emotion_recognition / README.md
daryfauzan's picture
End of training
d3ec5ef verified
|
raw
history blame
3 kB
metadata
license: apache-2.0
base_model: google/vit-base-patch16-224-in21k
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: emotion_recognition
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.6125

emotion_recognition

This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.2014
  • Accuracy: 0.6125

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine_with_restarts
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy
2.0842 1.0 10 2.0668 0.175
2.039 2.0 20 2.0070 0.2875
1.9285 3.0 30 1.8789 0.4062
1.7699 4.0 40 1.6942 0.425
1.6135 5.0 50 1.5758 0.4313
1.5056 6.0 60 1.4884 0.55
1.3896 7.0 70 1.3999 0.5437
1.2804 8.0 80 1.3563 0.5437
1.2043 9.0 90 1.3244 0.55
1.1231 10.0 100 1.2775 0.6062
1.0652 11.0 110 1.2567 0.575
1.0005 12.0 120 1.2833 0.5563
0.9878 13.0 130 1.2277 0.5687
0.9714 14.0 140 1.2557 0.5563
0.9057 15.0 150 1.2187 0.6125
0.8854 16.0 160 1.2612 0.5437
0.8478 17.0 170 1.2450 0.5437
0.8601 18.0 180 1.2456 0.5375
0.8498 19.0 190 1.2413 0.5875
0.8775 20.0 200 1.1928 0.6

Framework versions

  • Transformers 4.42.4
  • Pytorch 2.4.0+cu121
  • Datasets 2.21.0
  • Tokenizers 0.19.1