|
import dataclasses |
|
from enum import auto, Enum |
|
import os |
|
import re |
|
from typing import List, Tuple |
|
import torchvision.transforms.functional as F |
|
|
|
|
|
def parse_tool_output(text): |
|
try: |
|
pattern = r'"thoughts🤔"(.*)"actions🚀"(.*)"value👉"(.*)' |
|
matches = re.findall(pattern, text, re.DOTALL) |
|
assert len(matches) == 1, f"len(matches)={len(matches)}" |
|
assert len(matches[0]) == 3, f"len(matches[0])={len(matches[0])}" |
|
except Exception as e: |
|
|
|
matches = None |
|
return matches |
|
return matches |
|
|
|
|
|
def make_it_small_html(text): |
|
return f'<span style="font-size: 12px; color: gray;line-height: 1.0;">{text}</span>' |
|
|
|
|
|
def get_hr_html(): |
|
return f'<hr width="100%" size="1" color="silver" align="center">' |
|
|
|
|
|
def get_placehold(text): |
|
if text[-1] == "▌": |
|
text = text[:-1] |
|
|
|
res = '"thinking' |
|
timenow = len(text) % 21 |
|
num_point = timenow // 3 |
|
for i in range(num_point): |
|
res += "." |
|
res += '"' |
|
return res |
|
|
|
|
|
def parse_msg(msg): |
|
if len(msg) == 3: |
|
return msg[0], msg[1], msg[2], None |
|
if len(msg) == 4: |
|
return msg[0], msg[1], msg[2], msg[3] |
|
raise ValueError(f"Invalid msg with len {len(msg)}: {msg}") |
|
|
|
|
|
class SeparatorStyle(Enum): |
|
"""Different separator style.""" |
|
SINGLE = auto() |
|
TWO = auto() |
|
MPT = auto() |
|
PLAIN = auto() |
|
LLAMA_2 = auto() |
|
|
|
|
|
@dataclasses.dataclass |
|
class Conversation: |
|
"""A class that keeps all conversation history.""" |
|
system: str |
|
roles: List[str] |
|
messages: List[List[str]] |
|
offset: int |
|
sep_style: SeparatorStyle = SeparatorStyle.SINGLE |
|
sep: str = "###" |
|
sep2: str = None |
|
version: str = "Unknown" |
|
|
|
skip_next: bool = False |
|
|
|
def get_prompt(self): |
|
messages = self.messages |
|
if len(messages) > 0 and type(messages[0][1]) is tuple: |
|
messages = self.messages.copy() |
|
init_role, init_msg = messages[0].copy() |
|
init_msg = init_msg[0].replace("<image>", "").strip() |
|
if 'mmtag' in self.version: |
|
messages[0] = (init_role, init_msg) |
|
messages.insert(0, (self.roles[0], "<Image><image></Image>")) |
|
messages.insert(1, (self.roles[1], "Received.")) |
|
else: |
|
messages[0] = (init_role, "<image>\n" + init_msg) |
|
|
|
if self.sep_style == SeparatorStyle.SINGLE: |
|
ret = self.system + self.sep |
|
for role, message in messages: |
|
if message: |
|
if type(message) is tuple: |
|
message, _, _, _ = parse_msg(message) |
|
ret += role + ": " + message + self.sep |
|
else: |
|
ret += role + ":" |
|
elif self.sep_style == SeparatorStyle.TWO: |
|
seps = [self.sep, self.sep2] |
|
ret = self.system + seps[0] |
|
for i, (role, message) in enumerate(messages): |
|
if message: |
|
if type(message) is tuple: |
|
message, _, _, _ = parse_msg(message) |
|
ret += role + ": " + message + seps[i % 2] |
|
else: |
|
ret += role + ":" |
|
elif self.sep_style == SeparatorStyle.MPT: |
|
ret = self.system + self.sep |
|
for role, message in messages: |
|
if message: |
|
if type(message) is tuple: |
|
message, _, _, _ = parse_msg(message) |
|
ret += role + message + self.sep |
|
else: |
|
ret += role |
|
elif self.sep_style == SeparatorStyle.LLAMA_2: |
|
def wrap_sys(msg): return f"<<SYS>>\n{msg}\n<</SYS>>\n\n" |
|
