CRYSTAL-Mac / LLaVA-Plus-Codebase /llava /serve /gradio_web_server_llava_plus.py
crystal-technologies's picture
Upload 234 files
a560a5f
from gradio.helpers import Examples
import argparse
import base64
from collections import defaultdict
import copy
import datetime
from functools import partial
import json
import os
import torch
from pathlib import Path
import cv2
import numpy as np
import re
import time
from io import BytesIO
from PIL import Image
from PIL import Image as _Image # using _ to minimize namespace pollution
import gradio as gr
from gradio import processing_utils, utils
from gradio_client import utils as client_utils
import requests
from llava.conversation import (default_conversation, conv_templates,
SeparatorStyle)
from llava.constants import LOGDIR
from llava.utils import (build_logger, server_error_msg,
violates_moderation, moderation_msg)
import hashlib
from llava.serve.utils import annotate_xyxy, show_mask
import pycocotools.mask as mask_util
R = partial(round, ndigits=2)
class ImageMask(gr.components.Image):
"""
Sets: source="canvas", tool="sketch"
"""
is_template = True
def __init__(self, **kwargs):
super().__init__(source="upload", tool="sketch",
type='pil', interactive=True, **kwargs)
# super().__init__(source="upload", tool="boxes", type='pil', interactive=True, **kwargs)
def preprocess(self, x):
# import ipdb; ipdb.set_trace()
# a hack to get the mask
if isinstance(x, str):
im = processing_utils.decode_base64_to_image(x)
w, h = im.size
# a mask, array, uint8
mask_np = np.zeros((h, w, 4), dtype=np.uint8)
# to pil
mask_pil = Image.fromarray(mask_np, mode='RGBA')
# to base64
mask_b64 = processing_utils.encode_pil_to_base64(mask_pil)
x = {
'image': x,
'mask': mask_b64
}
res = super().preprocess(x)
# arr -> PIL
# res['image'] = Image.fromarray(res['image'])
# if os.environ.get('IPDB_SHILONG_DEBUG', None) == 'INFO':
# import ipdb; ipdb.set_trace()
return res
def get_mask_bbox(mask_img: Image):
# convert to np array
mask = np.array(mask_img)[..., 0]
# check if has masks
if mask.sum() == 0:
return None
# get coords
coords = np.argwhere(mask > 0)
# calculate bbox
y0, x0 = coords.min(axis=0)
y1, x1 = coords.max(axis=0) + 1
# get h and w
h, w = mask.shape[:2]
# norm to [0, 1]
x0, y0, x1, y1 = R(x0 / w), R(y0 / h), R(x1 / w), R(y1 / h)
return [x0, y0, x1, y1]
def plot_boxes(image: Image, res: dict) -> Image:
boxes = torch.Tensor(res["boxes"])
logits = torch.Tensor(res["logits"]) if 'logits' in res else None
phrases = res["phrases"] if 'phrases' in res else None
image_source = np.array(image)
annotated_frame = annotate_xyxy(
image_source=image_source, boxes=boxes, logits=logits, phrases=phrases)
return Image.fromarray(annotated_frame)
def plot_masks(image: Image, res: dict) -> Image:
masks_rle = res["masks_rle"]
for mask_rle in masks_rle:
mask = mask_util.decode(mask_rle)
mask = torch.Tensor(mask)
image = show_mask(mask, image)
return image
def plot_points(image: Image, res: dict) -> Image:
points = torch.Tensor(res["points"])
point_labels = torch.Tensor(res["point_labels"])
points = np.array(points)
point_labels = np.array(point_labels)
annotated_frame = np.array(image)
h, w = annotated_frame.shape[:2]
for i in range(points.shape[1]):
color = (0, 255, 0) if point_labels[0, i] == 1 else (0, 0, 255)
annotated_frame = cv2.circle(annotated_frame, (int(
points[0, i, 0] * w), int(points[0, i, 1] * h)), 5, color, -1)
return Image.fromarray(annotated_frame)
logger = build_logger("gradio_web_server", "gradio_web_server.log")
headers = {"User-Agent": "LLaVA-Plus Client"}
no_change_btn = gr.Button.update()
enable_btn = gr.Button.update(interactive=True)
disable_btn = gr.Button.update(interactive=False)
priority = {
"vicuna-13b": "aaaaaaa",
"koala-13b": "aaaaaab",
}
R = partial(round, ndigits=2)
def b64_encode(img):
buffered = BytesIO()
img.save(buffered, format="JPEG")
img_b64_str = base64.b64encode(buffered.getvalue()).decode()
return img_b64_str
def get_worker_addr(controller_addr, worker_name):
# get grounding dino addr
if worker_name.startswith("http"):
sub_server_addr = worker_name
else:
controller_addr = controller_addr
ret = requests.post(controller_addr + "/refresh_all_workers")
assert ret.status_code == 200
