code
stringlengths
75
104k
docstring
stringlengths
1
46.9k
def val_to_edge(edges, x): """Convert axis coordinate to bin index.""" edges = np.array(edges) w = edges[1:] - edges[:-1] w = np.insert(w, 0, w[0]) ibin = np.digitize(np.array(x, ndmin=1), edges - 0.5 * w) - 1 ibin[ibin < 0] = 0 return ibin
Convert axis coordinate to bin index.
def propose_live(self): """Return a live point/axes to be used by other sampling methods.""" # Copy a random live point. i = self.rstate.randint(self.nlive) u = self.live_u[i, :] # Check for ellipsoid overlap. ell_idxs = self.mell.within(u) nidx = len(ell_idxs) # Automatically trigger an update if we're not in any ellipsoid. if nidx == 0: try: # Expected ln(prior volume) at a given iteration. expected_vol = math.exp(self.saved_logvol[-1] - self.dlv) except: # Expected ln(prior volume) at the first iteration. expected_vol = math.exp(-self.dlv) pointvol = expected_vol / self.nlive # minimum point volume # Update the bounding ellipsoids. bound = self.update(pointvol) if self.save_bounds: self.bound.append(bound) self.nbound += 1 self.since_update = 0 # Check for ellipsoid overlap (again). ell_idxs = self.mell.within(u) nidx = len(ell_idxs) # Pick a random ellipsoid that encompasses `u`. ell_idx = ell_idxs[self.rstate.randint(nidx)] # Choose axes. if self.sampling in ['rwalk', 'rstagger', 'rslice']: ax = self.mell.ells[ell_idx].axes elif self.sampling == 'slice': ax = self.mell.ells[ell_idx].paxes else: ax = np.identity(self.npdim) return u, ax
Return a live point/axes to be used by other sampling methods.
def createNoiseExperimentArgs(): """Run the probability of false negatives with noise experiment.""" experimentArguments = [] n = 6000 for a in [128]: noisePct = 0.75 while noisePct <= 0.85: noise = int(round(noisePct*a,0)) # Some parameter combinations are just not worth running! experimentArguments.append( ("./sdr_calculations2", "results_noise_10m/temp_"+str(n)+"_"+str(a)+"_"+str(noise)+"_30.csv", "200000", str(n), str(a), str(noise)) ) noisePct += 0.05 return experimentArguments
Run the probability of false negatives with noise experiment.
def grey_erosion(image, radius=None, mask=None, footprint=None): '''Perform a grey erosion with masking''' if footprint is None: if radius is None: footprint = np.ones((3,3),bool) radius = 1 else: footprint = strel_disk(radius)==1 else: radius = max(1, np.max(np.array(footprint.shape) // 2)) iradius = int(np.ceil(radius)) # # Do a grey_erosion with masked pixels = 1 so they don't participate # big_image = np.ones(np.array(image.shape)+iradius*2) big_image[iradius:-iradius,iradius:-iradius] = image if not mask is None: not_mask = np.logical_not(mask) big_image[iradius:-iradius,iradius:-iradius][not_mask] = 1 processed_image = scind.grey_erosion(big_image, footprint=footprint) final_image = processed_image[iradius:-iradius,iradius:-iradius] if not mask is None: final_image[not_mask] = image[not_mask] return final_image
Perform a grey erosion with masking
def _dispatch_call_args(cls=None, bound_call=None, unbound_call=None, attr='_call'): """Check the arguments of ``_call()`` or similar for conformity. The ``_call()`` method of `Operator` is allowed to have the following signatures: Python 2 and 3: - ``_call(self, x)`` - ``_call(self, vec, out)`` - ``_call(self, x, out=None)`` Python 3 only: - ``_call(self, x, *, out=None)`` (``out`` as keyword-only argument) For disambiguation, the instance name (the first argument) **must** be 'self'. The name of the ``out`` argument **must** be 'out', the second argument may have any name. Additional variable ``**kwargs`` and keyword-only arguments (Python 3 only) are also allowed. Not allowed: - ``_call(self)`` -- No arguments except instance: - ``_call(x)`` -- 'self' missing, i.e. ``@staticmethod`` - ``_call(cls, x)`` -- 'self' missing, i.e. ``@classmethod`` - ``_call(self, out, x)`` -- ``out`` as second argument - ``_call(self, *x)`` -- Variable arguments - ``_call(self, x, y, out=None)`` -- more positional arguments - ``_call(self, x, out=False)`` -- default other than None for ``out`` In particular, static or class methods are not allowed. Parameters ---------- cls : `class`, optional The ``_call()`` method of this class is checked. If omitted, provide ``unbound_call`` instead to check directly. bound_call : callable, optional Check this bound method instead of ``cls`` unbound_call : callable, optional Check this unbound function instead of ``cls`` attr : string, optional Check this attribute instead of ``_call``, e.g. ``__call__`` Returns ------- has_out : bool Whether the call has an ``out`` argument out_is_optional : bool Whether the ``out`` argument is optional spec : `inspect.ArgSpec` or `inspect.FullArgSpec` Argument specification of the checked call function Raises ------ ValueError if the signature of the function is malformed """ py3 = (sys.version_info.major > 2) specs = ['_call(self, x[, **kwargs])', '_call(self, x, out[, **kwargs])', '_call(self, x, out=None[, **kwargs])'] if py3: specs += ['_call(self, x, *, out=None[, **kwargs])'] spec_msg = "\nPossible signatures are ('[, **kwargs]' means optional):\n\n" spec_msg += '\n'.join(specs) spec_msg += '\n\nStatic or class methods are not allowed.' if sum(arg is not None for arg in (cls, bound_call, unbound_call)) != 1: raise ValueError('exactly one object to check must be given') if cls is not None: # Get the actual implementation, including ancestors for parent in cls.mro(): call = parent.__dict__.get(attr, None) if call is not None: break # Static and class methods are not allowed if isinstance(call, staticmethod): raise TypeError("'{}.{}' is a static method. " "".format(cls.__name__, attr) + spec_msg) elif isinstance(call, classmethod): raise TypeError("'{}.{}' is a class method. " "".format(cls.__name__, attr) + spec_msg) elif bound_call is not None: call = bound_call if not inspect.ismethod(call): raise TypeError('{} is not a bound method'.format(call)) else: call = unbound_call if py3: # support kw-only args and annotations spec = inspect.getfullargspec(call) kw_only = spec.kwonlyargs kw_only_defaults = spec.kwonlydefaults else: spec = inspect.getargspec(call) kw_only = () kw_only_defaults = {} signature = _function_signature(call) pos_args = spec.args if unbound_call is not None: # Add 'self' to positional arg list to satisfy the checker pos_args.insert(0, 'self') pos_defaults = spec.defaults varargs = spec.varargs # Variable args are not allowed if varargs is not None: raise ValueError("bad signature '{}': variable arguments not allowed" "".format(signature) + spec_msg) if len(pos_args) not in (2, 3): raise ValueError("bad signature '{}'".format(signature) + spec_msg) true_pos_args = pos_args[1:] if len(true_pos_args) == 1: # 'out' kw-only if 'out' in true_pos_args: # 'out' positional and 'x' kw-only -> no raise ValueError("bad signature '{}': `out` cannot be the only " "positional argument" "".format(signature) + spec_msg) else: if 'out' not in kw_only: has_out = out_optional = False elif kw_only_defaults['out'] is not None: raise ValueError( "bad signature '{}': `out` can only default to " "`None`, got '{}'" "".format(signature, kw_only_defaults['out']) + spec_msg) else: has_out = True out_optional = True elif len(true_pos_args) == 2: # Both args positional if true_pos_args[0] == 'out': # out must come second py3_txt = ' or keyword-only. ' if py3 else '. ' raise ValueError("bad signature '{}': `out` can only be the " "second positional argument".format(signature) + py3_txt + spec_msg) elif true_pos_args[1] != 'out': # 'out' must be 'out' raise ValueError("bad signature '{}': output parameter must " "be called 'out', got '{}'" "".format(signature, true_pos_args[1]) + spec_msg) else: has_out = True out_optional = bool(pos_defaults) if pos_defaults and pos_defaults[-1] is not None: raise ValueError("bad signature '{}': `out` can only " "default to `None`, got '{}'" "".format(signature, pos_defaults[-1]) + spec_msg) else: # Too many positional args raise ValueError("bad signature '{}': too many positional arguments" " ".format(signature) + spec_msg) return has_out, out_optional, spec
Check the arguments of ``_call()`` or similar for conformity. The ``_call()`` method of `Operator` is allowed to have the following signatures: Python 2 and 3: - ``_call(self, x)`` - ``_call(self, vec, out)`` - ``_call(self, x, out=None)`` Python 3 only: - ``_call(self, x, *, out=None)`` (``out`` as keyword-only argument) For disambiguation, the instance name (the first argument) **must** be 'self'. The name of the ``out`` argument **must** be 'out', the second argument may have any name. Additional variable ``**kwargs`` and keyword-only arguments (Python 3 only) are also allowed. Not allowed: - ``_call(self)`` -- No arguments except instance: - ``_call(x)`` -- 'self' missing, i.e. ``@staticmethod`` - ``_call(cls, x)`` -- 'self' missing, i.e. ``@classmethod`` - ``_call(self, out, x)`` -- ``out`` as second argument - ``_call(self, *x)`` -- Variable arguments - ``_call(self, x, y, out=None)`` -- more positional arguments - ``_call(self, x, out=False)`` -- default other than None for ``out`` In particular, static or class methods are not allowed. Parameters ---------- cls : `class`, optional The ``_call()`` method of this class is checked. If omitted, provide ``unbound_call`` instead to check directly. bound_call : callable, optional Check this bound method instead of ``cls`` unbound_call : callable, optional Check this unbound function instead of ``cls`` attr : string, optional Check this attribute instead of ``_call``, e.g. ``__call__`` Returns ------- has_out : bool Whether the call has an ``out`` argument out_is_optional : bool Whether the ``out`` argument is optional spec : `inspect.ArgSpec` or `inspect.FullArgSpec` Argument specification of the checked call function Raises ------ ValueError if the signature of the function is malformed
def is_value_type_valid_for_exact_conditions(self, value): """ Method to validate if the value is valid for exact match type evaluation. Args: value: Value to validate. Returns: Boolean: True if value is a string, boolean, or number. Otherwise False. """ # No need to check for bool since bool is a subclass of int if isinstance(value, string_types) or isinstance(value, (numbers.Integral, float)): return True return False
Method to validate if the value is valid for exact match type evaluation. Args: value: Value to validate. Returns: Boolean: True if value is a string, boolean, or number. Otherwise False.
