|
from gradio.helpers import Examples |
|
import argparse |
|
import base64 |
|
from collections import defaultdict |
|
import copy |
|
import datetime |
|
from functools import partial |
|
import json |
|
import os |
|
import torch |
|
from pathlib import Path |
|
import cv2 |
|
import numpy as np |
|
import re |
|
import time |
|
from io import BytesIO |
|
from PIL import Image |
|
from PIL import Image as _Image |
|
|
|
import gradio as gr |
|
from gradio import processing_utils, utils |
|
from gradio_client import utils as client_utils |
|
|
|
import requests |
|
|
|
from llava.conversation import (default_conversation, conv_templates, |
|
SeparatorStyle) |
|
from llava.constants import LOGDIR |
|
from llava.utils import (build_logger, server_error_msg, |
|
violates_moderation, moderation_msg) |
|
import hashlib |
|
from llava.serve.utils import annotate_xyxy, show_mask |
|
|
|
import pycocotools.mask as mask_util |
|
|
|
R = partial(round, ndigits=2) |
|
|
|
|
|
class ImageMask(gr.components.Image): |
|
""" |
|
Sets: source="canvas", tool="sketch" |
|
""" |
|
|
|
is_template = True |
|
|
|
def __init__(self, **kwargs): |
|
super().__init__(source="upload", tool="sketch", |
|
type='pil', interactive=True, **kwargs) |
|
|
|
|
|
def preprocess(self, x): |
|
|
|
|
|
|
|
if isinstance(x, str): |
|
im = processing_utils.decode_base64_to_image(x) |
|
w, h = im.size |
|
|
|
mask_np = np.zeros((h, w, 4), dtype=np.uint8) |
|
|
|
mask_pil = Image.fromarray(mask_np, mode='RGBA') |
|
|
|
mask_b64 = processing_utils.encode_pil_to_base64(mask_pil) |
|
x = { |
|
'image': x, |
|
'mask': mask_b64 |
|
} |
|
|
|
res = super().preprocess(x) |
|
|
|
|
|
|
|
|
|
return res |
|
|
|
|
|
def get_mask_bbox(mask_img: Image): |
|
|
|
mask = np.array(mask_img)[..., 0] |
|
|
|
|
|
if mask.sum() == 0: |
|
return None |
|
|
|
|
|
coords = np.argwhere(mask > 0) |
|
|
|
|
|
y0, x0 = coords.min(axis=0) |
|
y1, x1 = coords.max(axis=0) + 1 |
|
|
|
|
|
h, w = mask.shape[:2] |
|
|
|
|
|
x0, y0, x1, y1 = R(x0 / w), R(y0 / h), R(x1 / w), R(y1 / h) |
|
return [x0, y0, x1, y1] |
|
|
|
|
|
def plot_boxes(image: Image, res: dict) -> Image: |
|
boxes = torch.Tensor(res["boxes"]) |
|
logits = torch.Tensor(res["logits"]) if 'logits' in res else None |
|
phrases = res["phrases"] if 'phrases' in res else None |
|
image_source = np.array(image) |
|
annotated_frame = annotate_xyxy( |
|
image_source=image_source, boxes=boxes, logits=logits, phrases=phrases) |
|
return Image.fromarray(annotated_frame) |
|
|
|
|
|
def plot_masks(image: Image, res: dict) -> Image: |
|
masks_rle = res["masks_rle"] |
|
for mask_rle in masks_rle: |
|
mask = mask_util.decode(mask_rle) |
|
mask = torch.Tensor(mask) |
|
image = show_mask(mask, image) |
|
return image |
|
|
|
|
|
def plot_points(image: Image, res: dict) -> Image: |
|
points = torch.Tensor(res["points"]) |
|
point_labels = torch.Tensor(res["point_labels"]) |
|
|
|
points = np.array(points) |
|
point_labels = np.array(point_labels) |
|
annotated_frame = np.array(image) |
|
h, w = annotated_frame.shape[:2] |
|
for i in range(points.shape[1]): |
|
color = (0, 255, 0) if point_labels[0, i] == 1 else (0, 0, 255) |
|
annotated_frame = cv2.circle(annotated_frame, (int( |
|
points[0, i, 0] * w), int(points[0, i, 1] * h)), 5, color, -1) |
|
return Image.fromarray(annotated_frame) |
|
|
|
|
|
logger = build_logger("gradio_web_server", "gradio_web_server.log") |
|
|
|
headers = {"User-Agent": "LLaVA-Plus Client"} |
|
|
|
no_change_btn = gr.Button.update() |
|
enable_btn = gr.Button.update(interactive=True) |
|
disable_btn = gr.Button.update(interactive=False) |
|
|
|
|
|
priority = { |
|
"vicuna-13b": "aaaaaaa", |
|
"koala-13b": "aaaaaab", |
|
} |
|
|
|
R = partial(round, ndigits=2) |
|
|
|
def b64_encode(img): |
|
buffered = BytesIO() |
|
img.save(buffered, format="JPEG") |
|
img_b64_str = base64.b64encode(buffered.getvalue()).decode() |
|
return img_b64_str |
|
|
|
def get_worker_addr(controller_addr, worker_name): |
|
|
|
if worker_name.startswith("http"): |
|
sub_server_addr = worker_name |
|
else: |
|
controller_addr = controller_addr |
|
ret = requests.post(controller_addr + "/refresh_all_workers") |
|
assert ret.status_code == 200 |
|
ret = requests.post(controller_addr + "/list_models") |
|
models = ret.json()["models"] |
|
models.sort() |
|
|
|
|
|
ret = requests.post( |
|
controller_addr + "/get_worker_address", json={"model": worker_name} |
