)
failed += 1
del pipeline1
del outputs
pipeline1 = None
outputs = None
with torch.no_grad():
torch.cuda.empty_cache()
print(f"Done: {i}/{total}, Skipped: {skipped}, matched: {matched}, failed: {failed}")
if len(processed_questions) >= 100:
break
time.sleep(1)
input()
accuracy["matched"] = matched
accuracy["total"] = total - skipped
accuracy["recall"] = float(accuracy["matched"])/accuracy["total"]
with open("failed_questions_meraki_unknown_test_dataset_llama3_gorilla.json", "w") as f:
json.dump(failed_questions, f, indent=4)
with open("skipped_questions_meraki_unknown_test_dataset_llama3_gorilla.json", "w") as f:
json.dump(skipped_questions, f, indent=4)
with open("accuracy_meraki_unknown_test_dataset_llama3_gorilla", "w") as f:
json.dump(accuracy, f, indent=4)