metadata
license: other
license_name: flux-1-dev-non-commercial-license
license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md
language:
- en
tags:
- flux
- diffusers
- lora
base_model: black-forest-labs/FLUX.1-dev
pipeline_tag: text-to-image
instance_prompt: DHANUSH
Tugce_Flux
Trained on Replicate using:
https://replicate.com/ostris/flux-dev-lora-trainer/train
Trigger words
You should use tugce
to trigger the image generation.
Use it with the 🧨 diffusers library
from diffusers import AutoPipelineForText2Image
import torch
# Model ve LoRA'yı yükle
pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda')
pipeline.load_lora_weights('codermert/tugce2-lora', weight_name='flux_train_replicate.safetensors')
# Farklı boyutlar
sizes = [
(512, 512), # 1:1
(768, 512), # 3:2
(640, 480), # 4:3
(896, 504), # 16:9
]
# Prompt
prompt = "tugce in a beautiful garden"
# Her boyut için görüntü oluştur
for width, height in sizes:
image = pipeline(
prompt,
width=width,
height=height
).images[0]
# Görüntüyü kaydet
image.save(f"tugce_{width}x{height}.png")
print(f"Oluşturuldu: tugce_{width}x{height}.png")
For more details, including weighting, merging and fusing LoRAs, check the documentation on loading LoRAs in diffusers