|
) |
|
sub_server_addr = ret.json()["address"] |
|
|
|
return sub_server_addr |
|
|
|
|
|
def get_conv_log_filename(): |
|
t = datetime.datetime.now() |
|
name = os.path.join( |
|
LOGDIR, f"{t.year}-{t.month:02d}-{t.day:02d}-conv.json") |
|
return name |
|
|
|
|
|
def get_model_list(): |
|
ret = requests.post(args.controller_url + "/refresh_all_workers") |
|
assert ret.status_code == 200 |
|
ret = requests.post(args.controller_url + "/list_models") |
|
models = ret.json()["models"] |
|
models.sort(key=lambda x: priority.get(x, x)) |
|
logger.info(f"Models: {models}") |
|
return models |
|
|
|
|
|
get_window_url_params = """ |
|
function() { |
|
const params = new URLSearchParams(window.location.search); |
|
url_params = Object.fromEntries(params); |
|
console.log(url_params); |
|
return url_params; |
|
} |
|
""" |
|
|
|
|
|
def load_demo(url_params, request: gr.Request): |
|
logger.info(f"load_demo. ip: {request.client.host}. params: {url_params}") |
|
|
|
dropdown_update = gr.Dropdown.update(visible=True) |
|
if "model" in url_params: |
|
model = url_params["model"] |
|
if model in models: |
|
dropdown_update = gr.Dropdown.update( |
|
value=model, visible=True) |
|
|
|
state = default_conversation.copy() |
|
return (state, |
|
dropdown_update, |
|
gr.Chatbot.update(visible=True), |
|
gr.Textbox.update(visible=True), |
|
gr.Button.update(visible=True), |
|
gr.Row.update(visible=True), |
|
gr.Accordion.update(visible=True), |
|
gr.Accordion.update(visible=True)) |
|
|
|
|
|
def load_demo_refresh_model_list(request: gr.Request): |
|
logger.info(f"load_demo. ip: {request.client.host}") |
|
models = get_model_list() |
|
state = default_conversation.copy() |
|
return (state, gr.Dropdown.update( |
|
choices=models, |
|
value=models[0] if len(models) > 0 else ""), |
|
gr.Chatbot.update(visible=True), |
|
gr.Textbox.update(visible=True), |
|
gr.Button.update(visible=True), |
|
gr.Row.update(visible=True), |
|
gr.Accordion.update(visible=True), |
|
gr.Accordion.update(visible=True)) |
|
|
|
|
|
def vote_last_response(state, vote_type, model_selector, request: gr.Request): |
|
with open(get_conv_log_filename(), "a") as fout: |
|
data = { |
|
"tstamp": round(time.time(), 4), |
|
"type": vote_type, |
|
"model": model_selector, |
|
"state": state.dict(), |
|
"ip": request.client.host, |
|
} |
|
fout.write(json.dumps(data) + "\n") |
|
|
|
|
|
def upvote_last_response(state, model_selector, request: gr.Request): |
|
logger.info(f"upvote. ip: {request.client.host}") |
|
vote_last_response(state, "upvote", model_selector, request) |
|
return ("",) + (disable_btn,) * 3 |
|
|
|
|
|
def downvote_last_response(state, model_selector, request: gr.Request): |
|
logger.info(f"downvote. ip: {request.client.host}") |
|
vote_last_response(state, "downvote", model_selector, request) |
|
return ("",) + (disable_btn,) * 3 |
|
|
|
|
|
def flag_last_response(state, model_selector, request: gr.Request): |
|
logger.info(f"flag. ip: {request.client.host}") |
|
vote_last_response(state, "flag", model_selector, request) |
|
return ("",) + (disable_btn,) * 3 |
|
|
|
|
|
def regenerate(state, image_process_mode, with_debug_parameter_from_state, request: gr.Request): |
|
logger.info(f"regenerate. ip: {request.client.host}") |
|
state.messages[-1][-1] = None |
|
prev_human_msg = state.messages[-2] |
|
if type(prev_human_msg[1]) in (tuple, list): |
|
prev_human_msg[1] = (*prev_human_msg[1][:2], image_process_mode) |
|
state.skip_next = False |
|
return (state, state.to_gradio_chatbot(with_debug_parameter=with_debug_parameter_from_state), "", None, None) + (disable_btn,) * 5 |
|
|
|
|
|
def clear_history(with_debug_parameter_from_state, request: gr.Request): |
|
logger.info(f"clear_history. ip: {request.client.host}") |
|
state = default_conversation.copy() |
|
return (state, state.to_gradio_chatbot(with_debug_parameter=with_debug_parameter_from_state), "", None, None) + (disable_btn,) * 5 |
|
|
|
|
|
def change_debug_state(state, with_debug_parameter_from_state, request: gr.Request): |
|
logger.info(f"change_debug_state. ip: {request.client.host}") |
|
print("with_debug_parameter_from_state: ", with_debug_parameter_from_state) |
|
with_debug_parameter_from_state = not with_debug_parameter_from_state |
|
|
|
|
|
debug_btn_value = "π Prog (off)" if not with_debug_parameter_from_state else "πΆ Prog (on)" |
|
|
|
debug_btn_update = gr.Button.update( |
