Curt-Park
Fix postprocess with autotokenizer
a6635ad
"""Preprocessor for codegen-350M-mono-gptj."""
import csv
import json
from pathlib import Path
from typing import Any, Dict, List, Tuple
import numpy as np
import torch
import triton_python_backend_utils as pb_utils
from torch.nn.utils.rnn import pad_sequence
from transformers import AutoTokenizer
END_ID = 50256
class TritonPythonModel:
"""Preprocessor for codegen-350M-mono-gptj."""
def initialize(self, args: Dict[str, Any]) -> None:
"""`initialize` is called only once when the model is being loaded.
Implementing `initialize` function is optional. This function allows
the model to initialize any state associated with this model.
Args : Dict
Both keys and values are strings. The dictionary keys and values are:
* model_config: A JSON string containing the model configuration
* model_instance_kind: A string containing model instance kind
* model_instance_device_id: A string containing model instance device ID
* model_repository: Model repository path
* model_version: Model version
* model_name: Model name
"""
# Parse model configs
self.model_config = model_config = json.loads(args["model_config"])
# Parse model output configs and convert Triton types to numpy types
input_names = [
"INPUT_ID",
"REQUEST_INPUT_LEN",
"BAD_WORDS_IDS",
"STOP_WORDS_IDS",
]
for input_name in input_names:
setattr(
self,
input_name.lower() + "_dtype",
pb_utils.triton_string_to_numpy(
pb_utils.get_output_config_by_name(model_config, input_name)[
"data_type"
]
),
)
cur_folder = Path(__file__).parent
cache_dir = cur_folder / ".cache"
self.tokenizer = AutoTokenizer.from_pretrained(
"Salesforce/codegen-350M-mono", cache_dir=cache_dir
)
def execute(
self, requests: List["pb_utils.InferenceRequest"]
) -> List["pb_utils.InferenceResponse"]:
"""Preprocess the requests.
`execute` must be implemented in every Python model. `execute`
function receives a list of pb_utils.InferenceRequest as the only
argument. This function is called when an inference is requested
for this model. Depending on the batching configuration (e.g. Dynamic
Batching) used, `requests` may contain multiple requests. Every
Python model, must create one pb_utils.InferenceResponse for every
pb_utils.InferenceRequest in `requests`. If there is an error, you can
set the error argument when creating a pb_utils.InferenceResponse.
Args:
requests: A list of pb_utils.InferenceRequest
Returns:
A list of pb_utils.InferenceResponse. The length of this list must
be the same as `requests`
"""
responses = []
# Every Python backend must iterate over everyone of the requests
# and create a pb_utils.InferenceResponse for each of them.
for request in requests:
# Get input tensors
query = pb_utils.get_input_tensor_by_name(request, "QUERY").as_numpy()
request_output_len = pb_utils.get_input_tensor_by_name(
request, "REQUEST_OUTPUT_LEN"
).as_numpy()
bad_words_dict = pb_utils.get_input_tensor_by_name(
request, "BAD_WORDS_DICT"
).as_numpy()
stop_words_dict = pb_utils.get_input_tensor_by_name(
request, "STOP_WORDS_DICT"
).as_numpy()
# Preprocessing input data.
input_id, request_input_len = self._create_request(query)
bad_words = self._create_word_list(bad_words_dict)
stop_words = self._create_word_list(stop_words_dict)
# Create output tensors. You need pb_utils.Tensor
# objects to create pb_utils.InferenceResponse.
input_id_tensor = pb_utils.Tensor(
"INPUT_ID", np.array(input_id).astype(self.input_id_dtype)
)
request_input_len_tensor = pb_utils.Tensor(
"REQUEST_INPUT_LEN",
np.array(request_input_len).astype(self.request_input_len_dtype),
)
request_output_len_tensor = pb_utils.Tensor(
"REQUEST_OUTPUT_LEN", request_output_len
)
bad_words_ids_tensor = pb_utils.Tensor("BAD_WORDS_IDS", bad_words)
stop_words_ids_tensor = pb_utils.Tensor("STOP_WORDS_IDS", stop_words)
# Create InferenceResponse. You can set an error here in case
# there was a problem with handling this inference request.
# Below is an example of how you can set errors in inference
# response:
#
# pb_utils.InferenceResponse(
# output_tensors=..., TritonError("An error occurred"))
inference_response = pb_utils.InferenceResponse(
output_tensors=[
input_id_tensor,
bad_words_ids_tensor,
stop_words_ids_tensor,
request_input_len_tensor,
request_output_len_tensor,
]
)
responses.append(inference_response)
# You should return a list of pb_utils.InferenceResponse. Length
# of this list must match the length of `requests` list.
return responses
def finalize(self) -> None:
"""Unload the model.
`finalize` is called only once when the model is being unloaded.
Implementing `finalize` function is optional. This function allows
the model to perform any necessary clean ups before exit.
"""
print("Cleaning up...")
def _create_request(self, query: np.ndarray) -> Tuple[torch.Tensor, torch.Tensor]:
"""Encode the requests as model's inputs.
Args:
- query: batch string (2D numpy array)
"""
start_ids = [
torch.IntTensor(self.tokenizer.encode(s[0].decode())) for s in query
]
start_lengths = torch.IntTensor([[len(ids)] for ids in start_ids])
start_ids = pad_sequence(start_ids, batch_first=True, padding_value=END_ID)
return start_ids, start_lengths
def _create_word_list(self, word_dict: np.ndarray) -> np.ndarray:
"""Encode the word list."""
flat_ids = []
offsets = []
for word_dict_item in word_dict:
item_flat_ids = []
item_offsets = []
words = list(csv.reader([word_dict_item[0].decode()]))[0]
for word in words:
ids = self._encode(word)
if len(ids) == 0:
continue
item_flat_ids += ids
item_offsets.append(len(ids))
flat_ids.append(np.array(item_flat_ids))
offsets.append(np.cumsum(np.array(item_offsets)))
pad_to = max(1, max(len(ids) for ids in flat_ids))
for i, (ids, offs) in enumerate(zip(flat_ids, offsets)):
flat_ids[i] = np.pad(ids, (0, pad_to - len(ids)), constant_values=0)
offsets[i] = np.pad(offs, (0, pad_to - len(offs)), constant_values=-1)
return np.array([flat_ids, offsets], dtype="int32").transpose((1, 0, 2))
def _encode(self, sentence: str) -> List[int]:
"""Encode sentences into tokens."""
sentence = sentence.decode() if isinstance(sentence, bytes) else sentence
return self.tokenizer.encode(sentence)