def unhandled(self, key): """Handle other keyboard actions not handled by the ListBox widget. """ self.key = key self.size = self.tui.get_cols_rows() if self.search is True: if self.enter is False and self.no_matches is False: if len(key) == 1 and key.isprintable(): self.search_string += key self._search() elif self.enter is True and not self.search_string: self.search = False self.enter = False return if not self.urls and key not in "Qq": return # No other actions are useful with no URLs if self.help_menu is False: try: self.keys[key]() except KeyError: pass
Handle other keyboard actions not handled by the ListBox widget.
def setInstrumentParameters(self, instrpars): """ This method overrides the superclass to set default values into the parameter dictionary, in case empty entries are provided. """ pri_header = self._image[0].header self.proc_unit = instrpars['proc_unit'] if self._isNotValid (instrpars['gain'], instrpars['gnkeyword']): instrpars['gnkeyword'] = 'ADCGAIN' #gain has been hardcoded below if self._isNotValid (instrpars['rdnoise'], instrpars['rnkeyword']): instrpars['rnkeyword'] = None if self._isNotValid (instrpars['exptime'], instrpars['expkeyword']): instrpars['expkeyword'] = 'EXPTIME' for chip in self.returnAllChips(extname=self.scienceExt): chip._gain= 5.4 #measured gain chip._rdnoise = self.getInstrParameter( instrpars['rdnoise'], pri_header, instrpars['rnkeyword'] ) chip._exptime = self.getInstrParameter( instrpars['exptime'], pri_header, instrpars['expkeyword'] ) if chip._gain is None or self._exptime is None: print('ERROR: invalid instrument task parameter') raise ValueError # We need to treat Read Noise as a special case since it is # not populated in the NICMOS primary header if chip._rdnoise is None: chip._rdnoise = self._getDefaultReadnoise() chip._darkrate=self._getDarkRate() chip.darkcurrent = self.getdarkcurrent() chip._effGain = chip._gain # this is used in the static mask, static mask name also defined # here, must be done after outputNames self._assignSignature(chip._chip) # Convert the science data to electrons if specified by the user. self.doUnitConversions()
This method overrides the superclass to set default values into the parameter dictionary, in case empty entries are provided.
def matrix2lha(M): """Inverse function to lha2matrix: return a LHA-like list given a tensor.""" l = [] ind = np.indices(M.shape).reshape(M.ndim, M.size).T for i in ind: l.append([j+1 for j in i] + [M[tuple(i)]]) return l
Inverse function to lha2matrix: return a LHA-like list given a tensor.
def enable_mfa_device(self, user_name, serial_number, auth_code_1, auth_code_2): """ Enables the specified MFA device and associates it with the specified user. :type user_name: string :param user_name: The username of the user :type serial_number: string :param seriasl_number: The serial number which uniquely identifies the MFA device. :type auth_code_1: string :param auth_code_1: An authentication code emitted by the device. :type auth_code_2: string :param auth_code_2: A subsequent authentication code emitted by the device. """ params = {'UserName' : user_name, 'SerialNumber' : serial_number, 'AuthenticationCode1' : auth_code_1, 'AuthenticationCode2' : auth_code_2} return self.get_response('EnableMFADevice', params)
Enables the specified MFA device and associates it with the specified user. :type user_name: string :param user_name: The username of the user :type serial_number: string :param seriasl_number: The serial number which uniquely identifies the MFA device. :type auth_code_1: string :param auth_code_1: An authentication code emitted by the device. :type auth_code_2: string :param auth_code_2: A subsequent authentication code emitted by the device.
def receipt(df): """ Return a dataframe to verify if a item has a receipt. """ mutated_df = df[['IdPRONAC', 'idPlanilhaItem']].astype(str) mutated_df['pronac_planilha_itens'] = ( f"{mutated_df['IdPRONAC']}/{mutated_df['idPlanilhaItem']}" ) return ( mutated_df .set_index(['pronac_planilha_itens']) )
Return a dataframe to verify if a item has a receipt.
def control_surface_encode(self, target, idSurface, mControl, bControl): ''' Control for surface; pending and order to origin. target : The system setting the commands (uint8_t) idSurface : ID control surface send 0: throttle 1: aileron 2: elevator 3: rudder (uint8_t) mControl : Pending (float) bControl : Order to origin (float) ''' return MAVLink_control_surface_message(target, idSurface, mControl, bControl)
Control for surface; pending and order to origin. target : The system setting the commands (uint8_t) idSurface : ID control surface send 0: throttle 1: aileron 2: elevator 3: rudder (uint8_t) mControl : Pending (float) bControl : Order to origin (float)
def lock(self, timeout=10): """ Advisory lock. Use to ensure that only one LocalSyncClient is working on the Target at the same time. """ logger.debug("Locking %s", self.lock_file) if not os.path.exists(self.lock_file): self.ensure_path(self.lock_file) with open(self.lock_file, "w"): os.utime(self.lock_file) self._lock.acquire(timeout=timeout)
Advisory lock. Use to ensure that only one LocalSyncClient is working on the Target at the same time.
def start_with(self, x): """Returns all arguments beginning with given string (or list thereof)""" _args = [] for arg in self.all: if is_collection(x): for _x in x: if arg.startswith(x): _args.append(arg) break else: if arg.startswith(x): _args.append(arg) return Args(_args, no_argv=True)
Returns all arguments beginning with given string (or list thereof)
def start_transports(self): """start thread transports.""" self.transport = Transport( self.queue, self.batch_size, self.batch_interval, self.session_factory) thread = threading.Thread(target=self.transport.loop) self.threads.append(thread) thread.daemon = True thread.start()
start thread transports.
def scopus_url(self): """URL to the abstract page on Scopus.""" scopus_url = self.coredata.find('link[@rel="scopus"]', ns) try: return scopus_url.get('href') except AttributeError: # scopus_url is None return None
URL to the abstract page on Scopus.