|
value=debug_btn_value, |
|
) |
|
state_update = with_debug_parameter_from_state |
|
return (state, state.to_gradio_chatbot(with_debug_parameter=with_debug_parameter_from_state), "", None) + (debug_btn_update, state_update) |
|
|
|
|
|
def add_text(state, text, image_dict, ref_image_dict, image_process_mode, with_debug_parameter_from_state, request: gr.Request): |
|
|
|
if image_dict is not None: |
|
image = image_dict['image'] |
|
else: |
|
image = None |
|
logger.info(f"add_text. ip: {request.client.host}. len: {len(text)}") |
|
if len(text) <= 0 and image is None: |
|
state.skip_next = True |
|
return (state, state.to_gradio_chatbot(with_debug_parameter=with_debug_parameter_from_state), "", None) + (no_change_btn,) * 5 |
|
if args.moderate: |
|
flagged = violates_moderation(text) |
|
if flagged: |
|
state.skip_next = True |
|
return (state, state.to_gradio_chatbot(with_debug_parameter=with_debug_parameter_from_state), moderation_msg, None) + ( |
|
no_change_btn,) * 5 |
|
|
|
text = text[:1536] |
|
if image is not None: |
|
text = text[:1200] |
|
if '<image>' not in text: |
|
text = text + '\n<image>' |
|
text = (text, image, image_process_mode) |
|
state = default_conversation.copy() |
|
|
|
|
|
sketch_mask = image_dict['mask'] |
|
if sketch_mask is not None: |
|
text = (text[0], text[1], text[2], sketch_mask) |
|
|
|
bounding_box = get_mask_bbox(sketch_mask) |
|
if bounding_box is not None: |
|
text_input_new = text[0] + f"\nInput box: {bounding_box}" |
|
text = (text_input_new, text[1], text[2], text[3]) |
|
|
|
if ref_image_dict is not None: |
|
|
|
|
|
|
|
|
|
state.reference_image = b64_encode(ref_image_dict['image']) |
|
state.reference_mask = b64_encode(ref_image_dict['mask']) |
|
|
|
state.append_message(state.roles[0], text) |
|
state.append_message(state.roles[1], None) |
|
state.skip_next = False |
|
return (state, state.to_gradio_chatbot(with_debug_parameter=with_debug_parameter_from_state), "", None, None) + (disable_btn,) * 6 |
|
|
|
|
|
def http_bot(state, model_selector, temperature, top_p, max_new_tokens, with_debug_parameter_from_state, request: gr.Request): |
|
logger.info(f"http_bot. ip: {request.client.host}") |
|
start_tstamp = time.time() |
|
model_name = model_selector |
|
|
|
if state.skip_next: |
|
|
|
yield (state, state.to_gradio_chatbot(with_debug_parameter=with_debug_parameter_from_state)) + (no_change_btn,) * 6 |
|
return |
|
|
|
if len(state.messages) == state.offset + 2: |
|
|
|
|
|
if "llava" in model_name.lower(): |
|
if 'llama-2' in model_name.lower(): |
|
template_name = "llava_llama_2" |
|
elif "v1" in model_name.lower(): |
|
if 'mmtag' in model_name.lower(): |
|
template_name = "v1_mmtag" |
|
elif 'plain' in model_name.lower() and 'finetune' not in model_name.lower(): |
|
template_name = "v1_mmtag" |
|
else: |
|
template_name = "llava_v1" |
|
elif "mpt" in model_name.lower(): |
|
template_name = "mpt" |
|
else: |
|
if 'mmtag' in model_name.lower(): |
|
template_name = "v0_mmtag" |
|
elif 'plain' in model_name.lower() and 'finetune' not in model_name.lower() and 'tools' not in model_name.lower(): |
|
template_name = "v0_mmtag" |
|
else: |
|
template_name = "llava_v0" |
|
elif "mpt" in model_name: |
|
template_name = "mpt_text" |
|
elif "llama-2" in model_name: |
|
template_name = "llama_2" |
|
else: |
|
template_name = "vicuna_v1" |
|
print("template_name: ", template_name) |
|
|
|
|
|
|
|
|
|
|
|
|
|
new_state = conv_templates[template_name].copy() |
|
|
|
|
|
|
|
|
|
|
|
new_state.append_message(new_state.roles[0], state.messages[-2][1]) |
|
new_state.append_message(new_state.roles[1], None) |
|
|
|
|
|
new_state.reference_image = getattr(state, 'reference_image', None) |
|
new_state.reference_mask = getattr(state, 'reference_mask', None) |
|
|
|
|
|
state = new_state |
|
|
|
print("MessagesοΌ", state.messages) |
|
|
|
|
|
controller_url = args.controller_url |
|
ret = requests.post(controller_url + "/get_worker_address", |
|
json={"model": model_name}) |
|
worker_addr = ret.json()["address"] |
|
logger.info(f"model_name: {model_name}, worker_addr: {worker_addr}") |
|
|
|
|
|
if worker_addr == "": |
|
state.messages[-1][-1] = server_error_msg |
|
yield (state, state.to_gradio_chatbot(with_debug_parameter=with_debug_parameter_from_state), disable_btn, disable_btn, disable_btn, enable_btn, enable_btn, enable_btn) |
|
return |
|
|
|
|
|
prompt = state.get_prompt() |
|
|
|
|
