|
--- |
|
license: other |
|
license_name: flux-1-dev-non-commercial-license |
|
license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md |
|
language: |
|
- en |
|
tags: |
|
- flux |
|
- diffusers |
|
- lora |
|
base_model: "black-forest-labs/FLUX.1-dev" |
|
pipeline_tag: text-to-image |
|
instance_prompt: DHANUSH |
|
--- |
|
|
|
# Tugce_Flux |
|
|
|
Trained on Replicate using: |
|
|
|
https://replicate.com/ostris/flux-dev-lora-trainer/train |
|
|
|
|
|
## Trigger words |
|
You should use `tugce` to trigger the image generation. |
|
|
|
|
|
## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) |
|
|
|
```py |
|
from fastapi import FastAPI, HTTPException |
|
from fastapi.responses import FileResponse |
|
import torch |
|
from diffusers import AutoPipelineForText2Image |
|
import io |
|
|
|
app = FastAPI() |
|
|
|
# Model ve LoRA'yı yükle |
|
pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') |
|
pipeline.load_lora_weights('codermert/tugce2-lora', weight_name='flux_train_replicate.safetensors') |
|
|
|
@app.post("/generate_image") |
|
async def generate_image(prompt: str, width: int, height: int): |
|
try: |
|
image = pipeline( |
|
prompt, |
|
width=width, |
|
height=height |
|
).images[0] |
|
|
|
img_byte_arr = io.BytesIO() |
|
image.save(img_byte_arr, format='PNG') |
|
img_byte_arr.seek(0) |
|
|
|
return FileResponse(img_byte_arr, media_type="image/png") |
|
except Exception as e: |
|
raise HTTPException(status_code=500, detail=str(e)) |
|
|
|
if __name__ == "__main__": |
|
import uvicorn |
|
uvicorn.run(app, host="0.0.0.0", port=8000) |
|
``` |
|
|
|
For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters) |