def known(self, words: List[str]) -> List[str]: """ Return a list of given words that found in the spelling dictionary :param str words: A list of words to check if they are in the spelling dictionary """ return list(w for w in words if w in self.__WORDS)
Return a list of given words that found in the spelling dictionary :param str words: A list of words to check if they are in the spelling dictionary
def makeCloneMap(columnsShape, outputCloningWidth, outputCloningHeight=-1): """Make a two-dimensional clone map mapping columns to clone master. This makes a map that is (numColumnsHigh, numColumnsWide) big that can be used to figure out which clone master to use for each column. Here are a few sample calls >>> makeCloneMap(columnsShape=(10, 6), outputCloningWidth=4) (array([[ 0, 1, 2, 3, 0, 1], [ 4, 5, 6, 7, 4, 5], [ 8, 9, 10, 11, 8, 9], [12, 13, 14, 15, 12, 13], [ 0, 1, 2, 3, 0, 1], [ 4, 5, 6, 7, 4, 5], [ 8, 9, 10, 11, 8, 9], [12, 13, 14, 15, 12, 13], [ 0, 1, 2, 3, 0, 1], [ 4, 5, 6, 7, 4, 5]], dtype=uint32), 16) >>> makeCloneMap(columnsShape=(7, 8), outputCloningWidth=3) (array([[0, 1, 2, 0, 1, 2, 0, 1], [3, 4, 5, 3, 4, 5, 3, 4], [6, 7, 8, 6, 7, 8, 6, 7], [0, 1, 2, 0, 1, 2, 0, 1], [3, 4, 5, 3, 4, 5, 3, 4], [6, 7, 8, 6, 7, 8, 6, 7], [0, 1, 2, 0, 1, 2, 0, 1]], dtype=uint32), 9) >>> makeCloneMap(columnsShape=(7, 11), outputCloningWidth=5) (array([[ 0, 1, 2, 3, 4, 0, 1, 2, 3, 4, 0], [ 5, 6, 7, 8, 9, 5, 6, 7, 8, 9, 5], [10, 11, 12, 13, 14, 10, 11, 12, 13, 14, 10], [15, 16, 17, 18, 19, 15, 16, 17, 18, 19, 15], [20, 21, 22, 23, 24, 20, 21, 22, 23, 24, 20], [ 0, 1, 2, 3, 4, 0, 1, 2, 3, 4, 0], [ 5, 6, 7, 8, 9, 5, 6, 7, 8, 9, 5]], dtype=uint32), 25) >>> makeCloneMap(columnsShape=(7, 8), outputCloningWidth=3, outputCloningHeight=4) (array([[ 0, 1, 2, 0, 1, 2, 0, 1], [ 3, 4, 5, 3, 4, 5, 3, 4], [ 6, 7, 8, 6, 7, 8, 6, 7], [ 9, 10, 11, 9, 10, 11, 9, 10], [ 0, 1, 2, 0, 1, 2, 0, 1], [ 3, 4, 5, 3, 4, 5, 3, 4], [ 6, 7, 8, 6, 7, 8, 6, 7]], dtype=uint32), 12) The basic idea with this map is that, if you imagine things stretching off to infinity, every instance of a given clone master is seeing the exact same thing in all directions. That includes: - All neighbors must be the same - The "meaning" of the input to each of the instances of the same clone master must be the same. If input is pixels and we have translation invariance--this is easy. At higher levels where input is the output of lower levels, this can be much harder. - The "meaning" of the inputs to neighbors of a clone master must be the same for each instance of the same clone master. The best way to think of this might be in terms of 'inputCloningWidth' and 'outputCloningWidth'. - The 'outputCloningWidth' is the number of columns you'd have to move horizontally (or vertically) before you get back to the same the same clone that you started with. MUST BE INTEGRAL! - The 'inputCloningWidth' is the 'outputCloningWidth' of the node below us. If we're getting input from an sensor where every element just represents a shift of every other element, this is 1. At a conceptual level, it means that if two different inputs are shown to the node and the only difference between them is that one is shifted horizontally (or vertically) by this many pixels, it means we are looking at the exact same real world input, but shifted by some number of pixels (doesn't have to be 1). MUST BE INTEGRAL! At level 1, I think you could have this: * inputCloningWidth = 1 * sqrt(coincToInputRatio^2) = 2.5 * outputCloningWidth = 5 ...in this case, you'd end up with 25 masters. Let's think about this case: input: - - - 0 1 2 3 4 5 - - - - - columns: 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 ...in other words, input 0 is fed to both column 0 and column 1. Input 1 is fed to columns 2, 3, and 4, etc. Hopefully, you can see that you'll get the exact same output (except shifted) with: input: - - - - - 0 1 2 3 4 5 - - - columns: 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 ...in other words, we've shifted the input 2 spaces and the output shifted 5 spaces. *** The outputCloningWidth MUST ALWAYS be an integral multiple of the *** *** inputCloningWidth in order for all of our rules to apply. *** *** NOTE: inputCloningWidth isn't passed here, so it's the caller's *** *** responsibility to ensure that this is true. *** *** The outputCloningWidth MUST ALWAYS be an integral multiple of *** *** sqrt(coincToInputRatio^2), too. *** @param columnsShape The shape (height, width) of the columns. @param outputCloningWidth See docstring above. @param outputCloningHeight If non-negative, can be used to make rectangular (instead of square) cloning fields. @return cloneMap An array (numColumnsHigh, numColumnsWide) that contains the clone index to use for each column. @return numDistinctClones The number of distinct clones in the map. This is just outputCloningWidth*outputCloningHeight. """ if outputCloningHeight < 0: outputCloningHeight = outputCloningWidth columnsHeight, columnsWidth = columnsShape numDistinctMasters = outputCloningWidth * outputCloningHeight a = numpy.empty((columnsHeight, columnsWidth), 'uint32') for row in xrange(columnsHeight): for col in xrange(columnsWidth): a[row, col] = (col % outputCloningWidth) + \ (row % outputCloningHeight) * outputCloningWidth return a, numDistinctMasters
Make a two-dimensional clone map mapping columns to clone master. This makes a map that is (numColumnsHigh, numColumnsWide) big that can be used to figure out which clone master to use for each column. Here are a few sample calls >>> makeCloneMap(columnsShape=(10, 6), outputCloningWidth=4) (array([[ 0, 1, 2, 3, 0, 1], [ 4, 5, 6, 7, 4, 5], [ 8, 9, 10, 11, 8, 9], [12, 13, 14, 15, 12, 13], [ 0, 1, 2, 3, 0, 1], [ 4, 5, 6, 7, 4, 5], [ 8, 9, 10, 11, 8, 9], [12, 13, 14, 15, 12, 13], [ 0, 1, 2, 3, 0, 1], [ 4, 5, 6, 7, 4, 5]], dtype=uint32), 16) >>> makeCloneMap(columnsShape=(7, 8), outputCloningWidth=3) (array([[0, 1, 2, 0, 1, 2, 0, 1], [3, 4, 5, 3, 4, 5, 3, 4], [6, 7, 8, 6, 7, 8, 6, 7], [0, 1, 2, 0, 1, 2, 0, 1], [3, 4, 5, 3, 4, 5, 3, 4], [6, 7, 8, 6, 7, 8, 6, 7], [0, 1, 2, 0, 1, 2, 0, 1]], dtype=uint32), 9) >>> makeCloneMap(columnsShape=(7, 11), outputCloningWidth=5) (array([[ 0, 1, 2, 3, 4, 0, 1, 2, 3, 4, 0], [ 5, 6, 7, 8, 9, 5, 6, 7, 8, 9, 5], [10, 11, 12, 13, 14, 10, 11, 12, 13, 14, 10], [15, 16, 17, 18, 19, 15, 16, 17, 18, 19, 15], [20, 21, 22, 23, 24, 20, 21, 22, 23, 24, 20], [ 0, 1, 2, 3, 4, 0, 1, 2, 3, 4, 0], [ 5, 6, 7, 8, 9, 5, 6, 7, 8, 9, 5]], dtype=uint32), 25) >>> makeCloneMap(columnsShape=(7, 8), outputCloningWidth=3, outputCloningHeight=4) (array([[ 0, 1, 2, 0, 1, 2, 0, 1], [ 3, 4, 5, 3, 4, 5, 3, 4], [ 6, 7, 8, 6, 7, 8, 6, 7], [ 9, 10, 11, 9, 10, 11, 9, 10], [ 0, 1, 2, 0, 1, 2, 0, 1], [ 3, 4, 5, 3, 4, 5, 3, 4], [ 6, 7, 8, 6, 7, 8, 6, 7]], dtype=uint32), 12) The basic idea with this map is that, if you imagine things stretching off to infinity, every instance of a given clone master is seeing the exact same thing in all directions. That includes: - All neighbors must be the same - The "meaning" of the input to each of the instances of the same clone master must be the same. If input is pixels and we have translation invariance--this is easy. At higher levels where input is the output of lower levels, this can be much harder. - The "meaning" of the inputs to neighbors of a clone master must be the same for each instance of the same clone master. The best way to think of this might be in terms of 'inputCloningWidth' and 'outputCloningWidth'. - The 'outputCloningWidth' is the number of columns you'd have to move horizontally (or vertically) before you get back to the same the same clone that you started with. MUST BE INTEGRAL! - The 'inputCloningWidth' is the 'outputCloningWidth' of the node below us. If we're getting input from an sensor where every element just represents a shift of every other element, this is 1. At a conceptual level, it means that if two different inputs are shown to the node and the only difference between them is that one is shifted horizontally (or vertically) by this many pixels, it means we are looking at the exact same real world input, but shifted by some number of pixels (doesn't have to be 1). MUST BE INTEGRAL! At level 1, I think you could have this: * inputCloningWidth = 1 * sqrt(coincToInputRatio^2) = 2.5 * outputCloningWidth = 5 ...in this case, you'd end up with 25 masters. Let's think about this case: input: - - - 0 1 2 3 4 5 - - - - - columns: 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 ...in other words, input 0 is fed to both column 0 and column 1. Input 1 is fed to columns 2, 3, and 4, etc. Hopefully, you can see that you'll get the exact same output (except shifted) with: input: - - - - - 0 1 2 3 4 5 - - - columns: 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 ...in other words, we've shifted the input 2 spaces and the output shifted 5 spaces. *** The outputCloningWidth MUST ALWAYS be an integral multiple of the *** *** inputCloningWidth in order for all of our rules to apply. *** *** NOTE: inputCloningWidth isn't passed here, so it's the caller's *** *** responsibility to ensure that this is true. *** *** The outputCloningWidth MUST ALWAYS be an integral multiple of *** *** sqrt(coincToInputRatio^2), too. *** @param columnsShape The shape (height, width) of the columns. @param outputCloningWidth See docstring above. @param outputCloningHeight If non-negative, can be used to make rectangular (instead of square) cloning fields. @return cloneMap An array (numColumnsHigh, numColumnsWide) that contains the clone index to use for each column. @return numDistinctClones The number of distinct clones in the map. This is just outputCloningWidth*outputCloningHeight.