|
|
|
all_images = state.get_images(return_pil=True) |
|
all_image_hash = [hashlib.md5(image.tobytes()).hexdigest() |
|
for image in all_images] |
|
for image, hash in zip(all_images, all_image_hash): |
|
t = datetime.datetime.now() |
|
filename = os.path.join( |
|
LOGDIR, "serve_images", f"{t.year}-{t.month:02d}-{t.day:02d}", f"{hash}.jpg") |
|
if not os.path.isfile(filename): |
|
os.makedirs(os.path.dirname(filename), exist_ok=True) |
|
image.save(filename) |
|
|
|
|
|
|
|
pload = { |
|
"model": model_name, |
|
"prompt": prompt, |
|
"temperature": float(temperature), |
|
"top_p": float(top_p), |
|
"max_new_tokens": min(int(max_new_tokens), 1536), |
|
"stop": state.sep if state.sep_style in [SeparatorStyle.SINGLE, SeparatorStyle.MPT] else state.sep2, |
|
"images": f'List of {len(state.get_images())} images: {all_image_hash}', |
|
} |
|
logger.info(f"==== request ====\n{pload}\n==== request ====") |
|
|
|
pload['images'] = state.get_images() |
|
|
|
state.messages[-1][-1] = "β" |
|
yield (state, state.to_gradio_chatbot(with_debug_parameter=with_debug_parameter_from_state)) + (disable_btn,) * 6 |
|
|
|
try: |
|
|
|
response = requests.post(worker_addr + "/worker_generate_stream", |
|
headers=headers, json=pload, stream=True, timeout=10) |
|
|
|
for chunk in response.iter_lines(decode_unicode=False, delimiter=b"\0"): |
|
if chunk: |
|
data = json.loads(chunk.decode()) |
|
if data["error_code"] == 0: |
|
output = data["text"][len(prompt):].strip() |
|
state.messages[-1][-1] = output + "β" |
|
yield (state, state.to_gradio_chatbot(with_debug_parameter=with_debug_parameter_from_state)) + (disable_btn,) * 6 |
|
else: |
|
output = data["text"] + \ |
|
f" (error_code: {data['error_code']})" |
|
state.messages[-1][-1] = output |
|
yield (state, state.to_gradio_chatbot(with_debug_parameter=with_debug_parameter_from_state)) + (disable_btn, disable_btn, disable_btn, enable_btn, enable_btn, enable_btn) |
|
return |
|
time.sleep(0.03) |
|
except requests.exceptions.RequestException as e: |
|
print("error: ", e) |
|
state.messages[-1][-1] = server_error_msg |
|
yield (state, state.to_gradio_chatbot(with_debug_parameter=with_debug_parameter_from_state)) + (disable_btn, disable_btn, disable_btn, enable_btn, enable_btn, enable_btn) |
|
return |
|
|
|
|
|
state.messages[-1][-1] = state.messages[-1][-1][:-1] |
|
yield (state, state.to_gradio_chatbot(with_debug_parameter=with_debug_parameter_from_state)) + (enable_btn,) * 6 |
|
|
|
|
|
model_output_text = state.messages[-1][1] |
|
|
|
print("model_output_text: ", model_output_text, |
|
"Now we are going to parse the output.") |
|
|
|
|
|
|
|
|
|
try: |
|
pattern = r'"thoughtsπ€"(.*)"actionsπ"(.*)"valueπ"(.*)' |
|
matches = re.findall(pattern, model_output_text, re.DOTALL) |
|
|
|
if len(matches) > 0: |
|
|
|
try: |
|
tool_cfg = json.loads(matches[0][1].strip()) |
|
except Exception as e: |
|
tool_cfg = json.loads( |
|
matches[0][1].strip().replace("\'", "\"")) |
|
print("tool_cfg:", tool_cfg) |
|
else: |
|
tool_cfg = None |
|
except Exception as e: |
|
logger.info(f"Failed to parse tool config: {e}") |
|
tool_cfg = None |
|
|
|
|
|
print("trigger tool augmentation with tool_cfg: ", tool_cfg) |
|
if tool_cfg is not None and len(tool_cfg) > 0: |
|
assert len( |
|
tool_cfg) == 1, "Only one tool is supported for now, but got: {}".format(tool_cfg) |
|
api_name = tool_cfg[0]['API_name'] |
|
tool_cfg[0]['API_params'].pop('image', None) |
|
images = state.get_raw_images() |
|
if len(images) > 0: |
|
image = images[0] |
|
else: |
|
image = None |
|
api_paras = { |
|
'image': image, |
|
"box_threshold": 0.3, |
|
"text_threshold": 0.25, |
|
**tool_cfg[0]['API_params'] |
|
} |
|
if api_name in ['inpainting']: |
|
api_paras['mask'] = getattr(state, 'mask_rle', None) |
|
if api_name in ['openseed', 'controlnet']: |
|
if api_name == 'controlnet': |
|
api_paras['mask'] = getattr(state, 'image_seg', None) |
|
api_paras['mode'] = api_name |
|
api_name = 'controlnet' |
|
if api_name == 'seem': |
|
reference_image = getattr(state, 'reference_image', None) |
|
reference_mask = getattr(state, 'reference_mask', None) |
|
api_paras['refimg'] = reference_image |
|
api_paras['refmask'] = reference_mask |
|
|
|
|
|
|
|
|
|
tool_worker_addr = get_worker_addr(controller_url, api_name) |
|
print("tool_worker_addr: ", tool_worker_addr) |
|
tool_response = requests.post( |
|
tool_worker_addr + "/worker_generate", |
|