ret = requests.post(controller_addr + "/list_models")
models = ret.json()["models"]
models.sort()
# print(f"Models: {models}")
ret = requests.post(
controller_addr + "/get_worker_address", json={"model": worker_name}
)
sub_server_addr = ret.json()["address"]
# print(f"worker_name: {worker_name}")
return sub_server_addr
def get_conv_log_filename():
t = datetime.datetime.now()
name = os.path.join(
LOGDIR, f"{t.year}-{t.month:02d}-{t.day:02d}-conv.json")
return name
def get_model_list():
ret = requests.post(args.controller_url + "/refresh_all_workers")
assert ret.status_code == 200
ret = requests.post(args.controller_url + "/list_models")
models = ret.json()["models"]
models.sort(key=lambda x: priority.get(x, x))
logger.info(f"Models: {models}")
return models
get_window_url_params = """
function() {
const params = new URLSearchParams(window.location.search);
url_params = Object.fromEntries(params);
console.log(url_params);
return url_params;
}
"""
def load_demo(url_params, request: gr.Request):
logger.info(f"load_demo. ip: {request.client.host}. params: {url_params}")
dropdown_update = gr.Dropdown.update(visible=True)
if "model" in url_params:
model = url_params["model"]
if model in models:
dropdown_update = gr.Dropdown.update(
value=model, visible=True)
state = default_conversation.copy()
return (state,
dropdown_update,
gr.Chatbot.update(visible=True),
gr.Textbox.update(visible=True),
gr.Button.update(visible=True),
gr.Row.update(visible=True),
gr.Accordion.update(visible=True),
gr.Accordion.update(visible=True))
def load_demo_refresh_model_list(request: gr.Request):
logger.info(f"load_demo. ip: {request.client.host}")
models = get_model_list()
state = default_conversation.copy()
return (state, gr.Dropdown.update(
choices=models,
value=models[0] if len(models) > 0 else ""),
gr.Chatbot.update(visible=True),
gr.Textbox.update(visible=True),
gr.Button.update(visible=True),
gr.Row.update(visible=True),
gr.Accordion.update(visible=True),
gr.Accordion.update(visible=True))
def vote_last_response(state, vote_type, model_selector, request: gr.Request):
with open(get_conv_log_filename(), "a") as fout:
data = {
"tstamp": round(time.time(), 4),
"type": vote_type,
"model": model_selector,
"state": state.dict(),
"ip": request.client.host,
}
fout.write(json.dumps(data) + "\n")
def upvote_last_response(state, model_selector, request: gr.Request):
logger.info(f"upvote. ip: {request.client.host}")
vote_last_response(state, "upvote", model_selector, request)
return ("",) + (disable_btn,) * 3
def downvote_last_response(state, model_selector, request: gr.Request):
logger.info(f"downvote. ip: {request.client.host}")
vote_last_response(state, "downvote", model_selector, request)
return ("",) + (disable_btn,) * 3
def flag_last_response(state, model_selector, request: gr.Request):
logger.info(f"flag. ip: {request.client.host}")
vote_last_response(state, "flag", model_selector, request)
return ("",) + (disable_btn,) * 3
def regenerate(state, image_process_mode, with_debug_parameter_from_state, request: gr.Request):
logger.info(f"regenerate. ip: {request.client.host}")
state.messages[-1][-1] = None
prev_human_msg = state.messages[-2]
if type(prev_human_msg[1]) in (tuple, list):
prev_human_msg[1] = (*prev_human_msg[1][:2], image_process_mode)
state.skip_next = False
return (state, state.to_gradio_chatbot(with_debug_parameter=with_debug_parameter_from_state), "", None, None) + (disable_btn,) * 5
def clear_history(with_debug_parameter_from_state, request: gr.Request):
logger.info(f"clear_history. ip: {request.client.host}")
state = default_conversation.copy()
return (state, state.to_gradio_chatbot(with_debug_parameter=with_debug_parameter_from_state), "", None, None) + (disable_btn,) * 5
def change_debug_state(state, with_debug_parameter_from_state, request: gr.Request):
logger.info(f"change_debug_state. ip: {request.client.host}")
print("with_debug_parameter_from_state: ", with_debug_parameter_from_state)
with_debug_parameter_from_state = not with_debug_parameter_from_state
# modify the text on debug_btn
debug_btn_value = "🈚 Prog (off)" if not with_debug_parameter_from_state else "🈢 Prog (on)"
debug_btn_update = gr.Button.update(