def deserialize_header_auth(stream, algorithm, verifier=None): """Deserializes a MessageHeaderAuthentication object from a source stream. :param stream: Source data stream :type stream: io.BytesIO :param algorithm: The AlgorithmSuite object type contained in the header :type algorith: aws_encryption_sdk.identifiers.AlgorithmSuite :param verifier: Signature verifier object (optional) :type verifier: aws_encryption_sdk.internal.crypto.Verifier :returns: Deserialized MessageHeaderAuthentication object :rtype: aws_encryption_sdk.internal.structures.MessageHeaderAuthentication """ _LOGGER.debug("Starting header auth deserialization") format_string = ">{iv_len}s{tag_len}s".format(iv_len=algorithm.iv_len, tag_len=algorithm.tag_len) return MessageHeaderAuthentication(*unpack_values(format_string, stream, verifier))
Deserializes a MessageHeaderAuthentication object from a source stream. :param stream: Source data stream :type stream: io.BytesIO :param algorithm: The AlgorithmSuite object type contained in the header :type algorith: aws_encryption_sdk.identifiers.AlgorithmSuite :param verifier: Signature verifier object (optional) :type verifier: aws_encryption_sdk.internal.crypto.Verifier :returns: Deserialized MessageHeaderAuthentication object :rtype: aws_encryption_sdk.internal.structures.MessageHeaderAuthentication
def stats(request, server_name): """ Show server statistics. """ server_name = server_name.strip('/') data = _context_data({ 'title': _('Memcache Statistics for %s') % server_name, 'cache_stats': _get_cache_stats(server_name), }, request) return render_to_response('memcache_admin/stats.html', data, RequestContext(request))
Show server statistics.
def _short_string_handler_factory(): """Generates the short string (double quoted) handler.""" def before(c, ctx, is_field_name, is_clob): assert not (is_clob and is_field_name) is_string = not is_clob and not is_field_name if is_string: ctx.set_ion_type(IonType.STRING) val = ctx.value if is_field_name: assert not val ctx.set_pending_symbol() val = ctx.pending_symbol return val, is_string def on_close(ctx): ctx.set_self_delimiting(True) return ctx.event_transition(IonEvent, IonEventType.SCALAR, ctx.ion_type, ctx.value.as_text()) def after(c, ctx, is_field_name): ctx.set_quoted_text(False).set_self_delimiting(True) return ctx.immediate_transition( ctx.whence if is_field_name else _clob_end_handler(c, ctx), ) return _quoted_text_handler_factory(_DOUBLE_QUOTE, lambda c: c == _DOUBLE_QUOTE, before, after, append_first=False, on_close=on_close)
Generates the short string (double quoted) handler.
def populate(self, size, names_library=None, reuse_names=False, random_branches=False, branch_range=(0, 1), support_range=(0, 1)): """ Generates a random topology by populating current node. :argument None names_library: If provided, names library (list, set, dict, etc.) will be used to name nodes. :argument False reuse_names: If True, node names will not be necessarily unique, which makes the process a bit more efficient. :argument False random_branches: If True, branch distances and support values will be randomized. :argument (0,1) branch_range: If random_branches is True, this range of values will be used to generate random distances. :argument (0,1) support_range: If random_branches is True, this range of values will be used to generate random branch support values. """ NewNode = self.__class__ if len(self.children) > 1: connector = NewNode() for ch in self.get_children(): ch.detach() connector.add_child(child = ch) root = NewNode() self.add_child(child = connector) self.add_child(child = root) else: root = self next_deq = deque([root]) for i in range(size-1): if random.randint(0, 1): p = next_deq.pop() else: p = next_deq.popleft() c1 = p.add_child() c2 = p.add_child() next_deq.extend([c1, c2]) if random_branches: c1.dist = random.uniform(*branch_range) c2.dist = random.uniform(*branch_range) c1.support = random.uniform(*branch_range) c2.support = random.uniform(*branch_range) else: c1.dist = 1.0 c2.dist = 1.0 c1.support = 1.0 c2.support = 1.0 # next contains leaf nodes charset = "abcdefghijklmnopqrstuvwxyz" if names_library: names_library = deque(names_library) else: avail_names = itertools.combinations_with_replacement(charset, 10) for n in next_deq: if names_library: if reuse_names: tname = random.sample(names_library, 1)[0] else: tname = names_library.pop() else: tname = ''.join(next(avail_names)) n.name = tname
Generates a random topology by populating current node. :argument None names_library: If provided, names library (list, set, dict, etc.) will be used to name nodes. :argument False reuse_names: If True, node names will not be necessarily unique, which makes the process a bit more efficient. :argument False random_branches: If True, branch distances and support values will be randomized. :argument (0,1) branch_range: If random_branches is True, this range of values will be used to generate random distances. :argument (0,1) support_range: If random_branches is True, this range of values will be used to generate random branch support values.
def add_translation(self, rna: Rna, protein: Protein) -> str: """Add a translation relation from a RNA to a protein. :param rna: An RNA node :param protein: A protein node """ return self.add_unqualified_edge(rna, protein, TRANSLATED_TO)
Add a translation relation from a RNA to a protein. :param rna: An RNA node :param protein: A protein node
def _create_autostart_entry(autostart_data: AutostartSettings, autostart_file: Path): """Create an autostart .desktop file in the autostart directory, if possible.""" try: source_desktop_file = get_source_desktop_file(autostart_data.desktop_file_name) except FileNotFoundError: _logger.exception("Failed to find a usable .desktop file! Unable to find: {}".format( autostart_data.desktop_file_name)) else: _logger.debug("Found source desktop file that will be placed into the autostart directory: {}".format( source_desktop_file)) with open(str(source_desktop_file), "r") as opened_source_desktop_file: desktop_file_content = opened_source_desktop_file.read() desktop_file_content = "\n".join(_manage_autostart_desktop_file_launch_flags( desktop_file_content, autostart_data.switch_show_configure )) + "\n" with open(str(autostart_file), "w", encoding="UTF-8") as opened_autostart_file: opened_autostart_file.write(desktop_file_content) _logger.debug("Written desktop file: {}".format(autostart_file))
Create an autostart .desktop file in the autostart directory, if possible.
def post(self, value, addend, unit): """A date adder endpoint.""" value = value or dt.datetime.utcnow() if unit == "minutes": delta = dt.timedelta(minutes=addend) else: delta = dt.timedelta(days=addend) result = value + delta return {"result": result.isoformat()}
A date adder endpoint.
def delete_publisher_asset(self, publisher_name, asset_type=None): """DeletePublisherAsset. [Preview API] Delete publisher asset like logo :param str publisher_name: Internal name of the publisher :param str asset_type: Type of asset. Default value is 'logo'. """ route_values = {} if publisher_name is not None: route_values['publisherName'] = self._serialize.url('publisher_name', publisher_name, 'str') query_parameters = {} if asset_type is not None: query_parameters['assetType'] = self._serialize.query('asset_type', asset_type, 'str') self._send(http_method='DELETE', location_id='21143299-34f9-4c62-8ca8-53da691192f9', version='5.1-preview.1', route_values=route_values, query_parameters=query_parameters)
DeletePublisherAsset. [Preview API] Delete publisher asset like logo :param str publisher_name: Internal name of the publisher :param str asset_type: Type of asset. Default value is 'logo'.
def does_external_program_run(prog, verbose): """Test to see if the external programs can be run.""" try: with open('/dev/null') as null: subprocess.call([prog, '-h'], stdout=null, stderr=null) result = True except OSError: if verbose > 1: print("couldn't run {}".format(prog)) result = False return result
Test to see if the external programs can be run.