def wrap_inst(msg): return f"[INST] {msg} [/INST]" |
|
ret = "" |
|
|
|
for i, (role, message) in enumerate(messages): |
|
if i == 0: |
|
assert message, "first message should not be none" |
|
assert role == self.roles[0], "first message should come from user" |
|
if message: |
|
if type(message) is tuple: |
|
message, _, _, _ = parse_msg(message) |
|
if i == 0: |
|
message = wrap_sys(self.system) + message |
|
if i % 2 == 0: |
|
message = wrap_inst(message) |
|
ret += self.sep + message |
|
else: |
|
ret += " " + message + " " + self.sep2 |
|
else: |
|
ret += "" |
|
ret = ret.lstrip(self.sep) |
|
elif self.sep_style == SeparatorStyle.PLAIN: |
|
seps = [self.sep, self.sep2] |
|
ret = self.system |
|
for i, (role, message) in enumerate(messages): |
|
if message: |
|
if type(message) is tuple: |
|
message, _, _, _ = parse_msg(message) |
|
ret += message + seps[i % 2] |
|
else: |
|
ret += "" |
|
else: |
|
raise ValueError(f"Invalid style: {self.sep_style}") |
|
|
|
return ret |
|
|
|
def append_message(self, role, message): |
|
self.messages.append([role, message]) |
|
|
|
def get_images(self, return_pil=False): |
|
images = [] |
|
for i, (role, msg) in enumerate(self.messages[self.offset:]): |
|
if len(self.roles) > 2 and role == self.roles[2]: |
|
continue |
|
if role == self.roles[0]: |
|
|
|
if type(msg) is tuple: |
|
import base64 |
|
from io import BytesIO |
|
from PIL import Image |
|
|
|
msg, image, image_process_mode, sketch_mask = parse_msg( |
|
msg) |
|
if image_process_mode == "Pad": |
|
def expand2square(pil_img, background_color=(122, 116, 104)): |
|
width, height = pil_img.size |
|
if width == height: |
|
return pil_img |
|
elif width > height: |
|
result = Image.new( |
|
pil_img.mode, (width, width), background_color) |
|
result.paste( |
|
pil_img, (0, (width - height) // 2)) |
|
return result |
|
else: |
|
result = Image.new( |
|
pil_img.mode, (height, height), background_color) |
|
result.paste( |
|
pil_img, ((height - width) // 2, 0)) |
|
return result |
|
image = expand2square(image) |
|
elif image_process_mode in ["Default", "Crop"]: |
|
pass |
|
elif image_process_mode == "Resize": |
|
image = image.resize((336, 336)) |
|
elif image_process_mode == "None": |
|
pass |
|
else: |
|
raise ValueError( |
|
f"Invalid image_process_mode: {image_process_mode}") |
|
max_hw, min_hw = max(image.size), min(image.size) |
|
aspect_ratio = max_hw / min_hw |
|
max_len, min_len = 800, 400 |
|
shortest_edge = int( |
|
min(max_len / aspect_ratio, min_len, min_hw)) |
|
longest_edge = int(shortest_edge * aspect_ratio) |
|
W, H = image.size |
|
if longest_edge != max(image.size): |
|
if H > W: |
|
H, W = longest_edge, shortest_edge |
|
else: |
|
H, W = shortest_edge, longest_edge |
|
image = image.resize((W, H)) |
|
if return_pil: |
|
images.append(image) |
|
else: |
|
buffered = BytesIO() |
|
image.save(buffered, format="PNG") |
|
img_b64_str = base64.b64encode( |
|
buffered.getvalue()).decode() |
|
images.append(img_b64_str) |
|
return images |
|
|
|
def get_raw_images(self, return_pil=False, image_process_mode=None): |
|
images = [] |
|
for i, (role, msg) in enumerate(self.messages[self.offset:]): |
|
if len(self.roles) > 2 and role == self.roles[2]: |
|
continue |
|
if role == self.roles[0]: |
|
|
|
if type(msg) is tuple: |
