|
import os |
|
import json |
|
import time |
|
from tqdm import tqdm |
|
import fire |
|
|
|
import openai |
|
|
|
import concurrent.futures |
|
import random |
|
import json |
|
import time |
|
from collections import Counter |
|
from functools import partial |
|
|
|
from pycocotools.coco import COCO |
|
|
|
import requests |
|
from PIL import Image |
|
import base64 |
|
import json |
|
import time |
|
from io import BytesIO |
|
|
|
import torchvision.transforms.functional as F |
|
|
|
|
|
|
|
controller_address = "http://localhost:21001" |
|
model_name = 'grounding_dino' |
|
|
|
def get_openai_api(): |
|
|
|
return { |
|
'api_type': '', |
|
'api_version': '2023-03-15-preview', |
|
'engine': "", |
|
'api_key': "", |
|
'api_base': '', |
|
} |
|
|
|
|
|
|
|
def ask_gpt(messages, max_retries=35, temperature=0.2, top_p=0.9, max_tokens=512): |
|
if isinstance(messages, str): |
|
messages = [{"role": "user", "content": messages}] |
|
|
|
openai_kwargs = get_openai_api() |
|
|
|
for i in range(max_retries): |
|
try: |
|
response = openai.ChatCompletion.create( |
|
**openai_kwargs, |
|
messages=messages, |
|
temperature=temperature, |
|
max_tokens=max_tokens, |
|
top_p=top_p, |
|
frequency_penalty=0, |
|
presence_penalty=0, |
|
stop=None) |
|
if os.getenv('DEBUG_PRINT'): |
|
print(response['choices'][0]['message']['content']) |
|
return response['choices'][0]['message']['content'] |
|
except Exception as e: |
|
if type(e) in [openai.error.InvalidRequestError, KeyError]: |
|
print(type(e), e) |
|
return None |
|
print(type(e), e) |
|
time.sleep(2) |
|
continue |
|
|
|
|
|
def R(x): |
|
if isinstance(x, list): |
|
return [R(i) for i in x] |
|
elif isinstance(x, dict): |
|
return {k: R(v) for k, v in x.items()} |
|
elif isinstance(x, float): |
|
return round(x, 2) |
|
|
|
def load_image(image_path): |
|
img = Image.open(image_path).convert('RGB') |
|
|
|
|
|
w, h = img.size |
|
if max(h, w) > 800: |
|
if h > w: |
|
new_h = 800 |
|
new_w = int(w * 800 / h) |
|
else: |
|
new_w = 800 |
|
new_h = int(h * 800 / w) |
|
|
|
img = F.resize(img, (new_h, new_w)) |
|
return img |
|
|
|
def encode(image: Image): |
|
buffered = BytesIO() |
|
image.save(buffered, format="JPEG") |
|
img_b64_str = base64.b64encode(buffered.getvalue()).decode() |
|
buffered.close() |
|
return img_b64_str |
|
|
|
def get_worker_addr(controller_addr, model_name): |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ret = requests.post( |
|
controller_addr + "/get_worker_address", json={"model": model_name} |
|
) |
|
worker_addr = ret.json()["address"] |
|
del ret |
|
|
|
return worker_addr |
|
|
|
def generate_worker(captions_strs, objects_strs, examples, sample, image_dir): |
|
|
|
|
|
|
|
|
|
|
|
|
|
messages = [ |
|
{'role': 'system', 'content': """You are an AI visual assistant that can analyze a single image. You receive five sentences, each describing the same image you are observing. In addition, specific object locations within the image are given, along with detailed coordinates. These coordinates are in the form of bounding boxes, represented as (x1, y1, x2, y2) with floating numbers ranging from 0 to 1. These values correspond to the top left x, top left y, bottom right x, and bottom right y. |
|
Generate a question that users may be interested to ask about the image. The question should ask the AI to detect some objects in the image. The question should be answerable by the given sentences and the given object locations. |
|
The question should ask the AI to detect some objects in the image."""}, |
|
{"role": "user", "content": examples[0]['captions']+'\n'+examples[0]['objects']}, |
|
{"role": "assistant", "content": examples[0]['question']}, |
|
{"role": "user", "content": examples[1]['captions']+'\n'+examples[1]['objects']}, |
|
{"role": "assistant", "content": examples[1]['question']}, |
