darshanmakwana's picture
Upload folder using huggingface_hub
e0c2d04 verified
# Copyright 2022, Lefebvre Dalloz Services
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from time import time
from typing import Optional, Tuple
import numpy as np
import onnx
import tensorrt as trt
import torch
from onnx import GraphProto, ModelProto, helper
from tensorrt import ICudaEngine, Logger, Runtime
from torch.nn import Linear
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer, T5ForConditionalGeneration, TensorType
from transformers.modeling_outputs import BaseModelOutputWithPastAndCrossAttentions, Seq2SeqLMOutput
from transformers.models.t5.modeling_t5 import T5Stack
from transformer_deploy.backends.ort_utils import create_model_for_provider, inference_onnx_binding
from transformer_deploy.backends.pytorch_utils import convert_to_onnx
from transformer_deploy.backends.trt_utils import TensorRTShape, build_engine, load_engine, save_engine
# TODO pre allocate the largest possible past states and reuse it with tensorrt
# https://docs.nvidia.com/deeplearning/tensorrt/developer-guide/index.html#reusing-input-buffers
# https://docs.nvidia.com/deeplearning/tensorrt/developer-guide/index.html#empty-tensors
# load_external_data should be set to True for large models (> 2Gb)
load_external_data = False
model_name = "t5-small"
tokenizer = AutoTokenizer.from_pretrained(model_name)
input_ids: torch.Tensor = tokenizer(
"translate English to French: This model is now very fast!", return_tensors=TensorType.PYTORCH
).input_ids
input_ids = input_ids.to("cuda")
model: T5ForConditionalGeneration = AutoModelForSeq2SeqLM.from_pretrained(model_name)
model = model.eval()
model = model.to("cuda")
model.config.use_cache = True
out_enc: BaseModelOutputWithPastAndCrossAttentions = model.encoder(input_ids=input_ids)
out_full: Seq2SeqLMOutput = model(input_ids=input_ids, decoder_input_ids=input_ids)
num_layers = model.config.num_layers
model = model.to("cuda")
def are_equal(a: torch.Tensor, b: torch.Tensor, atol: float = 5e-1) -> None:
assert np.allclose(a=a.detach().cpu().numpy(), b=b.detach().cpu().numpy(), atol=atol), f"{a}\n\nVS\n\n{b}"
convert_to_onnx(
model_pytorch=model.encoder,
output_path="test-enc.onnx",
inputs_pytorch={"input_ids": input_ids},
var_output_seq=True,
quantization=False,
output_names=["output"],
load_external_data=load_external_data,
)
enc_onnx = create_model_for_provider("test-enc.onnx", "CUDAExecutionProvider")
enc_onnx_out = inference_onnx_binding(
model_onnx=enc_onnx,
inputs={"input_ids": input_ids},
device=input_ids.device.type,
)["output"]
are_equal(a=enc_onnx_out, b=out_enc.last_hidden_state)
class ExportT5(torch.nn.Module):
def __init__(self, decoder: T5Stack, lm_head: Linear):
super(ExportT5, self).__init__()
self.decoder = decoder
self.lm_head = lm_head
def forward(
self,
input_ids: torch.Tensor,
encoder_hidden_states: torch.Tensor,
final_seq_len: Optional[torch.Tensor],
past_key_values: Tuple = None,
):
out_dec = self.decoder.forward(
input_ids=input_ids, encoder_hidden_states=encoder_hidden_states, past_key_values=past_key_values
)
# Rescale output before projecting on vocab
out_dec["last_hidden_state"] = out_dec["last_hidden_state"] * (model.model_dim**-0.5)
out_dec["last_hidden_state"] = self.lm_head(out_dec["last_hidden_state"])
out_dec["past_key_values"] = list(out_dec["past_key_values"])
for i, layer_out in enumerate(out_dec["past_key_values"]): # type: int, Tuple
assert len(layer_out) == 4
layer_out_l = list(layer_out)
for j, l in enumerate(layer_out): # type: int, torch.Tensor
if j <= 1:
layer_out_l[j] = l[:, :, : final_seq_len[0], :]
else:
layer_out_l[j] = l
out_dec["past_key_values"][i] = tuple(layer_out_l)