|
import base64 |
|
from io import BytesIO |
|
from PIL import Image |
|
msg, img, _, sketch_mask = parse_msg(msg) |
|
|
|
|
|
w, h = img.size |
|
if max(h, w) > 800: |
|
if h > w: |
|
new_h = 800 |
|
new_w = int(w * 800 / h) |
|
else: |
|
new_w = 800 |
|
new_h = int(h * 800 / w) |
|
|
|
img = F.resize(img, (new_h, new_w)) |
|
|
|
if return_pil: |
|
images.append(img) |
|
else: |
|
buffered = BytesIO() |
|
img.save(buffered, format="PNG") |
|
img_b64_str = base64.b64encode( |
|
buffered.getvalue()).decode() |
|
images.append(img_b64_str) |
|
return images |
|
|
|
def tools_filter_msg(self, msg): |
|
return msg |
|
|
|
def merge_output(self, ret, with_debug_parameter=False): |
|
|
|
assert isinstance( |
|
ret, list), "ret should be a list, but got {}".format(type(ret)) |
|
|
|
ret_new = [] |
|
i = 0 |
|
while i < len(ret): |
|
text: str = ret[i][0] |
|
|
|
|
|
|
|
|
|
|
|
|
|
if not isinstance(text, str): |
|
ret_new.append(ret[i]) |
|
i += 1 |
|
continue |
|
|
|
text = text.strip() |
|
|
|
if text.startswith('<img src="data:image/png;base64'): |
|
if len(ret_new) > 0: |
|
ret_new[-1] = [ret_new[-1][0] + '\n' + ret[i][0], None] |
|
else: |
|
ret_new.append(ret[i]) |
|
i += 1 |
|
continue |
|
|
|
if text.startswith('"th'): |
|
|
|
matches = parse_tool_output(text) |
|
if matches is not None: |
|
thought = matches[0][0] |
|
action = matches[0][1] |
|
value = matches[0][2] |
|
|
|
action_json = eval(action) |
|
|
|
if (len(action_json) > 0): |
|
|
|
res_value = f'"thoughts🤔" {matches[0][0].strip()}\n' +\ |
|
f'"actions🚀" {matches[0][1].strip()}\n' \ |
|
+ f'"value👉" {matches[0][2].strip()}' |
|
res_value = make_it_small_html(res_value) |
|
|
|
|
|
matches_next2 = None |
|
if (i + 1 < len(ret)): |
|
|
|
text_next: str = ret[i + |
|
1][0].strip().replace("\n\n", "\n") |
|
if len(ret_new) > 0 and "model outputs:" in text_next: |
|
|
|
text_next_html = make_it_small_html(text_next) |
|
res_value = res_value + get_hr_html() + text_next_html |
|
|
|
|
|
if i + 2 < len(ret): |
|
text_next2: str = ret[i+2][0].strip() |
|
|
|
matches_next2 = parse_tool_output( |
|
text_next2) |
|
|
|
if matches_next2 is not None: |
|
text_next2_html = f'"thoughts🤔" {matches_next2[0][0].strip()}\n' + \ |
|
f'"actions🚀" {matches_next2[0][1].strip()}\n' + \ |
|
f'"value👉"' |
|
text_next2_html = make_it_small_html( |
|
text_next2_html) |
|
res_value = res_value + get_hr_html() + text_next2_html |
|
res_value = res_value + \ |
|
f'\n{matches_next2[0][2].strip()}' |
|
i += 1 |
|
else: |
|
res_value = res_value + get_hr_html() + make_it_small_html(text_next2) |
|
i += 1 |
|
i += 1 |
|
|
|
|
|
if not with_debug_parameter: |
|
if matches_next2 is not None: |
|
res_value = matches_next2[0][2].strip() |
|
else: |
|
res_value = get_placehold(res_value) |
|
|
|
|
|
ret_new.append([res_value, None]) |
|
else: |
|
|
|
if with_debug_parameter: |
|
res_value = f'"thoughts🤔" {matches[0][0].strip()}\n' +\ |
|
f'"actions🚀" {matches[0][1].strip()}\n' \ |
|
+ f'"value👉"\n' |
|
res_value = make_it_small_html(res_value) |
|
res_value = res_value + f'{matches[0][2].strip()}' |
|
else: |
|
res_value = f'{matches[0][2].strip()}' |
|
|
|
ret_new.append([res_value, None]) |
|
else: |
|
if with_debug_parameter: |
|
ret_new.append(ret[i]) |
|
else: |
|
ret_new.append([ |
|