value=debug_btn_value,
)
state_update = with_debug_parameter_from_state
return (state, state.to_gradio_chatbot(with_debug_parameter=with_debug_parameter_from_state), "", None) + (debug_btn_update, state_update)
def add_text(state, text, image_dict, ref_image_dict, image_process_mode, with_debug_parameter_from_state, request: gr.Request):
# dict_keys(['image', 'mask'])
if image_dict is not None:
image = image_dict['image']
else:
image = None
logger.info(f"add_text. ip: {request.client.host}. len: {len(text)}")
if len(text) <= 0 and image is None:
state.skip_next = True
return (state, state.to_gradio_chatbot(with_debug_parameter=with_debug_parameter_from_state), "", None) + (no_change_btn,) * 5
if args.moderate:
flagged = violates_moderation(text)
if flagged:
state.skip_next = True
return (state, state.to_gradio_chatbot(with_debug_parameter=with_debug_parameter_from_state), moderation_msg, None) + (
no_change_btn,) * 5
text = text[:1536] # Hard cut-off
if image is not None:
text = text[:1200] # Hard cut-off for images
if '<image>' not in text:
text = text + '\n<image>'
text = (text, image, image_process_mode)
state = default_conversation.copy()
# a hack, for mask
sketch_mask = image_dict['mask']
if sketch_mask is not None:
text = (text[0], text[1], text[2], sketch_mask)
# check if visual prompt is used
bounding_box = get_mask_bbox(sketch_mask)
if bounding_box is not None:
text_input_new = text[0] + f"\nInput box: {bounding_box}"
text = (text_input_new, text[1], text[2], text[3])
if ref_image_dict is not None:
# text = (text[0], text[1], text[2], text[3], {
# 'ref_image': ref_image_dict['image'],
# 'ref_mask': ref_image_dict['mask']
# })
state.reference_image = b64_encode(ref_image_dict['image'])
state.reference_mask = b64_encode(ref_image_dict['mask'])
state.append_message(state.roles[0], text)
state.append_message(state.roles[1], None)
state.skip_next = False
return (state, state.to_gradio_chatbot(with_debug_parameter=with_debug_parameter_from_state), "", None, None) + (disable_btn,) * 6
def http_bot(state, model_selector, temperature, top_p, max_new_tokens, with_debug_parameter_from_state, request: gr.Request):
logger.info(f"http_bot. ip: {request.client.host}")
start_tstamp = time.time()
model_name = model_selector
if state.skip_next:
# This generate call is skipped due to invalid inputs
yield (state, state.to_gradio_chatbot(with_debug_parameter=with_debug_parameter_from_state)) + (no_change_btn,) * 6
return
if len(state.messages) == state.offset + 2:
# # First round of conversation
if "llava" in model_name.lower():
if 'llama-2' in model_name.lower():
template_name = "llava_llama_2"
elif "v1" in model_name.lower():
if 'mmtag' in model_name.lower():
template_name = "v1_mmtag"
elif 'plain' in model_name.lower() and 'finetune' not in model_name.lower():
template_name = "v1_mmtag"
else:
template_name = "llava_v1"
elif "mpt" in model_name.lower():
template_name = "mpt"
else:
if 'mmtag' in model_name.lower():
template_name = "v0_mmtag"
elif 'plain' in model_name.lower() and 'finetune' not in model_name.lower() and 'tools' not in model_name.lower():
template_name = "v0_mmtag"
else:
template_name = "llava_v0"
elif "mpt" in model_name:
template_name = "mpt_text"
elif "llama-2" in model_name:
template_name = "llama_2"
else:
template_name = "vicuna_v1"
print("template_name: ", template_name)
# # hack:
# # template_name = "multimodal_tools"
# # import ipdb; ipdb.set_trace()
# # image_name = [hashlib.md5(image.tobytes()).hexdigest() for image in state.get_images(return_pil=True)][0]
new_state = conv_templates[template_name].copy()
# if len(new_state.roles) == 2:
# new_state.roles = tuple(list(new_state.roles) + ["system"])
# new_state.append_message(new_state.roles[2], f"receive an image with name `{image_name}.jpg`")
new_state.append_message(new_state.roles[0], state.messages[-2][1])
new_state.append_message(new_state.roles[1], None)
# for reference image
new_state.reference_image = getattr(state, 'reference_image', None)
new_state.reference_mask = getattr(state, 'reference_mask', None)
# update
state = new_state
print("Messages:", state.messages)
# Query worker address
controller_url = args.controller_url
