|
# How to use hybrid-quantization function |
|
|
|
## Model Source |
|
The model used in this example come from: |
|
https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/tf1_detection_zoo.md ssd_mobilenet_v2_coco |
|
|
|
## Script Usage |
|
*Usage:* |
|
``` |
|
1. python step1.py |
|
2. modify ssd_mobilenet_v2.quantization.cfg according to the prompt of step1.py |
|
3. python step2.py |
|
``` |
|
*Description:* |
|
- The default target platform in script is 'rk3566', please modify the 'target_platform' parameter of 'rknn.config' according to the actual platform. |
|
- If connecting board is required, please add the 'target' parameter in 'rknn.init_runtime'. |
|
|
|
## Expected Results |
|
This example will outputs the results of the accuracy analysis and save the result of object detection to the 'result.jpg', as follows: |
|
``` |
|
layer_name simulator_error |
|
entire single |
|
cos euc cos euc |
|
----------------------------------------------------------------------------------------------------------------------------------------------------- |
|
[Input] FeatureExtractor/MobilenetV2/MobilenetV2/input:0 1.00000 | 0.0 1.00000 | 0.0 |
|
[exDataConvert] FeatureExtractor/MobilenetV2/MobilenetV2/input:0_int8 0.99996 | 2.0377 0.99996 | 2.0377 |
|
[Conv] Conv__350:0 |
|
[Clip] FeatureExtractor/MobilenetV2/Conv/Relu6:0 0.99998 | 9.5952 0.99998 | 9.5952 |
|
[Conv] FeatureExtractor/MobilenetV2/expanded_conv/depthwise/BatchNorm/batchnorm/add_1:0 |
|
[Clip] FeatureExtractor/MobilenetV2/expanded_conv/depthwise/Relu6:0 0.99951 | 65.269 0.99957 | 61.673 |
|
|
|
.... |
|
|
|
[Concat] concat:0_before_conv 0.99817 | 9.3381 1.00000 | 0.0317 |
|
[exDataConvert] concat:0_before_conv__int8 0.99812 | 9.4634 0.99994 | 1.6116 |
|
[Conv] concat:0_int8 0.99812 | 9.4634 0.99994 | 1.6115 |
|
[exDataConvert] concat:0 0.99812 | 9.4634 0.99994 | 1.6115 |
|
``` |
|
 |
|
- Note: Different platforms, different versions of tools and drivers may have slightly different results. |