get_placehold(ret[i][0].strip()), |
|
None |
|
]) |
|
else: |
|
ret_new.append(ret[i]) |
|
i += 1 |
|
|
|
return ret_new |
|
|
|
def image_to_url(self, image): |
|
import base64 |
|
from io import BytesIO |
|
max_hw, min_hw = max(image.size), min(image.size) |
|
aspect_ratio = max_hw / min_hw |
|
max_len, min_len = 800, 400 |
|
shortest_edge = int(min(max_len / aspect_ratio, min_len, min_hw)) |
|
longest_edge = int(shortest_edge * aspect_ratio) |
|
W, H = image.size |
|
if H > W: |
|
H, W = longest_edge, shortest_edge |
|
else: |
|
H, W = shortest_edge, longest_edge |
|
image = image.resize((W, H)) |
|
buffered = BytesIO() |
|
image.save(buffered, format="JPEG") |
|
img_b64_str = base64.b64encode(buffered.getvalue()).decode() |
|
img_str = f'<img src="data:image/png;base64,{img_b64_str}" alt="user upload image" />' |
|
return img_str |
|
|
|
def to_gradio_chatbot(self, with_debug_parameter=False): |
|
ret = [] |
|
for i, (role, msg) in enumerate(self.messages[self.offset:]): |
|
|
|
if len(self.roles) > 2 and role == self.roles[2]: |
|
continue |
|
|
|
if 1: |
|
if type(msg) is tuple: |
|
import base64 |
|
from io import BytesIO |
|
|
|
msg, image, image_process_mode, sketch_mask = parse_msg( |
|
msg) |
|
if not isinstance(image, list): |
|
img_str = self.image_to_url(image) |
|
if i == 0: |
|
ret.append([img_str, None]) |
|
msg = msg.replace('<image>', '').strip() |
|
if role == self.roles[1]: |
|
msg = self.tools_filter_msg(msg) |
|
if len(msg) > 0: |
|
ret.append([msg, None]) |
|
if i != 0: |
|
ret.append([img_str, None]) |
|
else: |
|
|
|
if role == self.roles[1]: |
|
msg = self.tools_filter_msg(msg) |
|
msg = msg.replace('<image>', '').strip() |
|
if len(msg) > 0: |
|
ret.append([msg, None]) |
|
for j, img in enumerate(image): |
|
img_str = self.image_to_url(img) |
|
ret.append([img_str, None]) |
|
else: |
|
if role == self.roles[1]: |
|
msg = self.tools_filter_msg(msg) |
|
ret.append([msg, None]) |
|
else: |
|
ret[-1][-1] = msg |
|
|
|
ret = self.merge_output(ret, with_debug_parameter=with_debug_parameter) |
|
return ret |
|
|
|
def copy(self): |
|
return Conversation( |
|
system=self.system, |
|
roles=self.roles, |
|
messages=[[x, y] for x, y in self.messages], |
|
offset=self.offset, |
|
sep_style=self.sep_style, |
|
sep=self.sep, |
|
sep2=self.sep2, |
|
version=self.version) |
|
|
|
def dict(self, force_str=False): |
|
def remove_pil(x, force_str): |
|
if not force_str: |
|
return x |
|
|
|
if isinstance(x, Image.Image): |
|
return b64_encode(x) |
|
|
|
if isinstance(x, list): |
|
return [remove_pil(y, force_str) for y in x] |
|
if isinstance(x, tuple): |
|
return [remove_pil(y, force_str) for y in x] |
|
if isinstance(x, dict): |
|
return {k: remove_pil(v, force_str) for k, v in x.items()} |
|
|
|
return x |
|
|
|
if len(self.get_images()) > 0: |
|
return { |
|
"system": self.system, |
|
"roles": self.roles, |
|
"messages": [[x, remove_pil(y[0], force_str=force_str) if type(y) is tuple else y] for x, y in self.messages], |
|
"offset": self.offset, |
|
"sep": self.sep, |
|
"sep2": self.sep2, |
|
} |
|
return { |
|
"system": self.system, |
|
"roles": self.roles, |
|
"messages": remove_pil(self.messages, force_str=force_str), |
|
"offset": self.offset, |
|
"sep": self.sep, |
|
"sep2": self.sep2, |
|
} |
|
|
|
|
|