ret = requests.post(controller_url + "/get_worker_address",
json={"model": model_name})
worker_addr = ret.json()["address"]
logger.info(f"model_name: {model_name}, worker_addr: {worker_addr}")
# No available worker
if worker_addr == "":
state.messages[-1][-1] = server_error_msg
yield (state, state.to_gradio_chatbot(with_debug_parameter=with_debug_parameter_from_state), disable_btn, disable_btn, disable_btn, enable_btn, enable_btn, enable_btn)
return
# Construct prompt
prompt = state.get_prompt()
# import ipdb; ipdb.set_trace()
# Save images
all_images = state.get_images(return_pil=True)
all_image_hash = [hashlib.md5(image.tobytes()).hexdigest()
for image in all_images]
for image, hash in zip(all_images, all_image_hash):
t = datetime.datetime.now()
filename = os.path.join(
LOGDIR, "serve_images", f"{t.year}-{t.month:02d}-{t.day:02d}", f"{hash}.jpg")
if not os.path.isfile(filename):
os.makedirs(os.path.dirname(filename), exist_ok=True)
image.save(filename)
# import ipdb; ipdb.set_trace()
# Make requests
pload = {
"model": model_name,
"prompt": prompt,
"temperature": float(temperature),
"top_p": float(top_p),
"max_new_tokens": min(int(max_new_tokens), 1536),
"stop": state.sep if state.sep_style in [SeparatorStyle.SINGLE, SeparatorStyle.MPT] else state.sep2,
"images": f'List of {len(state.get_images())} images: {all_image_hash}',
}
logger.info(f"==== request ====\n{pload}\n==== request ====")
pload['images'] = state.get_images()
state.messages[-1][-1] = "β–Œ"
yield (state, state.to_gradio_chatbot(with_debug_parameter=with_debug_parameter_from_state)) + (disable_btn,) * 6
try:
# Stream output
response = requests.post(worker_addr + "/worker_generate_stream",
headers=headers, json=pload, stream=True, timeout=10)
# import ipdb; ipdb.set_trace()
for chunk in response.iter_lines(decode_unicode=False, delimiter=b"\0"):
if chunk:
data = json.loads(chunk.decode())
if data["error_code"] == 0:
output = data["text"][len(prompt):].strip()
state.messages[-1][-1] = output + "β–Œ"
yield (state, state.to_gradio_chatbot(with_debug_parameter=with_debug_parameter_from_state)) + (disable_btn,) * 6
else:
output = data["text"] + \
f" (error_code: {data['error_code']})"
state.messages[-1][-1] = output
yield (state, state.to_gradio_chatbot(with_debug_parameter=with_debug_parameter_from_state)) + (disable_btn, disable_btn, disable_btn, enable_btn, enable_btn, enable_btn)
return
time.sleep(0.03)
except requests.exceptions.RequestException as e:
print("error: ", e)
state.messages[-1][-1] = server_error_msg
yield (state, state.to_gradio_chatbot(with_debug_parameter=with_debug_parameter_from_state)) + (disable_btn, disable_btn, disable_btn, enable_btn, enable_btn, enable_btn)
return
# remove the cursor
state.messages[-1][-1] = state.messages[-1][-1][:-1]
yield (state, state.to_gradio_chatbot(with_debug_parameter=with_debug_parameter_from_state)) + (enable_btn,) * 6
# check if we need tools
model_output_text = state.messages[-1][1]
# import ipdb; ipdb.set_trace()
print("model_output_text: ", model_output_text,
"Now we are going to parse the output.")
# parse the output
# import ipdb; ipdb.set_trace()
try:
pattern = r'"thoughtsπŸ€”"(.*)"actionsπŸš€"(.*)"valueπŸ‘‰"(.*)'
matches = re.findall(pattern, model_output_text, re.DOTALL)
# import ipdb; ipdb.set_trace()
if len(matches) > 0:
# tool_cfg = json.loads(matches[0][1].strip())
try:
tool_cfg = json.loads(matches[0][1].strip())
except Exception as e:
tool_cfg = json.loads(
matches[0][1].strip().replace("\'", "\""))
print("tool_cfg:", tool_cfg)
else:
tool_cfg = None
except Exception as e:
logger.info(f"Failed to parse tool config: {e}")
tool_cfg = None
# run tool augmentation
print("trigger tool augmentation with tool_cfg: ", tool_cfg)
if tool_cfg is not None and len(tool_cfg) > 0:
assert len(
tool_cfg) == 1, "Only one tool is supported for now, but got: {}".format(tool_cfg)
api_name = tool_cfg[0]['API_name']
tool_cfg[0]['API_params'].pop('image', None)
images = state.get_raw_images()
if len(images) > 0:
image = images[0]
else:
image = None
api_paras = {
'image': image,
"box_threshold": 0.3,
"text_threshold": 0.25,
**tool_cfg[0]['API_params']
}
if api_name in ['inpainting']:
api_paras['mask'] = getattr(state, 'mask_rle', None)
