dandankim's picture
dandankim/token_classifier2
6aa952c verified
metadata
library_name: transformers
license: mit
base_model: FacebookAI/roberta-base
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: distilbert-token-classifier
    results: []

distilbert-token-classifier

This model is a fine-tuned version of FacebookAI/roberta-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0728
  • Precision: 0.9694
  • Recall: 0.9767
  • F1: 0.9730
  • Accuracy: 0.9846

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 20
  • eval_batch_size: 20
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.2
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
1.0798 1.0 119 0.5221 0.5989 0.3881 0.4710 0.8427
0.2561 2.0 238 0.1148 0.9162 0.9214 0.9188 0.9716
0.0901 3.0 357 0.0863 0.9729 0.9584 0.9656 0.9799
0.0735 4.0 476 0.0699 0.9658 0.9701 0.9680 0.9827
0.0528 5.0 595 0.0674 0.9545 0.9761 0.9652 0.9831
0.0505 6.0 714 0.0659 0.9689 0.9757 0.9723 0.9841
0.0394 7.0 833 0.0696 0.9633 0.9771 0.9701 0.9839
0.0278 8.0 952 0.0728 0.9640 0.9772 0.9706 0.9837
0.0241 9.0 1071 0.0728 0.9694 0.9767 0.9730 0.9846

Framework versions

  • Transformers 4.48.3
  • Pytorch 2.5.1+cu124
  • Datasets 3.3.2
  • Tokenizers 0.21.0