comodoro's picture
Added the weak baseline model readme and eval script
0c6089d
|
raw
history blame
4.69 kB
language: cs
datasets:
- mozilla-foundation/common_voice_8_0
metrics:
- wer
tags:
- generated_from_trainer
- audio
- automatic-speech-recognition
- speech
- xlsr-fine-tuning-week
license: apache-2.0
model-index:
- name: Czech comodoro Wav2Vec2 XLSR 300M CV8
results:
- task:
name: Speech Recognition
type: automatic-speech-recognition
dataset:
name: Common Voice 8.0 cs
type: mozilla-foundation/common_voice_8_0
args: cs
metrics:
- name: Test WER
type: wer
value: 0.47455377483706096
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-xls-r-300m-cs-cv8
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice 8.0 dataset.
It achieves the following results on the evaluation set:
- WER: 0.47455377483706096
- CER: 0.10877155235645618
## Model description
Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Czech using the [Common Voice](https://huggingface.co/datasets/common_voice) dataset.
When using this model, make sure that your speech input is sampled at 16kHz.
The model can be used directly (without a language model) as follows:
```python
import torch
import torchaudio
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
test_dataset = load_dataset("mozilla-foundation/common_voice_8_0", "cs", split="test[:2%]")
processor = Wav2Vec2Processor.from_pretrained("comodoro/wav2vec2-xls-r-300m-cs-cv8")
model = Wav2Vec2ForCTC.from_pretrained("comodoro/wav2vec2-xls-r-300m-cs-cv8")
resampler = torchaudio.transforms.Resample(48_000, 16_000)
# Preprocessing the datasets.
# We need to read the aduio files as arrays
def speech_file_to_array_fn(batch):
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = resampler(speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset[:2]["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
predicted_ids = torch.argmax(logits, dim=-1)
print("Prediction:", processor.batch_decode(predicted_ids))
print("Reference:", test_dataset[:2]["sentence"])
```
## Evaluation
The model can be evaluated using the attached `eval.py` script.
## Training and evaluation data
The Common Voice 8.0 `train` and `validation` datasets were used for training
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 7e-05
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 20
- total_train_batch_size: 640
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 150
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
|:-------------:|:------:|:----:|:---------------:|:------:|:------:|
| 7.2926 | 8.06 | 250 | 3.8497 | 1.0 | 1.0 |
| 3.417 | 16.13 | 500 | 3.2852 | 1.0 | 0.9857 |
| 2.0264 | 24.19 | 750 | 0.7099 | 0.7342 | 0.1768 |
| 0.4018 | 32.25 | 1000 | 0.6188 | 0.6415 | 0.1551 |
| 0.2444 | 40.32 | 1250 | 0.6632 | 0.6362 | 0.1600 |
| 0.1882 | 48.38 | 1500 | 0.6070 | 0.5783 | 0.1388 |
| 0.153 | 56.44 | 1750 | 0.6425 | 0.5720 | 0.1377 |
| 0.1214 | 64.51 | 2000 | 0.6363 | 0.5546 | 0.1337 |
| 0.1011 | 72.57 | 2250 | 0.6310 | 0.5222 | 0.1224 |
| 0.0879 | 80.63 | 2500 | 0.6353 | 0.5258 | 0.1253 |
| 0.0782 | 88.7 | 2750 | 0.6078 | 0.4904 | 0.1127 |
| 0.0709 | 96.76 | 3000 | 0.6465 | 0.4960 | 0.1154 |
| 0.0661 | 104.82 | 3250 | 0.6622 | 0.4945 | 0.1166 |
| 0.0616 | 112.89 | 3500 | 0.6440 | 0.4786 | 0.1104 |
| 0.0579 | 120.95 | 3750 | 0.6815 | 0.4887 | 0.1144 |
| 0.0549 | 129.03 | 4000 | 0.6603 | 0.4780 | 0.1105 |
| 0.0527 | 137.09 | 4250 | 0.6652 | 0.4749 | 0.1090 |
| 0.0506 | 145.16 | 4500 | 0.6958 | 0.4846 | 0.1133 |
### Framework versions
- Transformers 4.16.0.dev0
- Pytorch 1.10.1+cu102
- Datasets 1.17.1.dev0
- Tokenizers 0.11.0