conv_vicuna_v0 = Conversation( |
|
system="A chat between a curious human and an artificial intelligence assistant. " |
|
"The assistant gives helpful, detailed, and polite answers to the human's questions.", |
|
roles=("Human", "Assistant"), |
|
messages=( |
|
("Human", "What are the key differences between renewable and non-renewable energy sources?"), |
|
("Assistant", |
|
"Renewable energy sources are those that can be replenished naturally in a relatively " |
|
"short amount of time, such as solar, wind, hydro, geothermal, and biomass. " |
|
"Non-renewable energy sources, on the other hand, are finite and will eventually be " |
|
"depleted, such as coal, oil, and natural gas. Here are some key differences between " |
|
"renewable and non-renewable energy sources:\n" |
|
"1. Availability: Renewable energy sources are virtually inexhaustible, while non-renewable " |
|
"energy sources are finite and will eventually run out.\n" |
|
"2. Environmental impact: Renewable energy sources have a much lower environmental impact " |
|
"than non-renewable sources, which can lead to air and water pollution, greenhouse gas emissions, " |
|
"and other negative effects.\n" |
|
"3. Cost: Renewable energy sources can be more expensive to initially set up, but they typically " |
|
"have lower operational costs than non-renewable sources.\n" |
|
"4. Reliability: Renewable energy sources are often more reliable and can be used in more remote " |
|
"locations than non-renewable sources.\n" |
|
"5. Flexibility: Renewable energy sources are often more flexible and can be adapted to different " |
|
"situations and needs, while non-renewable sources are more rigid and inflexible.\n" |
|
"6. Sustainability: Renewable energy sources are more sustainable over the long term, while " |
|
"non-renewable sources are not, and their depletion can lead to economic and social instability.\n") |
|
), |
|
offset=2, |
|
sep_style=SeparatorStyle.SINGLE, |
|
sep="###", |
|
) |
|
|
|
conv_vicuna_v1 = Conversation( |
|
system="A chat between a curious user and an artificial intelligence assistant. " |
|
"The assistant gives helpful, detailed, and polite answers to the user's questions.", |
|
roles=("USER", "ASSISTANT"), |
|
version="v1", |
|
messages=(), |
|
offset=0, |
|
sep_style=SeparatorStyle.TWO, |
|
sep=" ", |
|
sep2="</s>", |
|
) |
|
|
|
conv_llama_2 = Conversation( |
|
system="""You are a helpful, respectful and honest assistant. Always answer as helpfully as possible, while being safe. Your answers should not include any harmful, unethical, racist, sexist, toxic, dangerous, or illegal content. Please ensure that your responses are socially unbiased and positive in nature. |
|
|
|
If a question does not make any sense, or is not factually coherent, explain why instead of answering something not correct. If you don't know the answer to a question, please don't share false information.""", |
|
roles=("USER", "ASSISTANT"), |
|
version="llama_v2", |
|
messages=(), |
|
offset=0, |
|
sep_style=SeparatorStyle.LLAMA_2, |
|
sep="<s>", |
|
sep2="</s>", |
|
) |
|
|
|
conv_llava_llama_2 = Conversation( |
|
system="You are a helpful language and vision assistant. " |
|
"You are able to understand the visual content that the user provides, " |
|