headers=headers, |
|
json=api_paras, |
|
).json() |
|
tool_response_clone = copy.deepcopy(tool_response) |
|
print("tool_response: ", tool_response) |
|
|
|
|
|
masks_rle = None |
|
edited_image = None |
|
image_seg = None |
|
iou_sort_masks = None |
|
if 'boxes' in tool_response: |
|
tool_response['boxes'] = [[R(_b) for _b in bb] |
|
for bb in tool_response['boxes']] |
|
if 'logits' in tool_response: |
|
tool_response['logits'] = [R(_l) for _l in tool_response['logits']] |
|
if 'scores' in tool_response: |
|
tool_response['scores'] = [R(_s) for _s in tool_response['scores']] |
|
if "masks_rle" in tool_response: |
|
masks_rle = tool_response.pop("masks_rle") |
|
if "edited_image" in tool_response: |
|
edited_image = tool_response.pop("edited_image") |
|
if "size" in tool_response: |
|
_ = tool_response.pop("size") |
|
if api_name == "easyocr": |
|
_ = tool_response.pop("boxes") |
|
_ = tool_response.pop("scores") |
|
if "retrieval_results" in tool_response: |
|
tool_response['retrieval_results'] = [ |
|
{'caption': i['caption'], 'similarity': R(i['similarity'])} |
|
for i in tool_response['retrieval_results'] |
|
] |
|
if "image_seg" in tool_response: |
|
image_seg = tool_response.pop("image_seg") |
|
if "iou_sort_masks" in tool_response: |
|
iou_sort_masks = tool_response.pop("iou_sort_masks") |
|
if len(tool_response) == 0: |
|
tool_response['message'] = f"The {api_name} has processed the image." |
|
|
|
if masks_rle is not None: |
|
state.mask_rle = masks_rle[0] |
|
if image_seg is not None: |
|
state.image_seg = image_seg |
|
|
|
|
|
|
|
|
|
|
|
new_response = f"{api_name} model outputs: {tool_response}\n\n" |
|
first_question = state.messages[-2][-1] |
|
if isinstance(first_question, tuple): |
|
first_question = first_question[0].replace("<image>", "") |
|
first_question = first_question.strip() |
|
|
|
|
|
state.append_message(state.roles[0], |
|
new_response + |
|
"Please summarize the model outputs and answer my first question: {}".format( |
|
first_question) |
|
) |
|
state.append_message(state.roles[1], None) |
|
|
|
|
|
prompt2 = state.get_prompt() |
|
|
|
|
|
pload = { |
|
"model": model_name, |
|
"prompt": prompt2, |
|
"temperature": float(temperature), |
|
"max_new_tokens": min(int(max_new_tokens), 1536), |
|
"stop": state.sep if state.sep_style in [SeparatorStyle.SINGLE, SeparatorStyle.MPT] else state.sep2, |
|
"images": f'List of {len(state.get_images())} images: {all_image_hash}', |
|
} |
|
logger.info(f"==== request ====\n{pload}") |
|
pload['images'] = state.get_images() |
|
|
|
state.messages[-1][-1] = "β" |
|
yield (state, state.to_gradio_chatbot(with_debug_parameter=with_debug_parameter_from_state)) + (disable_btn,) * 6 |
|
|
|
try: |
|
|
|
response = requests.post(worker_addr + "/worker_generate_stream", |
|
headers=headers, json=pload, stream=True, timeout=10) |
|
|
|
for chunk in response.iter_lines(decode_unicode=False, delimiter=b"\0"): |
|
if chunk: |
|
data = json.loads(chunk.decode()) |
|
if data["error_code"] == 0: |
|
output = data["text"][len(prompt2):].strip() |
|
state.messages[-1][-1] = output + "β" |
|
yield (state, state.to_gradio_chatbot(with_debug_parameter=with_debug_parameter_from_state)) + (disable_btn,) * 6 |
|
else: |
|
output = data["text"] + \ |
|
f" (error_code: {data['error_code']})" |
|
state.messages[-1][-1] = output |
|
yield (state, state.to_gradio_chatbot(with_debug_parameter=with_debug_parameter_from_state)) + (disable_btn, disable_btn, disable_btn, enable_btn, enable_btn, enable_btn) |
|
return |
|
time.sleep(0.03) |
|
except requests.exceptions.RequestException as e: |
|
state.messages[-1][-1] = server_error_msg |
|
yield (state, state.to_gradio_chatbot(with_debug_parameter=with_debug_parameter_from_state)) + (disable_btn, disable_btn, disable_btn, enable_btn, enable_btn, enable_btn) |
|
return |
|
|
|
|
|
state.messages[-1][-1] = state.messages[-1][-1][:-1] |
|
|
|
|
|
if edited_image is not None: |
|
edited_image_pil = Image.open( |
|
BytesIO(base64.b64decode(edited_image))).convert("RGB") |
|
state.messages[-1][-1] = (state.messages[-1] |
|
[-1], edited_image_pil, "Crop") |
|
if image_seg is not None: |
|
edited_image_pil = Image.open( |
|
BytesIO(base64.b64decode(image_seg))).convert("RGB") |
|
state.messages[-1][-1] = (state.messages[-1] |
|
[-1], edited_image_pil, "Crop") |
|
if iou_sort_masks is not None: |
|
assert isinstance( |
|