if api_name in ['openseed', 'controlnet']:
if api_name == 'controlnet':
api_paras['mask'] = getattr(state, 'image_seg', None)
api_paras['mode'] = api_name
api_name = 'controlnet'
if api_name == 'seem':
reference_image = getattr(state, 'reference_image', None)
reference_mask = getattr(state, 'reference_mask', None)
api_paras['refimg'] = reference_image
api_paras['refmask'] = reference_mask
# extract ref image and mask
# import ipdb; ipdb.set_trace()
tool_worker_addr = get_worker_addr(controller_url, api_name)
print("tool_worker_addr: ", tool_worker_addr)
tool_response = requests.post(
tool_worker_addr + "/worker_generate",
headers=headers,
json=api_paras,
).json()
tool_response_clone = copy.deepcopy(tool_response)
print("tool_response: ", tool_response)
# clean up the response
masks_rle = None
edited_image = None
image_seg = None # for openseed
iou_sort_masks = None
if 'boxes' in tool_response:
tool_response['boxes'] = [[R(_b) for _b in bb]
for bb in tool_response['boxes']]
if 'logits' in tool_response:
tool_response['logits'] = [R(_l) for _l in tool_response['logits']]
if 'scores' in tool_response:
tool_response['scores'] = [R(_s) for _s in tool_response['scores']]
if "masks_rle" in tool_response:
masks_rle = tool_response.pop("masks_rle")
if "edited_image" in tool_response:
edited_image = tool_response.pop("edited_image")
if "size" in tool_response:
_ = tool_response.pop("size")
if api_name == "easyocr":
_ = tool_response.pop("boxes")
_ = tool_response.pop("scores")
if "retrieval_results" in tool_response:
tool_response['retrieval_results'] = [
{'caption': i['caption'], 'similarity': R(i['similarity'])}
for i in tool_response['retrieval_results']
]
if "image_seg" in tool_response:
image_seg = tool_response.pop("image_seg")
if "iou_sort_masks" in tool_response:
iou_sort_masks = tool_response.pop("iou_sort_masks")
if len(tool_response) == 0:
tool_response['message'] = f"The {api_name} has processed the image."
# hack
if masks_rle is not None:
state.mask_rle = masks_rle[0]
if image_seg is not None:
state.image_seg = image_seg
# if edited_image is not None:
# edited_image
# build new response
new_response = f"{api_name} model outputs: {tool_response}\n\n"
first_question = state.messages[-2][-1]
if isinstance(first_question, tuple):
first_question = first_question[0].replace("<image>", "")
first_question = first_question.strip()
# add new response to the state
state.append_message(state.roles[0],
new_response +
"Please summarize the model outputs and answer my first question: {}".format(
first_question)
)
state.append_message(state.roles[1], None)
# Construct prompt
prompt2 = state.get_prompt()
# Make new requests
pload = {
"model": model_name,
"prompt": prompt2,
"temperature": float(temperature),
"max_new_tokens": min(int(max_new_tokens), 1536),
"stop": state.sep if state.sep_style in [SeparatorStyle.SINGLE, SeparatorStyle.MPT] else state.sep2,
"images": f'List of {len(state.get_images())} images: {all_image_hash}',
}
logger.info(f"==== request ====\n{pload}")
pload['images'] = state.get_images()
state.messages[-1][-1] = "β–Œ"
yield (state, state.to_gradio_chatbot(with_debug_parameter=with_debug_parameter_from_state)) + (disable_btn,) * 6
try:
# Stream output
response = requests.post(worker_addr + "/worker_generate_stream",
headers=headers, json=pload, stream=True, timeout=10)
# import ipdb; ipdb.set_trace()
for chunk in response.iter_lines(decode_unicode=False, delimiter=b"\0"):
if chunk:
data = json.loads(chunk.decode())
if data["error_code"] == 0:
output = data["text"][len(prompt2):].strip()
state.messages[-1][-1] = output + "β–Œ"
yield (state, state.to_gradio_chatbot(with_debug_parameter=with_debug_parameter_from_state)) + (disable_btn,) * 6
else:
output = data["text"] + \
f" (error_code: {data['error_code']})"
state.messages[-1][-1] = output
yield (state, state.to_gradio_chatbot(with_debug_parameter=with_debug_parameter_from_state)) + (disable_btn, disable_btn, disable_btn, enable_btn, enable_btn, enable_btn)
return
time.sleep(0.03)
except requests.exceptions.RequestException as e:
state.messages[-1][-1] = server_error_msg