|
{"role": "user", "content": captions_strs + '\n' + objects_strs} |
|
] |
|
question = ask_gpt(messages, temperature=0.9, top_p=0.95) |
|
if question is None: |
|
print("question is None, return None") |
|
return None |
|
|
|
|
|
messages = [ |
|
{'role': 'system', 'content': """You are an AI visual assistant that can help to extract information from an a sentence. |
|
You will be given a question about detecting something in an image. Please extract the main object name from the question. Using '.' to concat multiple object names."""}, |
|
{"role": "user", "content": examples[0]['question']}, |
|
{"role": "assistant", "content": examples[0]['grounding_dino_input']}, |
|
{"role": "user", "content": examples[1]['question']}, |
|
{"role": "assistant", "content": examples[1]['grounding_dino_input']}, |
|
{"role": "user", "content": "Please detect the green car in the image."}, |
|
{"role": "assistant", "content": "green car"}, |
|
{"role": "user", "content": question} |
|
] |
|
grounding_dino_input = ask_gpt(messages, temperature=0.9, top_p=0.95) |
|
if grounding_dino_input is None: |
|
print("grounding_dino_input is None, return None") |
|
return None |
|
|
|
|
|
|
|
|
|
worker_addr = get_worker_addr(controller_address, model_name) |
|
headers = {"User-Agent": "GSAM Client"} |
|
|
|
img_path = os.path.join(image_dir, sample['file_name']) |
|
img = load_image(img_path) |
|
img_arg = encode(img) |
|
ret = requests.post( |
|
worker_addr + "/worker_generate", |
|
json={ |
|
"image": img_arg, |
|
"caption": grounding_dino_input, |
|
"box_threshold": 0.3, |
|
"text_threshold": 0.25, |
|
}, |
|
headers=headers, |
|
).json() |
|
if os.getenv('DEBUG_PRINT'): |
|
print(ret) |
|
ret.pop("size") |
|
grounding_dino_output = ret |
|
|
|
|
|
q_temp = "caption: {cap}\ngrounding dino input: {gdin}\ngrounding dino output: {gdout}\nquestion: {q}\n" |
|
messages = [ |
|
{'role': 'system', 'content': """You are an AI visual assistant that can analyze a single image. |
|
You receive five sentences, each describing the same image you are observing. |
|
Then you receive the output of the grounding dino model, with its corresponding input of grounding dino. The output is a list of objects detected in the image, with their corresponding bounding boxes. These coordinates are in the form of bounding boxes, represented as (x1, y1, x2, y2) with floating numbers ranging from 0 to 1. These values correspond to the top left x, top left y, bottom right x, and bottom right y. |
|
Then you receive the question asked by the user. |
|
Answer the question based on the given information with your best. |
|
Do not reveal the input information of the image. DO NOT say that you are given the captions and the objects in the image, JUST answer the question as if you are seeing the image for the first time."""}, |
|
{'role': 'user', 'content': q_temp.format(cap=examples[0]['captions'], gdin=examples[0]['grounding_dino_input'], gdout=examples[0]['grounding_dino_output'], q=examples[0]['question'])}, |
|
{'role': 'assistant', 'content': examples[0]['answer']}, |
|
{'role': 'user', 'content': q_temp.format(cap=examples[1]['captions'], gdin=examples[1]['grounding_dino_input'], gdout=examples[1]['grounding_dino_output'], q=examples[1]['question'])}, |
|
{'role': 'assistant', 'content': examples[1]['answer']}, |
|
{'role': 'user', 'content': q_temp.format(cap=captions_strs, gdin=grounding_dino_input, gdout=grounding_dino_output, q=question)}, |
|
] |
|
answer = ask_gpt(messages, temperature=0.9, top_p=0.95) |
|
if answer is None: |
|
print("answer is None, return None") |
|
return None |
|
|
|
|
|
return { |
|
"unique_id": str(time.time()) + '_' + str(sample['id']), |
|
"image_id": sample['id'], |
|
"image_file_name": sample['file_name'], |
|
"image_path": os.path.join(image_dir, sample['file_name']), |