out_dec["past_key_values"] = tuple(out_dec["past_key_values"])
return out_dec
model.cuda()
model_decoder = ExportT5(decoder=model.decoder, lm_head=model.lm_head).eval()
out_model_export: torch.Tensor = model_decoder(
input_ids=input_ids,
encoder_hidden_states=out_enc.last_hidden_state,
final_seq_len=torch.tensor([input_ids.shape[1]], dtype=torch.int32),
)
are_equal(a=out_model_export["last_hidden_state"], b=out_full.logits)
model_decoder.cuda()
# decoder output one step before
out_dec_pytorch = model_decoder(
input_ids=input_ids[:, :-1],
encoder_hidden_states=out_enc.last_hidden_state,
final_seq_len=torch.tensor([1], dtype=torch.int32),
)
model_inputs = {
"input_ids": input_ids[:, -1:].type(torch.int32),
"encoder_hidden_states": out_enc.last_hidden_state,
"past_key_values": out_dec_pytorch.past_key_values,
"final_seq_len": torch.tensor([1], dtype=torch.int32), # make it a 1 dim array
}
input_names = ["input_ids", "encoder_hidden_states", "final_seq_len"]
for i in range(num_layers):
input_names.append(f"past_key_values.{i}.decoder.key")
input_names.append(f"past_key_values.{i}.decoder.value")
input_names.append(f"past_key_values.{i}.encoder.key")
input_names.append(f"past_key_values.{i}.encoder.value")
output_names = ["logits"]
for i in range(num_layers):
output_names.append(f"present.{i}.decoder.key")
output_names.append(f"present.{i}.decoder.value")
output_names.append(f"present.{i}.encoder.key")
output_names.append(f"present.{i}.encoder.value")
dynamic_axis = {
"input_ids": {0: "batch", 1: "decoder_sequence"},
"encoder_hidden_states": {0: "batch", 1: "encoder_sequence_length"},
"logits": {0: "batch", 1: "decoder_sequence"},
}
for i in range(num_layers):
dynamic_axis[f"past_key_values.{i}.decoder.key"] = {0: "batch", 2: "past_decoder_sequence"}
dynamic_axis[f"past_key_values.{i}.decoder.value"] = {0: "batch", 2: "past_decoder_sequence"}
dynamic_axis[f"past_key_values.{i}.encoder.key"] = {0: "batch", 2: "encoder_sequence_length"}
dynamic_axis[f"past_key_values.{i}.encoder.value"] = {0: "batch", 2: "encoder_sequence_length"}
dynamic_axis[f"present.{i}.decoder.key"] = {0: "batch", 2: "decoder_sequence"}
dynamic_axis[f"present.{i}.decoder.value"] = {0: "batch", 2: "decoder_sequence"}
dynamic_axis[f"present.{i}.encoder.key"] = {0: "batch", 2: "encoder_sequence_length"}
dynamic_axis[f"present.{i}.encoder.value"] = {0: "batch", 2: "encoder_sequence_length"}
with torch.no_grad():
model.config.return_dict = True
model.eval()
# export can works with named args but the dict containing named args as to be last element of the args tuple
torch.onnx.export(
model_decoder,
(model_inputs,),
f="test-dec-cache.onnx",
input_names=input_names,
output_names=output_names,
dynamic_axes=dynamic_axis,
do_constant_folding=True,
opset_version=13,
)
model_inputs_no_cache = {
"input_ids": input_ids.type(dtype=torch.int32),
"encoder_hidden_states": out_enc.last_hidden_state,
"final_seq_len": torch.tensor([input_ids.shape[1]], dtype=torch.int32),
}
with torch.no_grad():
model.config.return_dict = True
model.eval()
# export can works with named args but the dict containing named args as to be last element of the args tuple
torch.onnx.export(
model_decoder,
(model_inputs_no_cache,),
f="test-dec-no-cache.onnx",
input_names=list(model_inputs_no_cache.keys()),
output_names=output_names,
dynamic_axes={k: v for k, v in dynamic_axis.items() if "past_key_values" not in k},
do_constant_folding=True,
opset_version=13,
)
_ = model_decoder.cpu() # free cuda memory
onnx_model_no_cache_fp16 = onnx.load("test-dec-no-cache.onnx")
onnx_model_cache_fp16 = onnx.load("test-dec-cache.onnx")
