csikasote's picture
End of training
c4cbcef verified
metadata
library_name: transformers
license: apache-2.0
base_model: openai/whisper-medium
tags:
  - generated_from_trainer
datasets:
  - bemgen
metrics:
  - wer
model-index:
  - name: whisper-medium-bemgen-combined-model
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: bemgen
          type: bemgen
        metrics:
          - name: Wer
            type: wer
            value: 0.3331540447504303

whisper-medium-bemgen-combined-model

This model is a fine-tuned version of openai/whisper-medium on the bemgen dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4200
  • Wer: 0.3332

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 8
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 5000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
1.7922 0.1980 200 0.8807 0.6663
1.3451 0.3960 400 0.6738 0.5310
1.1869 0.5941 600 0.5800 0.4613
0.9659 0.7921 800 0.5199 0.4211
0.8946 0.9901 1000 0.4816 0.3967
0.6349 1.1881 1200 0.4725 0.3726
0.6238 1.3861 1400 0.4549 0.3603
0.6244 1.5842 1600 0.4495 0.3648
0.5724 1.7822 1800 0.4362 0.3451
0.6594 1.9802 2000 0.4200 0.3332
0.3207 2.1782 2200 0.4395 0.3353
0.301 2.3762 2400 0.4479 0.3275
0.2863 2.5743 2600 0.4369 0.3358

Framework versions

  • Transformers 4.47.1
  • Pytorch 2.5.1+cu124
  • Datasets 3.2.0
  • Tokenizers 0.21.0