|
"captions": captions_strs, |
|
"objects": objects_strs, |
|
"question": question, |
|
"grounding_dino_input": grounding_dino_input, |
|
"grounding_dino_output": grounding_dino_output, |
|
"answer": answer, |
|
} |
|
|
|
|
|
def generate_data( |
|
output_file, |
|
sample_json, |
|
overwrite=False, |
|
num_workers=1, |
|
num_examples=1000, |
|
coco_caption_path="/comp_robot/liushilong/data/coco/annotations/captions_{split}2014.json", |
|
coco_object_path="/comp_robot/liushilong/data/coco/annotations/instances_{split}2014.json", |
|
image_dir="/comp_robot/liushilong/data/coco/{split}2014", |
|
split='train', |
|
seed=23123, |
|
debug=False, |
|
reference_json=None, |
|
): |
|
|
|
if not overwrite and os.path.exists(output_file): |
|
print("Loading existing data...") |
|
with open(output_file) as f: |
|
existing_examples = [json.loads(line) for line in f] |
|
print("Existing data loaded.") |
|
if len(existing_examples) >= num_examples: |
|
print("Enough examples, skip generating.") |
|
return |
|
print("Generating {} examples...".format(num_examples - len(existing_examples))) |
|
num_examples = num_examples - len(existing_examples) |
|
seed = seed + len(existing_examples) |
|
|
|
|
|
|
|
coco_cap = COCO(coco_caption_path.format(split=split)) |
|
coco_obj = COCO(coco_object_path.format(split=split)) |
|
image_dir = image_dir.format(split=split) |
|
|
|
|
|
coco_images = coco_cap.loadImgs(coco_cap.getImgIds()) |
|
coco_categories = coco_obj.loadCats(coco_obj.getCatIds()) |
|
|
|
|
|
|
|
if reference_json is not None: |
|
if seed != 20520: |
|
seed = 20520 |
|
Warning("seed is not 20520, set seed to 20520!") |
|
with open(reference_json) as f: |
|
reference_examples = json.load(f) |
|
print("Loaded reference json, {} examples".format(len(reference_examples))) |
|
reference_ids = list(set([int(item['id']) for item in reference_examples])) |
|
coco_images = [item for item in coco_images if int(item['id']) in reference_ids] |
|
print("Filtered coco images with reference json, {} -> {}".format(len(reference_ids), len(coco_images))) |
|
|
|
|
|
|
|
|
|
random.seed(seed) |
|
random.shuffle(coco_images) |
|
coco_images = coco_images[:num_examples] |
|
|
|
|
|
with open(sample_json) as f: |
|
examples = json.load(f) |
|
|
|
|
|
print("Start generating data...") |
|
with concurrent.futures.ThreadPoolExecutor(max_workers=num_workers) as executor: |
|
futures = {} |
|
for sample_idx, sample in enumerate(coco_images): |
|
|
|
captions = coco_cap.loadAnns(coco_cap.getAnnIds(sample['id'])) |
|
objects = coco_obj.loadAnns(coco_obj.getAnnIds(sample['id'])) |
|
width, height = sample['width'], sample['height'] |
|
for obj in objects: |
|
obj['bbox'] = [obj['bbox'][0] / width, obj['bbox'][1] / height, obj['bbox'][2] / width, obj['bbox'][3] / height] |
|
|
|
obj['bbox'][2] += obj['bbox'][0] |
|
obj['bbox'][3] += obj['bbox'][1] |
|
obj['bbox'] = R(obj['bbox']) |
|
|
|
captions_strs = "\n".join([cap['caption'].strip() for cap in captions]) |
|
objects_strs = "\n".join([coco_obj.loadCats(obj['category_id'])[0]['name'] + ": " + str(obj['bbox']) for obj in objects]) |
|
|
|
if debug: |
|
generate_worker(captions_strs, objects_strs, examples, sample, image_dir) |
|
continue |
|
|
|
|
|
futures[executor.submit(generate_worker, captions_strs, objects_strs, examples, sample, image_dir)] = sample_idx |
|
|
|
os.makedirs(os.path.dirname(output_file), exist_ok=True) |
|
writer = open(output_file, 'a') |
|
for future in tqdm(concurrent.futures.as_completed(futures), total=len(futures)): |
|
result = future.result() |
|
if result is None: |
|
time.sleep(0.1) |
|
continue |
|
writer.write(json.dumps(result) + '\n') |
|
writer.flush() |
|
writer.close() |
|
|
|
|
|
|
|
def main(task, **kwargs): |
|
globals()[task](**kwargs) |
|
|
|
|
|
if __name__ == "__main__": |
|
fire.Fire(main) |