language: cs datasets:
- mozilla-foundation/common_voice_8_0 metrics:
- wer tags:
- generated_from_trainer
- audio
- automatic-speech-recognition
- speech
- xlsr-fine-tuning-week license: apache-2.0 model-index:
- name: Czech comodoro Wav2Vec2 XLSR 300M CV8
results:
- task:
name: Speech Recognition
type: automatic-speech-recognition
dataset:
name: Common Voice 8.0 cs
type: mozilla-foundation/common_voice_8_0
args: cs
metrics:
- name: Test WER type: wer value: 0.47455377483706096
- task:
name: Speech Recognition
type: automatic-speech-recognition
dataset:
name: Common Voice 8.0 cs
type: mozilla-foundation/common_voice_8_0
args: cs
metrics:
wav2vec2-xls-r-300m-cs-cv8
This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the common_voice 8.0 dataset. It achieves the following results on the evaluation set:
- WER: 0.47455377483706096
- CER: 0.10877155235645618
Model description
Fine-tuned facebook/wav2vec2-large-xlsr-53 on Czech using the Common Voice dataset. When using this model, make sure that your speech input is sampled at 16kHz.
The model can be used directly (without a language model) as follows:
import torch
import torchaudio
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
test_dataset = load_dataset("mozilla-foundation/common_voice_8_0", "cs", split="test[:2%]")
processor = Wav2Vec2Processor.from_pretrained("comodoro/wav2vec2-xls-r-300m-cs-cv8")
model = Wav2Vec2ForCTC.from_pretrained("comodoro/wav2vec2-xls-r-300m-cs-cv8")
resampler = torchaudio.transforms.Resample(48_000, 16_000)
# Preprocessing the datasets.
# We need to read the aduio files as arrays
def speech_file_to_array_fn(batch):
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = resampler(speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset[:2]["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
predicted_ids = torch.argmax(logits, dim=-1)
print("Prediction:", processor.batch_decode(predicted_ids))
print("Reference:", test_dataset[:2]["sentence"])
Evaluation
The model can be evaluated using the attached eval.py
script.
Training and evaluation data
The Common Voice 8.0 train
and validation
datasets were used for training
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 7e-05
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 20
- total_train_batch_size: 640
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 150
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
---|---|---|---|---|---|
7.2926 | 8.06 | 250 | 3.8497 | 1.0 | 1.0 |
3.417 | 16.13 | 500 | 3.2852 | 1.0 | 0.9857 |
2.0264 | 24.19 | 750 | 0.7099 | 0.7342 | 0.1768 |
0.4018 | 32.25 | 1000 | 0.6188 | 0.6415 | 0.1551 |
0.2444 | 40.32 | 1250 | 0.6632 | 0.6362 | 0.1600 |
0.1882 | 48.38 | 1500 | 0.6070 | 0.5783 | 0.1388 |
0.153 | 56.44 | 1750 | 0.6425 | 0.5720 | 0.1377 |
0.1214 | 64.51 | 2000 | 0.6363 | 0.5546 | 0.1337 |
0.1011 | 72.57 | 2250 | 0.6310 | 0.5222 | 0.1224 |
0.0879 | 80.63 | 2500 | 0.6353 | 0.5258 | 0.1253 |
0.0782 | 88.7 | 2750 | 0.6078 | 0.4904 | 0.1127 |
0.0709 | 96.76 | 3000 | 0.6465 | 0.4960 | 0.1154 |
0.0661 | 104.82 | 3250 | 0.6622 | 0.4945 | 0.1166 |
0.0616 | 112.89 | 3500 | 0.6440 | 0.4786 | 0.1104 |
0.0579 | 120.95 | 3750 | 0.6815 | 0.4887 | 0.1144 |
0.0549 | 129.03 | 4000 | 0.6603 | 0.4780 | 0.1105 |
0.0527 | 137.09 | 4250 | 0.6652 | 0.4749 | 0.1090 |
0.0506 | 145.16 | 4500 | 0.6958 | 0.4846 | 0.1133 |
Framework versions
- Transformers 4.16.0.dev0
- Pytorch 1.10.1+cu102
- Datasets 1.17.1.dev0
- Tokenizers 0.11.0