yield (state, state.to_gradio_chatbot(with_debug_parameter=with_debug_parameter_from_state)) + (disable_btn, disable_btn, disable_btn, enable_btn, enable_btn, enable_btn)
return
# remove the cursor
state.messages[-1][-1] = state.messages[-1][-1][:-1]
# add image(s)
if edited_image is not None:
edited_image_pil = Image.open(
BytesIO(base64.b64decode(edited_image))).convert("RGB")
state.messages[-1][-1] = (state.messages[-1]
[-1], edited_image_pil, "Crop")
if image_seg is not None:
edited_image_pil = Image.open(
BytesIO(base64.b64decode(image_seg))).convert("RGB")
state.messages[-1][-1] = (state.messages[-1]
[-1], edited_image_pil, "Crop")
if iou_sort_masks is not None:
assert isinstance(
iou_sort_masks, list), "iou_sort_masks should be a list, but got: {}".format(iou_sort_masks)
edited_image_pil_list = [Image.open(
BytesIO(base64.b64decode(i))).convert("RGB") for i in iou_sort_masks]
state.messages[-1][-1] = (state.messages[-1]
[-1], edited_image_pil_list, "Crop")
if api_name in ['grounding_dino', 'ram+grounding_dino', 'blip2+grounding_dino']:
edited_image_pil = Image.open(
BytesIO(base64.b64decode(state.get_images()[0]))).convert("RGB")
edited_image_pil = plot_boxes(edited_image_pil, tool_response)
state.messages[-1][-1] = (state.messages[-1]
[-1], edited_image_pil, "Crop")
if api_name in ['grounding_dino+sam', 'grounded_sam']:
edited_image_pil = Image.open(
BytesIO(base64.b64decode(state.get_images()[0]))).convert("RGB")
edited_image_pil = plot_boxes(edited_image_pil, tool_response)
edited_image_pil = plot_masks(
edited_image_pil, tool_response_clone)
state.messages[-1][-1] = (state.messages[-1]
[-1], edited_image_pil, "Crop")
if api_name in ['sam']:
if 'points' in tool_cfg[0]['API_params']:
edited_image_pil = Image.open(
BytesIO(base64.b64decode(state.get_images()[0]))).convert("RGB")
edited_image_pil = plot_masks(
edited_image_pil, tool_response_clone)
tool_response_clone['points'] = tool_cfg[0]['API_params']['points']
tool_response_clone['point_labels'] = tool_cfg[0]['API_params']['point_labels']
edited_image_pil = plot_points(
edited_image_pil, tool_response_clone)
state.messages[-1][-1] = (state.messages[-1]
[-1], edited_image_pil, "Crop")
else:
assert 'boxes' in tool_cfg[0]['API_params'], "not find 'boxes' in {}".format(
tool_cfg[0]['API_params'].keys())
edited_image_pil = Image.open(
BytesIO(base64.b64decode(state.get_images()[0]))).convert("RGB")
edited_image_pil = plot_boxes(edited_image_pil, tool_response)
tool_response_clone['boxes'] = tool_cfg[0]['API_params']['boxes']
edited_image_pil = plot_masks(
edited_image_pil, tool_response_clone)
state.messages[-1][-1] = (state.messages[-1]
[-1], edited_image_pil, "Crop")
yield (state, state.to_gradio_chatbot(with_debug_parameter=with_debug_parameter_from_state)) + (enable_btn,) * 6
finish_tstamp = time.time()
logger.info(f"{output}")
# models = get_model_list()
# FIXME: disabled temporarily for image generation.
with open(get_conv_log_filename(), "a") as fout:
data = {
"tstamp": round(finish_tstamp, 4),
"type": "chat",
"model": model_name,
"start": round(start_tstamp, 4),
"finish": round(start_tstamp, 4),
"state": state.dict(force_str=True),
"images": all_image_hash,
"ip": request.client.host,
}
fout.write(json.dumps(data) + "\n")
title_markdown = ("""
# πŸŒ‹ LLaVA-Plus: Learning to Use Tools For Creating Multimodal Agents
## **L**arge **L**anguage **a**nd **V**ision **A**ssistants that **P**lug and **L**earn to **U**se **S**kills
[[Project Page]](https://llava-vl.github.io/llava-plus) [[Paper]](https://arxiv.org/abs/2311.05437) [[Code]](https://github.com/LLaVA-VL/LLaVA-Plus-Codebase) [[Model]]()
""")
tos_markdown = ("""
### Terms of use
By using this service, users are required to agree to the following terms:
The service is a research preview intended for non-commercial use only. It only provides limited safety measures and may generate offensive content. It must not be used for any illegal, harmful, violent, racist, or sexual purposes. The service may collect user dialogue data for future research.
Please click the "Flag" button if you get any inappropriate answer! We will collect those to keep improving our moderator.
For an optimal experience, please use desktop computers for this demo, as mobile devices may compromise its quality.