"and assist the user with a variety of tasks using natural language.", |
|
roles=("USER", "ASSISTANT"), |
|
version="llama_v2", |
|
messages=(), |
|
offset=0, |
|
sep_style=SeparatorStyle.LLAMA_2, |
|
sep="<s>", |
|
sep2="</s>", |
|
) |
|
|
|
conv_mpt = Conversation( |
|
system="""<|im_start|>system |
|
A conversation between a user and an LLM-based AI assistant. The assistant gives helpful and honest answers.""", |
|
roles=("<|im_start|>user\n", "<|im_start|>assistant\n"), |
|
version="mpt", |
|
messages=(), |
|
offset=0, |
|
sep_style=SeparatorStyle.MPT, |
|
sep="<|im_end|>", |
|
) |
|
|
|
conv_llava_plain = Conversation( |
|
system="", |
|
roles=("", ""), |
|
messages=( |
|
), |
|
offset=0, |
|
sep_style=SeparatorStyle.PLAIN, |
|
sep="\n", |
|
) |
|
|
|
conv_llava_v0 = Conversation( |
|
system="A chat between a curious human and an artificial intelligence assistant. " |
|
"The assistant gives helpful, detailed, and polite answers to the human's questions.", |
|
roles=("Human", "Assistant"), |
|
messages=( |
|
), |
|
offset=0, |
|
sep_style=SeparatorStyle.SINGLE, |
|
sep="###", |
|
) |
|
|
|
conv_llava_v0_mmtag = Conversation( |
|
system="A chat between a curious user and an artificial intelligence assistant. " |
|
"The assistant is able to understand the visual content that the user provides, and assist the user with a variety of tasks using natural language." |
|
"The visual content will be provided with the following format: <Image>visual content</Image>.", |
|
roles=("Human", "Assistant"), |
|
messages=( |
|
), |
|
offset=0, |
|
sep_style=SeparatorStyle.SINGLE, |
|
sep="###", |
|
version="v0_mmtag", |
|
) |
|
|
|
conv_llava_v1 = Conversation( |
|
system="A chat between a curious human and an artificial intelligence assistant. " |
|
"The assistant gives helpful, detailed, and polite answers to the human's questions.", |
|
roles=("USER", "ASSISTANT"), |
|
version="v1", |
|
messages=(), |
|
offset=0, |
|
sep_style=SeparatorStyle.TWO, |
|
sep=" ", |
|
sep2="</s>", |
|
) |
|
|
|
conv_llava_v1_mmtag = Conversation( |
|
system="A chat between a curious user and an artificial intelligence assistant. " |
|
"The assistant is able to understand the visual content that the user provides, and assist the user with a variety of tasks using natural language." |
|
"The visual content will be provided with the following format: <Image>visual content</Image>.", |
|
roles=("USER", "ASSISTANT"), |
|
messages=(), |
|
offset=0, |
|
sep_style=SeparatorStyle.TWO, |
|
sep=" ", |
|
sep2="</s>", |
|
version="v1_mmtag", |
|
) |
|
|
|
|
|
default_conversation_name = os.getenv( |
|
"LLAVA_DEFAULT_CONVERSATION", "conv_vicuna_v1") |
|
default_conversation = globals()[default_conversation_name] |
|
print(f"Using conversation: {default_conversation_name}") |
|
|
|
conv_templates = { |
|
"default": conv_vicuna_v0, |
|
"v0": conv_vicuna_v0, |
|
"v1": conv_vicuna_v1, |
|
"vicuna_v1": conv_vicuna_v1, |
|
"llama_2": conv_llama_2, |
|
|
|
"plain": conv_llava_plain, |
|
"v0_plain": conv_llava_plain, |
|
"llava_v0": conv_llava_v0, |
|
"v0_mmtag": conv_llava_v0_mmtag, |
|
"llava_v1": conv_llava_v1, |
|
"v1_mmtag": conv_llava_v1_mmtag, |
|
"llava_llama_2": conv_llava_llama_2, |
|
|
|
"mpt": conv_mpt, |
|
} |
|
|
|
|
|
if __name__ == "__main__": |
|
print(default_conversation.get_prompt()) |
|
|