def merge_data(*data_frames, **kwargs): """ Merge DataFrames by column. Number of rows in tables must be the same. This method can be called both outside and as a DataFrame method. :param list[DataFrame] data_frames: DataFrames to be merged. :param bool auto_rename: if True, fields in source DataFrames will be renamed in the output. :return: merged data frame. :rtype: DataFrame :Example: >>> merged1 = merge_data(df1, df2) >>> merged2 = df1.merge_with(df2, auto_rename_col=True) """ from .specialized import build_merge_expr from ..utils import ML_ARG_PREFIX if len(data_frames) <= 1: raise ValueError('Count of DataFrames should be at least 2.') norm_data_pairs = [] df_tuple = collections.namedtuple('MergeTuple', 'df cols exclude') for pair in data_frames: if isinstance(pair, tuple): if len(pair) == 2: df, cols = pair exclude = False else: df, cols, exclude = pair if isinstance(cols, six.string_types): cols = cols.split(',') else: df, cols, exclude = pair, None, False norm_data_pairs.append(df_tuple(df, cols, exclude)) auto_rename = kwargs.get('auto_rename', False) sel_cols_dict = dict((idx, tp.cols) for idx, tp in enumerate(norm_data_pairs) if tp.cols and not tp.exclude) ex_cols_dict = dict((idx, tp.cols) for idx, tp in enumerate(norm_data_pairs) if tp.cols and tp.exclude) merge_expr = build_merge_expr(len(norm_data_pairs)) arg_dict = dict(_params={'autoRenameCol': str(auto_rename)}, selected_cols=sel_cols_dict, excluded_cols=ex_cols_dict) for idx, dp in enumerate(norm_data_pairs): arg_dict[ML_ARG_PREFIX + 'input%d' % (1 + idx)] = dp.df out_df = merge_expr(register_expr=True, _exec_id=uuid.uuid4(), _output_name='output', **arg_dict) out_df._ml_uplink = [dp.df for dp in norm_data_pairs] out_df._perform_operation(op.MergeFieldsOperation(auto_rename, sel_cols_dict, ex_cols_dict)) out_df._rebuild_df_schema() return out_df
Merge DataFrames by column. Number of rows in tables must be the same. This method can be called both outside and as a DataFrame method. :param list[DataFrame] data_frames: DataFrames to be merged. :param bool auto_rename: if True, fields in source DataFrames will be renamed in the output. :return: merged data frame. :rtype: DataFrame :Example: >>> merged1 = merge_data(df1, df2) >>> merged2 = df1.merge_with(df2, auto_rename_col=True)
def assign_rates(self, mu=1.0, pi=None, W=None): """ Overwrite the GTR model given the provided data Parameters ---------- mu : float Substitution rate W : nxn matrix Substitution matrix pi : n vector Equilibrium frequencies """ n = len(self.alphabet) self.mu = np.copy(mu) if pi is not None and pi.shape[0]==n: self.seq_len = pi.shape[-1] Pi = np.copy(pi) else: if pi is not None and len(pi)!=n: self.logger("length of equilibrium frequency vector does not match alphabet length", 4, warn=True) self.logger("Ignoring input equilibrium frequencies", 4, warn=True) Pi = np.ones(shape=(n,self.seq_len)) self.Pi = Pi/np.sum(Pi, axis=0) if W is None or W.shape!=(n,n): if (W is not None) and W.shape!=(n,n): self.logger("Substitution matrix size does not match alphabet size", 4, warn=True) self.logger("Ignoring input substitution matrix", 4, warn=True) # flow matrix W = np.ones((n,n)) else: W=0.5*(np.copy(W)+np.copy(W).T) np.fill_diagonal(W,0) avg_pi = self.Pi.mean(axis=-1) average_rate = W.dot(avg_pi).dot(avg_pi) self.W = W/average_rate self.mu *=average_rate self._eig()
Overwrite the GTR model given the provided data Parameters ---------- mu : float Substitution rate W : nxn matrix Substitution matrix pi : n vector Equilibrium frequencies
def _gwf_channel(path, series_class=TimeSeries, verbose=False): """Find the right channel name for a LOSC GWF file """ channels = list(io_gwf.iter_channel_names(file_path(path))) if issubclass(series_class, StateVector): regex = DQMASK_CHANNEL_REGEX else: regex = STRAIN_CHANNEL_REGEX found, = list(filter(regex.match, channels)) if verbose: print("Using channel {0!r}".format(found)) return found
Find the right channel name for a LOSC GWF file
def add_marccountry_tag(dom): """ Add ``<mods:placeTerm>`` tag with proper content. """ marccountry = dom.find("mods:placeTerm", {"authority": "marccountry"}) # don't add again if already defined if marccountry: return marccountry_tag = dhtmlparser.HTMLElement( "mods:place", [ dhtmlparser.HTMLElement( "mods:placeTerm", {"type": "code", "authority": "marccountry"}, [dhtmlparser.HTMLElement("xr-")] ) ] ) insert_tag( marccountry_tag, dom.match("mods:mods", "mods:originInfo", "mods:place"), first(dom.find("mods:originInfo")) )
Add ``<mods:placeTerm>`` tag with proper content.
def setup_new_conf(self): # pylint: disable=too-many-branches, too-many-locals """Broker custom setup_new_conf method This function calls the base satellite treatment and manages the configuration needed for a broker daemon: - get and configure its pollers, reactionners and receivers relation - configure the modules :return: None """ # Execute the base class treatment... super(Broker, self).setup_new_conf() # ...then our own specific treatment! with self.conf_lock: # # self_conf is our own configuration from the alignak environment # self_conf = self.cur_conf['self_conf'] self.got_initial_broks = False # Now we create our pollers, reactionners and receivers for link_type in ['pollers', 'reactionners', 'receivers']: if link_type not in self.cur_conf['satellites']: logger.error("No %s in the configuration!", link_type) continue my_satellites = getattr(self, link_type, {}) received_satellites = self.cur_conf['satellites'][link_type] for link_uuid in received_satellites: rs_conf = received_satellites[link_uuid] logger.debug("- received %s - %s: %s", rs_conf['instance_id'], rs_conf['type'], rs_conf['name']) # Must look if we already had a configuration and save our broks already_got = rs_conf['instance_id'] in my_satellites broks = [] actions = {} wait_homerun = {} external_commands = {} running_id = 0 if already_got: logger.warning("I already got: %s", rs_conf['instance_id']) # Save some information running_id = my_satellites[link_uuid].running_id (broks, actions, wait_homerun, external_commands) = \ my_satellites[link_uuid].get_and_clear_context() # Delete the former link del my_satellites[link_uuid] # My new satellite link... new_link = SatelliteLink.get_a_satellite_link(link_type[:-1], rs_conf) my_satellites[new_link.uuid] = new_link logger.info("I got a new %s satellite: %s", link_type[:-1], new_link) new_link.running_id = running_id new_link.external_commands = external_commands new_link.broks = broks new_link.wait_homerun = wait_homerun new_link.actions = actions # Replace satellite address and port by those defined in satellite_map # todo: check if it is really necessary! Add a unit test for this # Not sure about this because of the daemons/satellites configuration # if new_link.name in self_conf.get('satellite_map', {}): # new_link = dict(new_link) # make a copy # new_link.update(self_conf.get('satellite_map', {})[new_link.name]) if not self.have_modules: try: self.modules = unserialize(self.cur_conf['modules'], no_load=True) except AlignakClassLookupException as exp: # pragma: no cover, simple protection logger.error('Cannot un-serialize modules configuration ' 'received from arbiter: %s', exp) if self.modules: logger.info("I received some modules configuration: %s", self.modules) self.have_modules = True # Ok now start, or restart them! # Set modules, init them and start external ones self.do_load_modules(self.modules) # and start external modules too self.modules_manager.start_external_instances() else: logger.info("I do not have modules") # Initialize connection with my schedulers first logger.info("Initializing connection with my schedulers:") my_satellites = self.get_links_of_type(s_type='scheduler') for satellite in list(my_satellites.values()): logger.info("- %s/%s", satellite.type, satellite.name) if not self.daemon_connection_init(satellite): logger.error("Satellite connection failed: %s", satellite) # Initialize connection with all our satellites logger.info("Initializing connection with my satellites:") for sat_type in ['arbiter', 'reactionner', 'poller', 'receiver']: my_satellites = self.get_links_of_type(s_type=sat_type) for satellite in list(my_satellites.values()): logger.info("- %s/%s", satellite.type, satellite.name) if not self.daemon_connection_init(satellite): logger.error("Satellite connection failed: %s", satellite) # Now I have a configuration! self.have_conf = True
Broker custom setup_new_conf method This function calls the base satellite treatment and manages the configuration needed for a broker daemon: - get and configure its pollers, reactionners and receivers relation - configure the modules :return: None
def _cleanup_closed(self) -> None: """Double confirmation for transport close. Some broken ssl servers may leave socket open without proper close. """ if self._cleanup_closed_handle: self._cleanup_closed_handle.cancel() for transport in self._cleanup_closed_transports: if transport is not None: transport.abort() self._cleanup_closed_transports = [] if not self._cleanup_closed_disabled: self._cleanup_closed_handle = helpers.weakref_handle( self, '_cleanup_closed', self._cleanup_closed_period, self._loop)
Double confirmation for transport close. Some broken ssl servers may leave socket open without proper close.
def lwp_cookie_str(cookie): """Return string representation of Cookie in an the LWP cookie file format. Actually, the format is extended a bit -- see module docstring. """ h = [(cookie.name, cookie.value), ("path", cookie.path), ("domain", cookie.domain)] if cookie.port is not None: h.append(("port", cookie.port)) if cookie.path_specified: h.append(("path_spec", None)) if cookie.port_specified: h.append(("port_spec", None)) if cookie.domain_initial_dot: h.append(("domain_dot", None)) if cookie.secure: h.append(("secure", None)) if cookie.expires: h.append(("expires", time2isoz(float(cookie.expires)))) if cookie.discard: h.append(("discard", None)) if cookie.comment: h.append(("comment", cookie.comment)) if cookie.comment_url: h.append(("commenturl", cookie.comment_url)) keys = sorted(cookie._rest.keys()) for k in keys: h.append((k, str(cookie._rest[k]))) h.append(("version", str(cookie.version))) return join_header_words([h])
Return string representation of Cookie in an the LWP cookie file format. Actually, the format is extended a bit -- see module docstring.
def get_draft_secret_key(): """ Return the secret key used to generate draft mode HMACs. It will be randomly generated on first access. Existing draft URLs can be invalidated by deleting or updating the ``DRAFT_SECRET_KEY`` setting. """ # TODO: Per URL secret keys, so we can invalidate draft URLs for individual # pages. For example, on publish. draft_secret_key, created = Text.objects.get_or_create( name='DRAFT_SECRET_KEY', defaults=dict( value=get_random_string(50), )) return draft_secret_key.value
Return the secret key used to generate draft mode HMACs. It will be randomly generated on first access. Existing draft URLs can be invalidated by deleting or updating the ``DRAFT_SECRET_KEY`` setting.