""")
learn_more_markdown = ("""
### License
The service is a research preview intended for non-commercial use only, subject to the model [License](https://github.com/facebookresearch/llama/blob/main/MODEL_CARD.md) of LLaMA, [Terms of Use](https://openai.com/policies/terms-of-use) of the data generated by OpenAI, and [Privacy Practices](https://chrome.google.com/webstore/detail/sharegpt-share-your-chatg/daiacboceoaocpibfodeljbdfacokfjb) of ShareGPT. Please contact us if you find any potential violation.
""")
def build_demo(embed_mode):
textbox = gr.Textbox(
show_label=False, placeholder="Enter text and press ENTER", visible=False, container=False)
with gr.Blocks(title="LLaVA-Plus", theme=gr.themes.Base()) as demo:
state = gr.State()
if not embed_mode:
gr.Markdown(title_markdown)
with gr.Row():
with gr.Column(scale=3):
with gr.Row(elem_id="model_selector_row"):
model_selector = gr.Dropdown(
choices=models,
value=models[0] if len(models) > 0 else "",
interactive=True,
show_label=False,
container=False)
imagebox = ImageMask()
cur_dir = os.path.dirname(os.path.abspath(__file__))
with gr.Accordion("Reference Image", open=False, visible=False) as ref_image_row:
gr.Markdown(
"The reference image is for some specific tools, like SEEM.")
ref_image_box = ImageMask()
with gr.Accordion("Parameters", open=False, visible=False) as parameter_row:
image_process_mode = gr.Radio(
["Crop", "Resize", "Pad"],
value="Crop",
label="Preprocess for non-square image")
temperature = gr.Slider(
minimum=0.0, maximum=1.0, value=0.2, step=0.1, interactive=True, label="Temperature",)
top_p = gr.Slider(
minimum=0.0, maximum=1.0, value=0.7, step=0.1, interactive=True, label="Top P",)
max_output_tokens = gr.Slider(
minimum=0, maximum=1024, value=512, step=64, interactive=True, label="Max output tokens",)
# with_debug_parameter_check_box = gr.Checkbox(label="With debug parameter", checked=args.with_debug_parameter)
with gr.Column(scale=6):
chatbot = gr.Chatbot(
elem_id="chatbot", label="LLaVA-Plus Chatbot", height=550)
with gr.Row():
with gr.Column(scale=8):
textbox.render()
with gr.Column(scale=1, min_width=60):
submit_btn = gr.Button(value="Submit", visible=False)
with gr.Row(visible=False) as button_row:
upvote_btn = gr.Button(
value="πŸ‘ Upvote", interactive=False)
downvote_btn = gr.Button(
value="πŸ‘Ž Downvote", interactive=False)
flag_btn = gr.Button(value="⚠️ Flag", interactive=False)
# stop_btn = gr.Button(value="⏹️ Stop Generation", interactive=False)
regenerate_btn = gr.Button(
value="πŸ”„ Regenerate", interactive=False)
clear_btn = gr.Button(
value="πŸ—‘οΈ Clear history", interactive=False)
debug_btn = gr.Button(
value="🈚 Prog (off)", interactive=True)
# import ipdb; ipdb.set_trace()
if args.with_debug_parameter:
debug_btn.value = "🈢 Prog (on)"
with_debug_parameter_state = gr.State(
value=args.with_debug_parameter,
)
with gr.Row():
with gr.Column():
gr.Examples(examples=[
[f"{cur_dir}/examples/frisbee.jpg",
"Detect the person and frisbee in the image."],
[f"{cur_dir}/examples/wranch_box.png",
"My bike is broken. I want to use a wrench to fix it. Can you show me the location of wrench and how to use it?"],
], inputs=[imagebox, textbox], label="Detection Examples: ")
gr.Examples(examples=[
[f"{cur_dir}/examples/mask_twitter.png",
"segment birds in the image, then tell how many birds in it"],
[f"{cur_dir}/examples/cat_comp.jpeg",
"Please detect and segment the cat and computer from the image"],
], inputs=[imagebox, textbox], label="Segmentation Examples: ")
gr.Examples(examples=[
[f"{cur_dir}/examples/tbs.webp",
"can you segment with the given box?"],
], inputs=[imagebox, textbox], label="Interactive Segmentation (Please draw a sketch to cover the full object): ")
gr.Examples(examples=[
[f"{cur_dir}/examples/tower.png",
"can you segment with multi-granularity?"],
], inputs=[imagebox, textbox], label="Multi-granularity Segmentation (Please draw a sketch as an input point): ")
gr.Examples(examples=[
[f"{cur_dir}/examples/road.png",
f"{cur_dir}/examples/road_ref2.webp",
"can you segment refer to the reference image? then describe the image"],
], inputs=[imagebox, ref_image_box, textbox], label="Reference image segmentation (Please draw a sketch at the reference box):")
with gr.Column():
gr.Examples(examples=[
[f"{cur_dir}/examples/mooncake.png",
"Describe the food in the image? search on the internet"],
[f"{cur_dir}/examples/Judas.png",