iou_sort_masks, list), "iou_sort_masks should be a list, but got: {}".format(iou_sort_masks) |
|
edited_image_pil_list = [Image.open( |
|
BytesIO(base64.b64decode(i))).convert("RGB") for i in iou_sort_masks] |
|
state.messages[-1][-1] = (state.messages[-1] |
|
[-1], edited_image_pil_list, "Crop") |
|
if api_name in ['grounding_dino', 'ram+grounding_dino', 'blip2+grounding_dino']: |
|
edited_image_pil = Image.open( |
|
BytesIO(base64.b64decode(state.get_images()[0]))).convert("RGB") |
|
edited_image_pil = plot_boxes(edited_image_pil, tool_response) |
|
state.messages[-1][-1] = (state.messages[-1] |
|
[-1], edited_image_pil, "Crop") |
|
if api_name in ['grounding_dino+sam', 'grounded_sam']: |
|
edited_image_pil = Image.open( |
|
BytesIO(base64.b64decode(state.get_images()[0]))).convert("RGB") |
|
edited_image_pil = plot_boxes(edited_image_pil, tool_response) |
|
edited_image_pil = plot_masks( |
|
edited_image_pil, tool_response_clone) |
|
state.messages[-1][-1] = (state.messages[-1] |
|
[-1], edited_image_pil, "Crop") |
|
if api_name in ['sam']: |
|
if 'points' in tool_cfg[0]['API_params']: |
|
edited_image_pil = Image.open( |
|
BytesIO(base64.b64decode(state.get_images()[0]))).convert("RGB") |
|
edited_image_pil = plot_masks( |
|
edited_image_pil, tool_response_clone) |
|
tool_response_clone['points'] = tool_cfg[0]['API_params']['points'] |
|
tool_response_clone['point_labels'] = tool_cfg[0]['API_params']['point_labels'] |
|
edited_image_pil = plot_points( |
|
edited_image_pil, tool_response_clone) |
|
|
|
state.messages[-1][-1] = (state.messages[-1] |
|
[-1], edited_image_pil, "Crop") |
|
else: |
|
assert 'boxes' in tool_cfg[0]['API_params'], "not find 'boxes' in {}".format( |
|
tool_cfg[0]['API_params'].keys()) |
|
edited_image_pil = Image.open( |
|
BytesIO(base64.b64decode(state.get_images()[0]))).convert("RGB") |
|
edited_image_pil = plot_boxes(edited_image_pil, tool_response) |
|
tool_response_clone['boxes'] = tool_cfg[0]['API_params']['boxes'] |
|
edited_image_pil = plot_masks( |
|
edited_image_pil, tool_response_clone) |
|
state.messages[-1][-1] = (state.messages[-1] |
|
[-1], edited_image_pil, "Crop") |
|
|
|
yield (state, state.to_gradio_chatbot(with_debug_parameter=with_debug_parameter_from_state)) + (enable_btn,) * 6 |
|
|
|
finish_tstamp = time.time() |
|
logger.info(f"{output}") |
|
|
|
|
|
|
|
|
|
with open(get_conv_log_filename(), "a") as fout: |
|
data = { |
|
"tstamp": round(finish_tstamp, 4), |
|
"type": "chat", |
|
"model": model_name, |
|
"start": round(start_tstamp, 4), |
|
"finish": round(start_tstamp, 4), |
|
"state": state.dict(force_str=True), |
|
"images": all_image_hash, |
|
"ip": request.client.host, |
|
} |
|
fout.write(json.dumps(data) + "\n") |
|
|
|
|
|
title_markdown = (""" |
|
# π LLaVA-Plus: Learning to Use Tools For Creating Multimodal Agents |
|
## **L**arge **L**anguage **a**nd **V**ision **A**ssistants that **P**lug and **L**earn to **U**se **S**kills |
|
[[Project Page]](https://llava-vl.github.io/llava-plus) [[Paper]](https://arxiv.org/abs/2311.05437) [[Code]](https://github.com/LLaVA-VL/LLaVA-Plus-Codebase) [[Model]]() |
|
""") |
|
|
|
tos_markdown = (""" |
|
### Terms of use |
|
By using this service, users are required to agree to the following terms: |
|
The service is a research preview intended for non-commercial use only. It only provides limited safety measures and may generate offensive content. It must not be used for any illegal, harmful, violent, racist, or sexual purposes. The service may collect user dialogue data for future research. |
|
Please click the "Flag" button if you get any inappropriate answer! We will collect those to keep improving our moderator. |
|
For an optimal experience, please use desktop computers for this demo, as mobile devices may compromise its quality. |
|
""") |
|
|
|
|
|
learn_more_markdown = (""" |
|
### License |
|
The service is a research preview intended for non-commercial use only, subject to the model [License](https://github.com/facebookresearch/llama/blob/main/MODEL_CARD.md) of LLaMA, [Terms of Use](https://openai.com/policies/terms-of-use) of the data generated by OpenAI, and [Privacy Practices](https://chrome.google.com/webstore/detail/sharegpt-share-your-chatg/daiacboceoaocpibfodeljbdfacokfjb) of ShareGPT. Please contact us if you find any potential violation. |
|
""") |
|
|
|
|
|
def build_demo(embed_mode): |
|
textbox = gr.Textbox( |
|