def on_patch(self, req, resp, handler=None, **kwargs): """Respond on POST HTTP request assuming resource creation flow. This request handler assumes that POST requests are associated with resource creation. Thus default flow for such requests is: * Create new resource instances and prepare their representation by calling its bulk creation method handler. * Set response status code to ``201 Created``. **Note:** this handler does not set ``Location`` header by default as it would be valid only for single resource creation. Args: req (falcon.Request): request object instance. resp (falcon.Response): response object instance to be modified handler (method): creation method handler to be called. Defaults to ``self.create``. **kwargs: additional keyword arguments retrieved from url template. """ self.handle( handler or self.create_bulk, req, resp, **kwargs ) resp.status = falcon.HTTP_CREATED
Respond on POST HTTP request assuming resource creation flow. This request handler assumes that POST requests are associated with resource creation. Thus default flow for such requests is: * Create new resource instances and prepare their representation by calling its bulk creation method handler. * Set response status code to ``201 Created``. **Note:** this handler does not set ``Location`` header by default as it would be valid only for single resource creation. Args: req (falcon.Request): request object instance. resp (falcon.Response): response object instance to be modified handler (method): creation method handler to be called. Defaults to ``self.create``. **kwargs: additional keyword arguments retrieved from url template.
def decrypt(source, dest=None, passphrase=None): """Attempts to decrypt a file""" if not os.path.exists(source): raise CryptoritoError("Encrypted file %s not found" % source) cmd = [gnupg_bin(), gnupg_verbose(), "--decrypt", gnupg_home(), passphrase_file(passphrase)] if dest: cmd.append(["--output", dest]) cmd.append([source]) stderr_output(flatten(cmd)) return True
Attempts to decrypt a file
def _notify_fn(self): """The notify thread function.""" self._notifyrunning = True while self._notifyrunning: try: with IHCController._mutex: # Are there are any new ids to be added? if self._newnotifyids: self.client.enable_runtime_notifications( self._newnotifyids) self._newnotifyids = [] changes = self.client.wait_for_resource_value_changes() if changes is False: self.re_authenticate(True) continue for ihcid in changes: value = changes[ihcid] if ihcid in self._ihcevents: for callback in self._ihcevents[ihcid]: callback(ihcid, value) except Exception as exp: self.re_authenticate(True)
The notify thread function.
def _setsetting(setting, default): """Dynamically sets the variable named in `setting` This method uses `_getsetting()` to either fetch the setting from Django's settings module, or else fallback to the default value; it then sets a variable in this module with the returned value. """ value = _getsetting(setting, default) setattr(_self, setting, value)
Dynamically sets the variable named in `setting` This method uses `_getsetting()` to either fetch the setting from Django's settings module, or else fallback to the default value; it then sets a variable in this module with the returned value.
def get_child_values(parent, names): """ return a list of values for the specified child fields. If field not in Element then replace with nan. """ vals = [] for name in names: if parent.hasElement(name): vals.append(XmlHelper.as_value(parent.getElement(name))) else: vals.append(np.nan) return vals
return a list of values for the specified child fields. If field not in Element then replace with nan.
def keep(self, diff): """ Mark this diff (or volume) to be kept in path. """ self._keepVol(diff.toVol) self._keepVol(diff.fromVol)
Mark this diff (or volume) to be kept in path.
def authenticate_credentials(self, payload): """ Returns an active user that matches the payload's user id and email. """ User = get_user_model() # noqa username = jwt_get_username_from_payload_handler(payload) if not username: msg = _('Invalid payload.') raise exceptions.AuthenticationFailed(msg) try: user = User.objects.get(email=username) except User.DoesNotExist: msg = _('Invalid signature.') raise exceptions.AuthenticationFailed(msg) return user
Returns an active user that matches the payload's user id and email.
def __load_child_classes(self, ac: AssetClass): """ Loads child classes/stocks """ # load child classes for ac db = self.__get_session() entities = ( db.query(dal.AssetClass) .filter(dal.AssetClass.parentid == ac.id) .order_by(dal.AssetClass.sortorder) .all() ) # map for entity in entities: child_ac = self.__map_entity(entity) # depth child_ac.depth = ac.depth + 1 ac.classes.append(child_ac) # Add to index self.model.asset_classes.append(child_ac) self.__load_child_classes(child_ac)
Loads child classes/stocks
def dump(self, force=False): """ Encodes the value using DER :param force: If the encoded contents already exist, clear them and regenerate to ensure they are in DER format instead of BER format :return: A byte string of the DER-encoded value """ self._contents = self.chosen.dump(force=force) if self._header is None or force: self._header = b'' if self.explicit is not None: for class_, tag in self.explicit: self._header = _dump_header(class_, 1, tag, self._header + self._contents) + self._header return self._header + self._contents
Encodes the value using DER :param force: If the encoded contents already exist, clear them and regenerate to ensure they are in DER format instead of BER format :return: A byte string of the DER-encoded value
def main(): """Run the bot.""" args = parser.parse_args() initialize_logging(args) # Allow expansion of paths even if the shell doesn't do it config_path = os.path.abspath(os.path.expanduser(args.config)) client = kitnirc.client.Client() controller = kitnirc.modular.Controller(client, config_path) # Make sure the configuration file is loaded so we can check for # connection information. controller.load_config() def config_or_none(section, value, integer=False, boolean=False): """Helper function to get values that might not be set.""" if controller.config.has_option(section, value): if integer: return controller.config.getint(section, value) elif boolean: return controller.config.getboolean(section, value) return controller.config.get(section, value) return None # If host isn't specified on the command line, try from config file host = args.host or config_or_none("server", "host") if not host: parser.error( "IRC host must be specified if not in config file.") # If nick isn't specified on the command line, try from config file nick = args.nick or config_or_none("server", "nick") if not nick: parser.error( "Nick must be specified if not in config file.") # KitnIRC's default client will use port 6667 if nothing else is specified, # but since we want to potentially specify something else, we add that # fallback here ourselves. port = args.port or config_or_none("server", "port", integer=True) or 6667 ssl = args.ssl or config_or_none("server", "ssl", boolean=True) password = args.password or config_or_none("server", "password") username = args.username or config_or_none("server", "username") or nick realname = args.realname or config_or_none("server", "realname") or username controller.start() client.connect( nick, host=host, port=port, username=username, realname=realname, password=password, ssl=ssl, ) try: client.run() except KeyboardInterrupt: client.disconnect()
Run the bot.
def throttle( self, wait=True ): """ If the wait parameter is True, this method returns True after suspending the current thread as necessary to ensure that no less than the configured minimum interval passed since the most recent time an invocation of this method returned True in any thread. If the wait parameter is False, this method immediatly returns True if at least the configured minimum interval has passed since the most recent time this method returned True in any thread, or False otherwise. """ # I think there is a race in Thread.start(), hence the lock with self.thread_start_lock: if not self.thread_started: self.thread.start( ) self.thread_started = True return self.semaphore.acquire( blocking=wait )
If the wait parameter is True, this method returns True after suspending the current thread as necessary to ensure that no less than the configured minimum interval passed since the most recent time an invocation of this method returned True in any thread. If the wait parameter is False, this method immediatly returns True if at least the configured minimum interval has passed since the most recent time this method returned True in any thread, or False otherwise.