"what's the image? search on the internet"],
], inputs=[imagebox, textbox], label="Searching Examples: ")
gr.Examples(examples=[
[f"{cur_dir}/examples/calendar.png",
"make the image like autumn. then generate some attractive texts for Instagram posts"],
[f"{cur_dir}/examples/paris.png",
"i want to post a message on Instagram. add some firework to the image, and write an attractive post for my ins."],
], inputs=[imagebox, textbox], label="Editing Examples: ")
gr.Examples(examples=[
["generate a view of the city skyline of downtown Seattle in a sketch style and generate an Instagram post"],
["generate a view of the city skyline of Shenzhen in a future and technique style and generate a red book post"],
], inputs=[textbox], label="Generation Examples: ")
gr.Examples(examples=[
[f"{cur_dir}/examples/extreme_ironing.jpg",
"What is unusual about this image?"],
[f"{cur_dir}/examples/waterview.jpg",
"What are the things I should be cautious about when I visit here?"],
], inputs=[imagebox, textbox], label="Conversation Examples: ")
if not embed_mode:
gr.Markdown(tos_markdown)
gr.Markdown(learn_more_markdown)
url_params = gr.JSON(visible=False)
# Register listeners
btn_list = [upvote_btn, downvote_btn,
flag_btn, regenerate_btn, clear_btn]
upvote_btn.click(upvote_last_response,
[state, model_selector], [textbox, upvote_btn, downvote_btn, flag_btn])
downvote_btn.click(downvote_last_response,
[state, model_selector], [textbox, upvote_btn, downvote_btn, flag_btn])
flag_btn.click(flag_last_response,
[state, model_selector], [textbox, upvote_btn, downvote_btn, flag_btn])
regenerate_btn.click(regenerate, [state, image_process_mode, with_debug_parameter_state],
[state, chatbot, textbox, imagebox, ref_image_box] + btn_list).then(
http_bot, [state, model_selector, temperature, top_p,
max_output_tokens, with_debug_parameter_state],
[state, chatbot] + btn_list + [debug_btn])
clear_btn.click(clear_history, [with_debug_parameter_state], [
state, chatbot, textbox, imagebox, ref_image_box] + btn_list)
textbox.submit(add_text, [state, textbox, imagebox, ref_image_box, image_process_mode, with_debug_parameter_state], [state, chatbot, textbox, imagebox, ref_image_box] + btn_list + [debug_btn]
).then(http_bot, [state, model_selector, temperature, top_p, max_output_tokens, with_debug_parameter_state],
[state, chatbot] + btn_list + [debug_btn])
submit_btn.click(add_text, [state, textbox, imagebox, ref_image_box, image_process_mode, with_debug_parameter_state], [state, chatbot, textbox, imagebox, ref_image_box] + btn_list + [debug_btn]
).then(http_bot, [state, model_selector, temperature, top_p, max_output_tokens, with_debug_parameter_state],
[state, chatbot] + btn_list + [debug_btn])
debug_btn.click(change_debug_state, [state, with_debug_parameter_state], [
state, chatbot, textbox, imagebox] + [debug_btn, with_debug_parameter_state])
if args.model_list_mode == "once":
demo.load(load_demo, [url_params], [state, model_selector,
chatbot, textbox, submit_btn, button_row, parameter_row, ref_image_row],
_js=get_window_url_params)
elif args.model_list_mode == "reload":
demo.load(load_demo_refresh_model_list, None, [state, model_selector,
chatbot, textbox, submit_btn, button_row, parameter_row, ref_image_row])
else:
raise ValueError(
f"Unknown model list mode: {args.model_list_mode}")
return demo
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--host", type=str, default="0.0.0.0")
parser.add_argument("--port", type=int)
parser.add_argument("--controller-url", type=str,
default="http://localhost:21001")
parser.add_argument("--concurrency-count", type=int, default=8)
parser.add_argument("--model-list-mode", type=str, default="once",
choices=["once", "reload"])
parser.add_argument("--share", action="store_true")
parser.add_argument("--moderate", action="store_true")
parser.add_argument("--embed", action="store_true")
parser.add_argument("--debug", action="store_true")
parser.add_argument("--with_debug_parameter", action="store_true")
args = parser.parse_args()
logger.info(f"args: {args}")
models = get_model_list()
models = [i for i in models if 'llava' in i]
logger.info(args)
demo = build_demo(args.embed)
_app, local_url, share_url = demo.queue(concurrency_count=args.concurrency_count, status_update_rate=10,
api_open=True).launch(
server_name=args.host, server_port=args.port, share=args.share, debug=args.debug)
print("Local URL: ", local_url)
print("Share URL: ", share_url)