show_label=False, placeholder="Enter text and press ENTER", visible=False, container=False) |
|
with gr.Blocks(title="LLaVA-Plus", theme=gr.themes.Base()) as demo: |
|
state = gr.State() |
|
|
|
if not embed_mode: |
|
gr.Markdown(title_markdown) |
|
|
|
with gr.Row(): |
|
with gr.Column(scale=3): |
|
with gr.Row(elem_id="model_selector_row"): |
|
model_selector = gr.Dropdown( |
|
choices=models, |
|
value=models[0] if len(models) > 0 else "", |
|
interactive=True, |
|
show_label=False, |
|
container=False) |
|
|
|
imagebox = ImageMask() |
|
|
|
cur_dir = os.path.dirname(os.path.abspath(__file__)) |
|
|
|
with gr.Accordion("Reference Image", open=False, visible=False) as ref_image_row: |
|
gr.Markdown( |
|
"The reference image is for some specific tools, like SEEM.") |
|
ref_image_box = ImageMask() |
|
|
|
with gr.Accordion("Parameters", open=False, visible=False) as parameter_row: |
|
image_process_mode = gr.Radio( |
|
["Crop", "Resize", "Pad"], |
|
value="Crop", |
|
label="Preprocess for non-square image") |
|
temperature = gr.Slider( |
|
minimum=0.0, maximum=1.0, value=0.2, step=0.1, interactive=True, label="Temperature",) |
|
top_p = gr.Slider( |
|
minimum=0.0, maximum=1.0, value=0.7, step=0.1, interactive=True, label="Top P",) |
|
max_output_tokens = gr.Slider( |
|
minimum=0, maximum=1024, value=512, step=64, interactive=True, label="Max output tokens",) |
|
|
|
|
|
with gr.Column(scale=6): |
|
chatbot = gr.Chatbot( |
|
elem_id="chatbot", label="LLaVA-Plus Chatbot", height=550) |
|
with gr.Row(): |
|
with gr.Column(scale=8): |
|
textbox.render() |
|
with gr.Column(scale=1, min_width=60): |
|
submit_btn = gr.Button(value="Submit", visible=False) |
|
with gr.Row(visible=False) as button_row: |
|
upvote_btn = gr.Button( |
|
value="π Upvote", interactive=False) |
|
downvote_btn = gr.Button( |
|
value="π Downvote", interactive=False) |
|
flag_btn = gr.Button(value="β οΈ Flag", interactive=False) |
|
|
|
regenerate_btn = gr.Button( |
|
value="π Regenerate", interactive=False) |
|
clear_btn = gr.Button( |
|
value="ποΈ Clear history", interactive=False) |
|
debug_btn = gr.Button( |
|
value="π Prog (off)", interactive=True) |
|
|
|
if args.with_debug_parameter: |
|
debug_btn.value = "πΆ Prog (on)" |
|
with_debug_parameter_state = gr.State( |
|
value=args.with_debug_parameter, |
|
) |
|
|
|
with gr.Row(): |
|
with gr.Column(): |
|
gr.Examples(examples=[ |
|
[f"{cur_dir}/examples/frisbee.jpg", |
|
"Detect the person and frisbee in the image."], |
|
[f"{cur_dir}/examples/wranch_box.png", |
|
"My bike is broken. I want to use a wrench to fix it. Can you show me the location of wrench and how to use it?"], |
|
], inputs=[imagebox, textbox], label="Detection Examples: ") |
|
gr.Examples(examples=[ |
|
[f"{cur_dir}/examples/mask_twitter.png", |
|
"segment birds in the image, then tell how many birds in it"], |
|
[f"{cur_dir}/examples/cat_comp.jpeg", |
|
"Please detect and segment the cat and computer from the image"], |
|
], inputs=[imagebox, textbox], label="Segmentation Examples: ") |
|
gr.Examples(examples=[ |
|
[f"{cur_dir}/examples/tbs.webp", |
|
"can you segment with the given box?"], |
|
], inputs=[imagebox, textbox], label="Interactive Segmentation (Please draw a sketch to cover the full object): ") |
|
gr.Examples(examples=[ |
|
[f"{cur_dir}/examples/tower.png", |
|
"can you segment with multi-granularity?"], |
|
], inputs=[imagebox, textbox], label="Multi-granularity Segmentation (Please draw a sketch as an input point): ") |
|
gr.Examples(examples=[ |
|
[f"{cur_dir}/examples/road.png", |
|
f"{cur_dir}/examples/road_ref2.webp", |
|
"can you segment refer to the reference image? then describe the image"], |
|
], inputs=[imagebox, ref_image_box, textbox], label="Reference image segmentation (Please draw a sketch at the reference box):") |
|
|
|
|
|
with gr.Column(): |
|
gr.Examples(examples=[ |
|
[f"{cur_dir}/examples/mooncake.png", |
|
"Describe the food in the image? search on the internet"], |
|
[f"{cur_dir}/examples/Judas.png", |
|
"what's the image? search on the internet"], |
|
], inputs=[imagebox, textbox], label="Searching Examples: ") |
|
gr.Examples(examples=[ |
|
[f"{cur_dir}/examples/calendar.png", |
|
"make the image like autumn. then generate some attractive texts for Instagram posts"], |
|
[f"{cur_dir}/examples/paris.png", |
|
"i want to post a message on Instagram. add some firework to the image, and write an attractive post for my ins."], |