def confirm_user_avatar(self, user, cropping_properties): """Confirm the temporary avatar image previously uploaded with the specified cropping. After a successful registry with :py:meth:`create_temp_user_avatar`, use this method to confirm the avatar for use. The final avatar can be a subarea of the uploaded image, which is customized with the ``cropping_properties``: the return value of :py:meth:`create_temp_user_avatar` should be used for this argument. :param user: the user to confirm the avatar for :type user: str :param cropping_properties: a dict of cropping properties from :py:meth:`create_temp_user_avatar` :type cropping_properties: Dict[str,Any] """ data = cropping_properties url = self._get_url('user/avatar') r = self._session.post(url, params={'username': user}, data=json.dumps(data)) return json_loads(r)
Confirm the temporary avatar image previously uploaded with the specified cropping. After a successful registry with :py:meth:`create_temp_user_avatar`, use this method to confirm the avatar for use. The final avatar can be a subarea of the uploaded image, which is customized with the ``cropping_properties``: the return value of :py:meth:`create_temp_user_avatar` should be used for this argument. :param user: the user to confirm the avatar for :type user: str :param cropping_properties: a dict of cropping properties from :py:meth:`create_temp_user_avatar` :type cropping_properties: Dict[str,Any]
def binormalize(A, tol=1e-5, maxiter=10): """Binormalize matrix A. Attempt to create unit l_1 norm rows. Parameters ---------- A : csr_matrix sparse matrix (n x n) tol : float tolerance x : array guess at the diagonal maxiter : int maximum number of iterations to try Returns ------- C : csr_matrix diagonally scaled A, C=DAD Notes ----- - Goal: Scale A so that l_1 norm of the rows are equal to 1: - B = DAD - want row sum of B = 1 - easily done with tol=0 if B=DA, but this is not symmetric - algorithm is O(N log (1.0/tol)) Examples -------- >>> from pyamg.gallery import poisson >>> from pyamg.classical import binormalize >>> A = poisson((10,),format='csr') >>> C = binormalize(A) References ---------- .. [1] Livne, Golub, "Scaling by Binormalization" Tech Report SCCM-03-12, SCCM, Stanford, 2003 http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.3.1679 """ if not isspmatrix(A): raise TypeError('expecting sparse matrix A') if A.dtype == complex: raise NotImplementedError('complex A not implemented') n = A.shape[0] it = 0 x = np.ones((n, 1)).ravel() # 1. B = A.multiply(A).tocsc() # power(A,2) inconsistent in numpy, scipy.sparse d = B.diagonal().ravel() # 2. beta = B * x betabar = (1.0/n) * np.dot(x, beta) stdev = rowsum_stdev(x, beta) # 3 while stdev > tol and it < maxiter: for i in range(0, n): # solve equation x_i, keeping x_j's fixed # see equation (12) c2 = (n-1)*d[i] c1 = (n-2)*(beta[i] - d[i]*x[i]) c0 = -d[i]*x[i]*x[i] + 2*beta[i]*x[i] - n*betabar if (-c0 < 1e-14): print('warning: A nearly un-binormalizable...') return A else: # see equation (12) xnew = (2*c0)/(-c1 - np.sqrt(c1*c1 - 4*c0*c2)) dx = xnew - x[i] # here we assume input matrix is symmetric since we grab a row of B # instead of a column ii = B.indptr[i] iii = B.indptr[i+1] dot_Bcol = np.dot(x[B.indices[ii:iii]], B.data[ii:iii]) betabar = betabar + (1.0/n)*dx*(dot_Bcol + beta[i] + d[i]*dx) beta[B.indices[ii:iii]] += dx*B.data[ii:iii] x[i] = xnew stdev = rowsum_stdev(x, beta) it += 1 # rescale for unit 2-norm d = np.sqrt(x) D = spdiags(d.ravel(), [0], n, n) C = D * A * D C = C.tocsr() beta = C.multiply(C).sum(axis=1) scale = np.sqrt((1.0/n) * np.sum(beta)) return (1/scale)*C
Binormalize matrix A. Attempt to create unit l_1 norm rows. Parameters ---------- A : csr_matrix sparse matrix (n x n) tol : float tolerance x : array guess at the diagonal maxiter : int maximum number of iterations to try Returns ------- C : csr_matrix diagonally scaled A, C=DAD Notes ----- - Goal: Scale A so that l_1 norm of the rows are equal to 1: - B = DAD - want row sum of B = 1 - easily done with tol=0 if B=DA, but this is not symmetric - algorithm is O(N log (1.0/tol)) Examples -------- >>> from pyamg.gallery import poisson >>> from pyamg.classical import binormalize >>> A = poisson((10,),format='csr') >>> C = binormalize(A) References ---------- .. [1] Livne, Golub, "Scaling by Binormalization" Tech Report SCCM-03-12, SCCM, Stanford, 2003 http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.3.1679
def update(self): """Cache the list into the data section of the record""" from ambry.orm.exc import NotFoundError from requests.exceptions import ConnectionError, HTTPError from boto.exception import S3ResponseError d = {} try: for k, v in self.list(full=True): if not v: continue d[v['vid']] = { 'vid': v['vid'], 'vname': v.get('vname'), 'id': v.get('id'), 'name': v.get('name') } self.data['list'] = d except (NotFoundError, ConnectionError, S3ResponseError, HTTPError) as e: raise RemoteAccessError("Failed to update {}: {}".format(self.short_name, e))
Cache the list into the data section of the record
def vatm(model, x, logits, eps, num_iterations=1, xi=1e-6, clip_min=None, clip_max=None, scope=None): """ Tensorflow implementation of the perturbation method used for virtual adversarial training: https://arxiv.org/abs/1507.00677 :param model: the model which returns the network unnormalized logits :param x: the input placeholder :param logits: the model's unnormalized output tensor (the input to the softmax layer) :param eps: the epsilon (input variation parameter) :param num_iterations: the number of iterations :param xi: the finite difference parameter :param clip_min: optional parameter that can be used to set a minimum value for components of the example returned :param clip_max: optional parameter that can be used to set a maximum value for components of the example returned :param seed: the seed for random generator :return: a tensor for the adversarial example """ with tf.name_scope(scope, "virtual_adversarial_perturbation"): d = tf.random_normal(tf.shape(x), dtype=tf_dtype) for _ in range(num_iterations): d = xi * utils_tf.l2_batch_normalize(d) logits_d = model.get_logits(x + d) kl = utils_tf.kl_with_logits(logits, logits_d) Hd = tf.gradients(kl, d)[0] d = tf.stop_gradient(Hd) d = eps * utils_tf.l2_batch_normalize(d) adv_x = x + d if (clip_min is not None) and (clip_max is not None): adv_x = tf.clip_by_value(adv_x, clip_min, clip_max) return adv_x
Tensorflow implementation of the perturbation method used for virtual adversarial training: https://arxiv.org/abs/1507.00677 :param model: the model which returns the network unnormalized logits :param x: the input placeholder :param logits: the model's unnormalized output tensor (the input to the softmax layer) :param eps: the epsilon (input variation parameter) :param num_iterations: the number of iterations :param xi: the finite difference parameter :param clip_min: optional parameter that can be used to set a minimum value for components of the example returned :param clip_max: optional parameter that can be used to set a maximum value for components of the example returned :param seed: the seed for random generator :return: a tensor for the adversarial example
def register_provider(self, provider): ''' Register a :class:`skosprovider.providers.VocabularyProvider`. :param skosprovider.providers.VocabularyProvider provider: The provider to register. :raises RegistryException: A provider with this id or uri has already been registered. ''' if provider.get_vocabulary_id() in self.providers: raise RegistryException( 'A provider with this id has already been registered.' ) self.providers[provider.get_vocabulary_id()] = provider if provider.concept_scheme.uri in self.concept_scheme_uri_map: raise RegistryException( 'A provider with URI %s has already been registered.' % provider.concept_scheme.uri ) self.concept_scheme_uri_map[provider.concept_scheme.uri] = provider.get_vocabulary_id()
Register a :class:`skosprovider.providers.VocabularyProvider`. :param skosprovider.providers.VocabularyProvider provider: The provider to register. :raises RegistryException: A provider with this id or uri has already been registered.
def _fill_schemas_from_definitions(self, obj): """At first create schemas without 'AllOf' :param obj: :return: None """ if obj.get('definitions'): self.schemas.clear() all_of_stack = [] for name, definition in obj['definitions'].items(): if 'allOf' in definition: all_of_stack.append((name, definition)) else: self.schemas.create_schema( definition, name, SchemaTypes.DEFINITION, root=self) while all_of_stack: name, definition = all_of_stack.pop(0) self.schemas.create_schema( definition, name, SchemaTypes.DEFINITION, root=self)
At first create schemas without 'AllOf' :param obj: :return: None
def fa(arr, t, dist='norm', mode='high'): """Return the value corresponding to the given return period. Parameters ---------- arr : xarray.DataArray Maximized/minimized input data with a `time` dimension. t : int or sequence Return period. The period depends on the resolution of the input data. If the input array's resolution is yearly, then the return period is in years. dist : str Name of the univariate distribution, such as beta, expon, genextreme, gamma, gumbel_r, lognorm, norm (see scipy.stats). mode : {'min', 'max} Whether we are looking for a probability of exceedance (max) or a probability of non-exceedance (min). Returns ------- xarray.DataArray An array of values with a 1/t probability of exceedance (if mode=='max'). """ t = np.atleast_1d(t) # Get the distribution dc = get_dist(dist) # Fit the parameters of the distribution p = fit(arr, dist) # Create a lambda function to facilitate passing arguments to dask. There is probably a better way to do this. if mode in ['max', 'high']: def func(x): return dc.isf(1./t, *x) elif mode in ['min', 'low']: def func(x): return dc.ppf(1./t, *x) else: raise ValueError("mode `{}` should be either 'max' or 'min'".format(mode)) data = dask.array.apply_along_axis(func, p.get_axis_num('dparams'), p) # Create coordinate for the return periods coords = dict(p.coords.items()) coords.pop('dparams') coords['return_period'] = t # Create dimensions dims = list(p.dims) dims.remove('dparams') dims.insert(0, u'return_period') # TODO: add time and time_bnds coordinates (Low will work on this) # time.attrs['climatology'] = 'climatology_bounds' # coords['time'] = # coords['climatology_bounds'] = out = xr.DataArray(data=data, coords=coords, dims=dims) out.attrs = p.attrs out.attrs['standard_name'] = '{0} quantiles'.format(dist) out.attrs['long_name'] = '{0} return period values for {1}'.format(dist, getattr(arr, 'standard_name', '')) out.attrs['cell_methods'] = (out.attrs.get('cell_methods', '') + ' dparams: ppf').strip() out.attrs['units'] = arr.attrs.get('units', '') out.attrs['mode'] = mode out.attrs['history'] = out.attrs.get('history', '') + "Compute values corresponding to return periods." return out
Return the value corresponding to the given return period. Parameters ---------- arr : xarray.DataArray Maximized/minimized input data with a `time` dimension. t : int or sequence Return period. The period depends on the resolution of the input data. If the input array's resolution is yearly, then the return period is in years. dist : str Name of the univariate distribution, such as beta, expon, genextreme, gamma, gumbel_r, lognorm, norm (see scipy.stats). mode : {'min', 'max} Whether we are looking for a probability of exceedance (max) or a probability of non-exceedance (min). Returns ------- xarray.DataArray An array of values with a 1/t probability of exceedance (if mode=='max').