assert len(onnx_model_cache_fp16.graph.output) == len(onnx_model_no_cache_fp16.graph.output)
final_output = list()
for node in onnx_model_cache_fp16.graph.output:
new_output = onnx.helper.make_empty_tensor_value_info(node.name)
new_output.CopyFrom(node)
final_output.append(new_output)
final_node_names = [n.name for n in final_output]
for node in onnx_model_cache_fp16.graph.output:
node.name += "-cache"
for node in onnx_model_cache_fp16.graph.node:
assert len(node.output) == 1
if node.output[0] in final_node_names:
node.output[0] += "-cache"
for idx, i in enumerate(node.input):
if i in final_node_names:
node.input[idx] += "-cache"
for node in onnx_model_no_cache_fp16.graph.output:
node.name += "-no-cache"
for node in onnx_model_no_cache_fp16.graph.node:
assert len(node.output) == 1
if node.output[0] in final_node_names:
node.output[0] += "-no-cache"
for idx, i in enumerate(node.input):
if i in final_node_names:
node.input[idx] += "-no-cache"
onnx.checker.check_model(onnx_model_cache_fp16)
onnx.checker.check_model(onnx_model_no_cache_fp16)
prefix = "cache_node_"
mapping_initializer_cache_to_no_cache = dict()
to_add = list()
for node_cache in onnx_model_cache_fp16.graph.initializer:
found = False
for node_no_cache in onnx_model_no_cache_fp16.graph.initializer:
if node_cache.raw_data == node_no_cache.raw_data:
found = True
mapping_initializer_cache_to_no_cache[node_cache.name] = node_no_cache.name
break
if not found:
node_cache.name = prefix + node_cache.name
to_add.append(node_cache)
mapping_initializer_cache_to_no_cache[node_cache.name] = node_cache.name
print(f"name: {node_cache.name} - size: {len(node_cache.raw_data)/1024:.2f}")
onnx_model_no_cache_fp16.graph.initializer.extend(to_add)
# I/O model names should not be prefixed
model_io_names = [
n.name
for n in list(onnx_model_cache_fp16.graph.input)
+ list(onnx_model_cache_fp16.graph.output)
+ list(onnx_model_no_cache_fp16.graph.input)
+ list(onnx_model_no_cache_fp16.graph.output)
]
for node in onnx_model_cache_fp16.graph.node:
for index, input_name in enumerate(node.input):
if input_name in model_io_names:
continue
node.input[index] = mapping_initializer_cache_to_no_cache.get(input_name, prefix + input_name)
for index, output_name in enumerate(node.output):
if output_name in model_io_names:
continue
node.output[index] = prefix + output_name
node.name = prefix + node.name
prefix = "init_"
cache = dict()
for node in onnx_model_no_cache_fp16.graph.initializer:
if node.name in model_io_names:
new_name = prefix + node.name
cache[node.name] = new_name
node.name = new_name
for node in onnx_model_no_cache_fp16.graph.node:
for input_index, n in enumerate(node.input):
node.input[input_index] = cache.get(n, n)
# mandatory for subgraph in if/else node
assert len(onnx_model_cache_fp16.graph.output) == len(onnx_model_no_cache_fp16.graph.output)
graph_cache: onnx.GraphProto = onnx.helper.make_graph(
nodes=list(onnx_model_cache_fp16.graph.node),
name="graph-cache",
inputs=[],
outputs=list(onnx_model_cache_fp16.graph.output),
initializer=[],
)
graph_no_cache: onnx.GraphProto = onnx.helper.make_graph(
nodes=list(onnx_model_no_cache_fp16.graph.node),
name="graph-no-cache",
inputs=[],
outputs=list(onnx_model_no_cache_fp16.graph.output),
initializer=[],
)
enable_cache_input = onnx.helper.make_tensor_value_info(name="enable_cache", elem_type=onnx.TensorProto.BOOL, shape=[1])
if_node = onnx.helper.make_node(
op_type="If",
inputs=["enable_cache"],
outputs=[o.name for o in final_output],
then_branch=graph_cache,
else_branch=graph_no_cache,
)
if_graph_def: GraphProto = helper.make_graph(
nodes=[if_node],
name="if-model",
inputs=list(onnx_model_cache_fp16.graph.input) + [enable_cache_input],