|
], inputs=[imagebox, textbox], label="Editing Examples: ") |
|
|
|
gr.Examples(examples=[ |
|
["generate a view of the city skyline of downtown Seattle in a sketch style and generate an Instagram post"], |
|
["generate a view of the city skyline of Shenzhen in a future and technique style and generate a red book post"], |
|
], inputs=[textbox], label="Generation Examples: ") |
|
gr.Examples(examples=[ |
|
[f"{cur_dir}/examples/extreme_ironing.jpg", |
|
"What is unusual about this image?"], |
|
[f"{cur_dir}/examples/waterview.jpg", |
|
"What are the things I should be cautious about when I visit here?"], |
|
], inputs=[imagebox, textbox], label="Conversation Examples: ") |
|
|
|
|
|
|
|
|
|
if not embed_mode: |
|
gr.Markdown(tos_markdown) |
|
gr.Markdown(learn_more_markdown) |
|
url_params = gr.JSON(visible=False) |
|
|
|
|
|
btn_list = [upvote_btn, downvote_btn, |
|
flag_btn, regenerate_btn, clear_btn] |
|
upvote_btn.click(upvote_last_response, |
|
[state, model_selector], [textbox, upvote_btn, downvote_btn, flag_btn]) |
|
downvote_btn.click(downvote_last_response, |
|
[state, model_selector], [textbox, upvote_btn, downvote_btn, flag_btn]) |
|
flag_btn.click(flag_last_response, |
|
[state, model_selector], [textbox, upvote_btn, downvote_btn, flag_btn]) |
|
regenerate_btn.click(regenerate, [state, image_process_mode, with_debug_parameter_state], |
|
[state, chatbot, textbox, imagebox, ref_image_box] + btn_list).then( |
|
http_bot, [state, model_selector, temperature, top_p, |
|
max_output_tokens, with_debug_parameter_state], |
|
[state, chatbot] + btn_list + [debug_btn]) |
|
clear_btn.click(clear_history, [with_debug_parameter_state], [ |
|
state, chatbot, textbox, imagebox, ref_image_box] + btn_list) |
|
|
|
textbox.submit(add_text, [state, textbox, imagebox, ref_image_box, image_process_mode, with_debug_parameter_state], [state, chatbot, textbox, imagebox, ref_image_box] + btn_list + [debug_btn] |
|
).then(http_bot, [state, model_selector, temperature, top_p, max_output_tokens, with_debug_parameter_state], |
|
[state, chatbot] + btn_list + [debug_btn]) |
|
submit_btn.click(add_text, [state, textbox, imagebox, ref_image_box, image_process_mode, with_debug_parameter_state], [state, chatbot, textbox, imagebox, ref_image_box] + btn_list + [debug_btn] |
|
).then(http_bot, [state, model_selector, temperature, top_p, max_output_tokens, with_debug_parameter_state], |
|
[state, chatbot] + btn_list + [debug_btn]) |
|
debug_btn.click(change_debug_state, [state, with_debug_parameter_state], [ |
|
state, chatbot, textbox, imagebox] + [debug_btn, with_debug_parameter_state]) |
|
|
|
if args.model_list_mode == "once": |
|
demo.load(load_demo, [url_params], [state, model_selector, |
|
chatbot, textbox, submit_btn, button_row, parameter_row, ref_image_row], |
|
_js=get_window_url_params) |
|
elif args.model_list_mode == "reload": |
|
demo.load(load_demo_refresh_model_list, None, [state, model_selector, |
|
chatbot, textbox, submit_btn, button_row, parameter_row, ref_image_row]) |
|
else: |
|
raise ValueError( |
|
f"Unknown model list mode: {args.model_list_mode}") |
|
|
|
return demo |
|
|
|
|
|
if __name__ == "__main__": |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument("--host", type=str, default="0.0.0.0") |
|
parser.add_argument("--port", type=int) |
|
parser.add_argument("--controller-url", type=str, |
|
default="http://localhost:21001") |
|
parser.add_argument("--concurrency-count", type=int, default=8) |
|
parser.add_argument("--model-list-mode", type=str, default="once", |
|
choices=["once", "reload"]) |
|
parser.add_argument("--share", action="store_true") |
|
parser.add_argument("--moderate", action="store_true") |
|
parser.add_argument("--embed", action="store_true") |
|
parser.add_argument("--debug", action="store_true") |
|
parser.add_argument("--with_debug_parameter", action="store_true") |
|
args = parser.parse_args() |
|
logger.info(f"args: {args}") |
|
|
|
models = get_model_list() |
|
models = [i for i in models if 'llava' in i] |
|
|
|
logger.info(args) |
|
demo = build_demo(args.embed) |
|
_app, local_url, share_url = demo.queue(concurrency_count=args.concurrency_count, status_update_rate=10, |
|
api_open=True).launch( |
|
server_name=args.host, server_port=args.port, share=args.share, debug=args.debug) |
|
print("Local URL: ", local_url) |
|
print("Share URL: ", share_url) |
|
|