metadata
license: mit
base_model: gpt2
tags:
- generated_from_trainer
model-index:
- name: GPT2-124M-wikitext-v0.1
results: []
datasets:
- wikitext
pipeline_tag: text-generation
co2_eq_emissions:
emissions: 500
training_type: fine-tuning
source: mlco2
geographical_location: Bucharest, Romania
hardware_used: 1 x RTX 4090 GPU
🧠 GPT2-124M-wikitext-v0.1
This model is a fine-tuned version of gpt2 on the wikitext. It achieves the following results on the evaluation set:
- Loss: 2.9841
Model description
This is a practical hands-on experience for better understanding 🤗 Transformers and 🤗 Datasets. This model is GPT2(124M) fine-tuned on wikitext(103-raw-v1) on 1 x RTX 4090.
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
3.1335 | 1.0 | 57467 | 3.0363 |
3.0643 | 2.0 | 114934 | 2.9968 |
3.0384 | 3.0 | 172401 | 2.9841 |
Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu118
- Datasets 2.15.0
- Tokenizers 0.15.0