|
"""Preprocessor for codegen-350M-mono-gptj.""" |
|
import csv |
|
import json |
|
from pathlib import Path |
|
from typing import Any, Dict, List, Tuple |
|
|
|
import numpy as np |
|
import torch |
|
import triton_python_backend_utils as pb_utils |
|
from torch.nn.utils.rnn import pad_sequence |
|
from transformers import AutoTokenizer |
|
|
|
END_ID = 50256 |
|
|
|
|
|
class TritonPythonModel: |
|
"""Preprocessor for codegen-350M-mono-gptj.""" |
|
|
|
def initialize(self, args: Dict[str, Any]) -> None: |
|
"""`initialize` is called only once when the model is being loaded. |
|
|
|
Implementing `initialize` function is optional. This function allows |
|
the model to initialize any state associated with this model. |
|
|
|
Args : Dict |
|
Both keys and values are strings. The dictionary keys and values are: |
|
* model_config: A JSON string containing the model configuration |
|
* model_instance_kind: A string containing model instance kind |
|
* model_instance_device_id: A string containing model instance device ID |
|
* model_repository: Model repository path |
|
* model_version: Model version |
|
* model_name: Model name |
|
""" |
|
|
|
self.model_config = model_config = json.loads(args["model_config"]) |
|
|
|
|
|
input_names = [ |
|
"INPUT_ID", |
|
"REQUEST_INPUT_LEN", |
|
"BAD_WORDS_IDS", |
|
"STOP_WORDS_IDS", |
|
] |
|
for input_name in input_names: |
|
setattr( |
|
self, |
|
input_name.lower() + "_dtype", |
|
pb_utils.triton_string_to_numpy( |
|
pb_utils.get_output_config_by_name(model_config, input_name)[ |
|
"data_type" |
|
] |
|
), |
|
) |
|
|
|
cur_folder = Path(__file__).parent |
|
cache_dir = cur_folder / ".cache" |
|
self.tokenizer = AutoTokenizer.from_pretrained( |
|
"Salesforce/codegen-350M-mono", cache_dir=cache_dir |
|
) |
|
|
|
def execute( |
|
self, requests: List["pb_utils.InferenceRequest"] |
|
) -> List["pb_utils.InferenceResponse"]: |
|
"""Preprocess the requests. |
|
|
|
`execute` must be implemented in every Python model. `execute` |
|
function receives a list of pb_utils.InferenceRequest as the only |
|
argument. This function is called when an inference is requested |
|
for this model. Depending on the batching configuration (e.g. Dynamic |
|
Batching) used, `requests` may contain multiple requests. Every |
|
Python model, must create one pb_utils.InferenceResponse for every |
|
pb_utils.InferenceRequest in `requests`. If there is an error, you can |
|
set the error argument when creating a pb_utils.InferenceResponse. |
|
|
|
Args: |
|
requests: A list of pb_utils.InferenceRequest |
|
Returns: |
|
A list of pb_utils.InferenceResponse. The length of this list must |
|
be the same as `requests` |
|
""" |
|
responses = [] |
|
|
|
|
|
|
|
for request in requests: |
|
|
|
query = pb_utils.get_input_tensor_by_name(request, "QUERY").as_numpy() |
|
request_output_len = pb_utils.get_input_tensor_by_name( |
|
request, "REQUEST_OUTPUT_LEN" |
|
).as_numpy() |
|
|
|
bad_words_dict = pb_utils.get_input_tensor_by_name( |
|
request, "BAD_WORDS_DICT" |
|
).as_numpy() |
|
stop_words_dict = pb_utils.get_input_tensor_by_name( |
|
request, "STOP_WORDS_DICT" |
|
).as_numpy() |
|
|
|
|
|
input_id, request_input_len = self._create_request(query) |
|
bad_words = self._create_word_list(bad_words_dict) |
|
stop_words = self._create_word_list(stop_words_dict) |
|
|
|
|
|
|
|
input_id_tensor = pb_utils.Tensor( |
|
"INPUT_ID", np.array(input_id).astype(self.input_id_dtype) |
|
) |
|
request_input_len_tensor = pb_utils.Tensor( |
|
"REQUEST_INPUT_LEN", |
|
np.array(request_input_len).astype(self.request_input_len_dtype), |
|
) |
|
request_output_len_tensor = pb_utils.Tensor( |
|
"REQUEST_OUTPUT_LEN", request_output_len |
|
) |
|
bad_words_ids_tensor = pb_utils.Tensor("BAD_WORDS_IDS", bad_words) |
|
stop_words_ids_tensor = pb_utils.Tensor("STOP_WORDS_IDS", stop_words) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
inference_response = pb_utils.InferenceResponse( |
|
output_tensors=[ |
|
input_id_tensor, |
|
bad_words_ids_tensor, |
|
stop_words_ids_tensor, |
|
request_input_len_tensor, |
|
request_output_len_tensor, |
|
] |
|
) |
|
responses.append(inference_response) |
|
|
|
|
|
|
|
return responses |
|
|
|
def finalize(self) -> None: |
|
"""Unload the model. |
|
|
|
`finalize` is called only once when the model is being unloaded. |
|
Implementing `finalize` function is optional. This function allows |
|
the model to perform any necessary clean ups before exit. |
|
""" |
|
print("Cleaning up...") |
|
|
|
def _create_request(self, query: np.ndarray) -> Tuple[torch.Tensor, torch.Tensor]: |
|
"""Encode the requests as model's inputs. |
|
|
|
Args: |
|
- query: batch string (2D numpy array) |
|
""" |
|
start_ids = [ |
|
torch.IntTensor(self.tokenizer.encode(s[0].decode())) for s in query |
|
] |
|
start_lengths = torch.IntTensor([[len(ids)] for ids in start_ids]) |
|
start_ids = pad_sequence(start_ids, batch_first=True, padding_value=END_ID) |
|
|
|
return start_ids, start_lengths |
|
|
|
def _create_word_list(self, word_dict: np.ndarray) -> np.ndarray: |
|
"""Encode the word list.""" |
|
flat_ids = [] |
|
offsets = [] |
|
for word_dict_item in word_dict: |
|
item_flat_ids = [] |
|
item_offsets = [] |
|
|
|
words = list(csv.reader([word_dict_item[0].decode()]))[0] |
|
for word in words: |
|
ids = self._encode(word) |
|
|
|
if len(ids) == 0: |
|
continue |
|
|
|
item_flat_ids += ids |
|
item_offsets.append(len(ids)) |
|
|
|
flat_ids.append(np.array(item_flat_ids)) |
|
offsets.append(np.cumsum(np.array(item_offsets))) |
|
|
|
pad_to = max(1, max(len(ids) for ids in flat_ids)) |
|
|
|
for i, (ids, offs) in enumerate(zip(flat_ids, offsets)): |
|
flat_ids[i] = np.pad(ids, (0, pad_to - len(ids)), constant_values=0) |
|
offsets[i] = np.pad(offs, (0, pad_to - len(offs)), constant_values=-1) |
|
|
|
return np.array([flat_ids, offsets], dtype="int32").transpose((1, 0, 2)) |
|
|
|
def _encode(self, sentence: str) -> List[int]: |
|
"""Encode sentences into tokens.""" |
|
sentence = sentence.decode() if isinstance(sentence, bytes) else sentence |
|
return self.tokenizer.encode(sentence) |
|
|