outputs=final_output,
initializer=list(onnx_model_no_cache_fp16.graph.initializer),
)
model_def: ModelProto = helper.make_model(
if_graph_def, producer_name="onnx-example", opset_imports=[helper.make_opsetid(onnx.defs.ONNX_DOMAIN, 13)]
)
onnx.save(model_def, "test-dec-if.onnx")
trt_logger: Logger = trt.Logger(trt.Logger.ERROR)
runtime: Runtime = trt.Runtime(trt_logger)
trt_model_name = "trt-t5-dec.plan"
# 768 for base model, 512 for small, make it dependent from the Pytorch model configuration
shape, seq_len = input_ids.shape
input_id_shape = TensorRTShape(min_shape=[4, 1], optimal_shape=[4, 1], max_shape=[4, 200], input_name="input_ids")
encoder_hidden_states_shape = TensorRTShape(
min_shape=[4, 1, 512],
optimal_shape=[4, 10, 512],
max_shape=[4, 200, 512],
input_name="encoder_hidden_states",
)
final_seq_len = TensorRTShape(
min_shape=[1],
optimal_shape=[1],
max_shape=[1],
input_name="final_seq_len",
)
shape_tensors = [final_seq_len]
input_shapes = [input_id_shape, encoder_hidden_states_shape, final_seq_len]
for i in range(num_layers):
input_shapes.append(
TensorRTShape(
min_shape=[4, 8, 0, 64],
optimal_shape=[4, 8, 100, 64],
max_shape=[4, 8, 200, 64],
input_name=f"past_key_values.{i}.decoder.key",
)
)
input_shapes.append(
TensorRTShape(
min_shape=[4, 8, 0, 64],
optimal_shape=[4, 8, 100, 64],
max_shape=[4, 8, 200, 64],
input_name=f"past_key_values.{i}.decoder.value",
)
)
input_shapes.append(
TensorRTShape(
min_shape=[4, 8, 0, 64],
optimal_shape=[4, 8, 10, 64],
max_shape=[4, 8, 200, 64],
input_name=f"past_key_values.{i}.encoder.key",
)
)
input_shapes.append(
TensorRTShape(
min_shape=[4, 8, 0, 64],
optimal_shape=[4, 8, 10, 64],
max_shape=[4, 8, 200, 64],
input_name=f"past_key_values.{i}.encoder.value",
)
)
command_line_min = []
command_line_opt = []
command_line_max = []
for i in input_shapes:
command_line_min.append(f"{i.input_name}:{'x'.join([str(s) for s in i.min_shape])}")
command_line_opt.append(f"{i.input_name}:{'x'.join([str(s) for s in i.optimal_shape])}")
command_line_max.append(f"{i.input_name}:{'x'.join([str(s) for s in i.max_shape])}")
print(
"/usr/src/tensorrt/bin/trtexec --onnx=test-dec-if.onnx --useSpinWait --verbose --dumpLayerInfo "
"--profilingVerbosity=detailed --minShapes="
+ ",".join(command_line_min)
+ " --optShapes="
+ ",".join(command_line_opt)
+ " --maxShapes="
+ ",".join(command_line_max)
+ f"--saveEngine='{trt_model_name}' |& > logs.txt"
)
engine: ICudaEngine = build_engine(
runtime=runtime,
onnx_file_path="test-dec-if.onnx",
logger=trt_logger,
workspace_size=20000 * 1024**2,
fp16=False, # for tests only
int8=False,
input_shapes=input_shapes,
shape_tensors=shape_tensors,
# fp16_fix=get_fix_fp16_network_func(keep_fp32=keep_fp32),
)
save_engine(engine, trt_model_name)
tensorrt_model = load_engine(runtime=runtime, engine_file_path=trt_model_name)
c = {
"input_ids": torch.ones((4, 1), dtype=torch.int32, device="cuda"),
"encoder_hidden_states": torch.ones((4, 10, 512), dtype=torch.float32, device="cuda"),
"final_seq_len": torch.tensor([1], dtype=torch.int32, device="cuda"),
"enable_cache": torch.tensor([True], dtype=torch.bool, device="cuda"),
}
for i in range(num_layers):
c[f"past_key_values.{i}.decoder.key"] = torch.zeros([4, 8, 100, 64], dtype=torch.float32)
c[f"past_key_values.{i}.decoder.value"] = torch.zeros([4, 8, 100, 64], dtype=torch.float32)
c[f"past_key_values.{i}.encoder.key"] = torch.zeros([4, 8, 10, 64], dtype=torch.float32)
c[f"past_key_values.{i}.encoder.value"] = torch.zeros([4, 8, 10, 64], dtype=torch.float32)
for _ in range(100):
_ = tensorrt_model(c)
start = time()
for _ in range(100):
_ = tensorrt_model(c)
print((time() - start) / 100)
a = tensorrt_model(c)
print(a)