def _post(self, url, data=None, json=None, params=None, headers=None): """Wraps a POST request with a url check""" url = self.clean_url(url) response = requests.post(url, data=data, json=json, params=params, headers=headers, timeout=self.timeout, verify=self.verify) return response
Wraps a POST request with a url check
def list_relations(self): ''' list every relation in the database as (src, relation, dst) ''' for node in self.iter_nodes(): for relation, target in self.relations_of(node.obj, True): yield node.obj, relation, target
list every relation in the database as (src, relation, dst)
def get_attribute(self, attribute, value=None, features=False): """This returns a list of GFF objects (or GFF Features) with the given attribute and if supplied, those attributes with the specified value :param attribute: The 'info' field attribute we are querying :param value: Optional keyword, only return attributes equal to this value :param features: Optional keyword, return GFF Features instead of GFF Objects :return: A list of GFF objects (or GFF features if requested) """ if attribute in self.filters: valid_gff_objects = self.fast_attributes[attribute] if not value else\ [i for i in self.fast_attributes[attribute] if i.attributes.get(attribute, False) == value] if features: valid_ids = [gff_object.attributes.get(self.id_tag, None) for gff_object in valid_gff_objects] return [self.feature_map[gff_id] for gff_id in valid_ids if gff_id] else: return valid_gff_objects else: valid_gff_objects = [gff_object for gff_feature in self.feature_map.values() for gff_object in gff_feature.features if gff_object.attributes.get(attribute, False)] valid_gff_objects = valid_gff_objects if not value else [gff_object for gff_object in valid_gff_objects if gff_object.attributes[attribute] == value] if features: valid_ids = [gff_object.attributes.get(self.id_tag, None) for gff_object in valid_gff_objects] return [self.feature_map[gff_id] for gff_id in valid_ids if gff_id] else: return valid_gff_objects
This returns a list of GFF objects (or GFF Features) with the given attribute and if supplied, those attributes with the specified value :param attribute: The 'info' field attribute we are querying :param value: Optional keyword, only return attributes equal to this value :param features: Optional keyword, return GFF Features instead of GFF Objects :return: A list of GFF objects (or GFF features if requested)
def tcp_ping( task: Task, ports: List[int], timeout: int = 2, host: Optional[str] = None ) -> Result: """ Tests connection to a tcp port and tries to establish a three way handshake. To be used for network discovery or testing. Arguments: ports (list of int): tcp ports to ping timeout (int, optional): defaults to 2 host (string, optional): defaults to ``hostname`` Returns: Result object with the following attributes set: * result (``dict``): Contains port numbers as keys with True/False as values """ if isinstance(ports, int): ports = [ports] if isinstance(ports, list): if not all(isinstance(port, int) for port in ports): raise ValueError("Invalid value for 'ports'") else: raise ValueError("Invalid value for 'ports'") host = host or task.host.hostname result = {} for port in ports: s = socket.socket() s.settimeout(timeout) try: status = s.connect_ex((host, port)) if status == 0: connection = True else: connection = False except (socket.gaierror, socket.timeout, socket.error): connection = False finally: s.close() result[port] = connection return Result(host=task.host, result=result)
Tests connection to a tcp port and tries to establish a three way handshake. To be used for network discovery or testing. Arguments: ports (list of int): tcp ports to ping timeout (int, optional): defaults to 2 host (string, optional): defaults to ``hostname`` Returns: Result object with the following attributes set: * result (``dict``): Contains port numbers as keys with True/False as values
def getAccounts(self): """ Return all accounts installed in the wallet database """ pubkeys = self.getPublicKeys() accounts = [] for pubkey in pubkeys: # Filter those keys not for our network if pubkey[: len(self.prefix)] == self.prefix: accounts.extend(self.getAccountsFromPublicKey(pubkey)) return accounts
Return all accounts installed in the wallet database
def visit_EnumeratorList(self, node): """Replace enumerator expressions with '...' stubs.""" for type, enum in node.children(): if enum.value is None: pass elif isinstance(enum.value, (c_ast.BinaryOp, c_ast.UnaryOp)): enum.value = c_ast.Constant("int", "...") elif hasattr(enum.value, "type"): enum.value = c_ast.Constant(enum.value.type, "...")
Replace enumerator expressions with '...' stubs.
def pencil3(): '''Install or update latest Pencil version 3, a GUI prototyping tool. While it is the newer one and the GUI is more fancy, it is the "more beta" version of pencil. For exmaple, to display a svg export may fail from within a reveal.js presentation. More info: Homepage: http://pencil.evolus.vn/Next.html github repo: https://github.com/evolus/pencil ''' repo_name = 'pencil3' repo_dir = flo('~/repos/{repo_name}') print_msg('## fetch latest pencil\n') checkup_git_repo_legacy(url='https://github.com/evolus/pencil.git', name=repo_name) run(flo('cd {repo_dir} && npm install'), msg='\n## install npms\n') install_user_command_legacy('pencil3', pencil3_repodir=repo_dir) print_msg('\nNow You can start pencil version 3 with this command:\n\n' ' pencil3')
Install or update latest Pencil version 3, a GUI prototyping tool. While it is the newer one and the GUI is more fancy, it is the "more beta" version of pencil. For exmaple, to display a svg export may fail from within a reveal.js presentation. More info: Homepage: http://pencil.evolus.vn/Next.html github repo: https://github.com/evolus/pencil
def open_with_external_spyder(self, text): """Load file in external Spyder's editor, if available This method is used only for embedded consoles (could also be useful if we ever implement the magic %edit command)""" match = get_error_match(to_text_string(text)) if match: fname, lnb = match.groups() builtins.open_in_spyder(fname, int(lnb))
Load file in external Spyder's editor, if available This method is used only for embedded consoles (could also be useful if we ever implement the magic %edit command)
def value(self): """ Return the current evaluation of a condition statement """ return ''.join(map(str, self.evaluate(self.trigger.user)))
Return the current evaluation of a condition statement
def sync(self): """Retrieve lights from ElkM1""" for i in range(4): self.elk.send(ps_encode(i)) self.get_descriptions(TextDescriptions.LIGHT.value)
Retrieve lights from ElkM1
def new_table(self, name, add_id=True, **kwargs): """ Create a new table, if it does not exist, or update an existing table if it does :param name: Table name :param add_id: If True, add an id field ( default is True ) :param kwargs: Other options passed to table object :return: """ return self.dataset.new_table(name=name, add_id=add_id, **kwargs)
Create a new table, if it does not exist, or update an existing table if it does :param name: Table name :param add_id: If True, add an id field ( default is True ) :param kwargs: Other options passed to table object :return:
def bsp_father(node: tcod.bsp.BSP) -> Optional[tcod.bsp.BSP]: """ .. deprecated:: 2.0 Use :any:`BSP.parent` instead. """ return node.parent
.. deprecated:: 2.0 Use :any:`BSP.parent` instead.
def _repr_pretty_(self, p, cycle): """method that defines ``Struct``'s pretty printing rules for iPython Args: p (IPython.lib.pretty.RepresentationPrinter): pretty printer object cycle (bool): is ``True`` if pretty detected a cycle """ if cycle: p.text('Struct(...)') else: with p.group(7, 'Struct(', ')'): p.pretty(self._asdict())
method that defines ``Struct``'s pretty printing rules for iPython Args: p (IPython.lib.pretty.RepresentationPrinter): pretty printer object cycle (bool): is ``True`` if pretty detected a cycle
def retry_on_integrity_error(self): """Re-raise :class:`~sqlalchemy.exc.IntegrityError` as `DBSerializationError`. This is mainly useful to handle race conditions in atomic blocks. For example, even if prior to a database INSERT we have verified that there is no existing row with the given primary key, we still may get an :class:`~sqlalchemy.exc.IntegrityError` if another transaction inserted a row with this primary key in the meantime. But if we do (within an atomic block):: with db.retry_on_integrity_error(): db.session.add(instance) then if the before-mentioned race condition occurs, `DBSerializationError` will be raised instead of :class:`~sqlalchemy.exc.IntegrityError`, so that the transaction will be retried (by the atomic block), and the second time our prior-to-INSERT check will correctly detect a primary key collision. Note: :meth:`retry_on_integrity_error` triggers a session flush. """ session = self.session assert session.info.get(_ATOMIC_FLAG_SESSION_INFO_KEY), \ 'Calls to "retry_on_integrity_error" must be wrapped in atomic block.' session.flush() try: yield session.flush() except IntegrityError: raise DBSerializationError
Re-raise :class:`~sqlalchemy.exc.IntegrityError` as `DBSerializationError`. This is mainly useful to handle race conditions in atomic blocks. For example, even if prior to a database INSERT we have verified that there is no existing row with the given primary key, we still may get an :class:`~sqlalchemy.exc.IntegrityError` if another transaction inserted a row with this primary key in the meantime. But if we do (within an atomic block):: with db.retry_on_integrity_error(): db.session.add(instance) then if the before-mentioned race condition occurs, `DBSerializationError` will be raised instead of :class:`~sqlalchemy.exc.IntegrityError`, so that the transaction will be retried (by the atomic block), and the second time our prior-to-INSERT check will correctly detect a primary key collision. Note: :meth:`retry_on_integrity_error` triggers a session flush.
def get_selection(self): """ Read text from the X selection Usage: C{clipboard.get_selection()} @return: text contents of the mouse selection @rtype: C{str} @raise Exception: if no text was found in the selection """ Gdk.threads_enter() text = self.selection.wait_for_text() Gdk.threads_leave() if text is not None: return text else: raise Exception("No text found in X selection")
Read text from the X selection Usage: C{clipboard.get_selection()} @return: text contents of the mouse selection @rtype: C{str} @raise Exception: if no text was found in the selection
def _add_item(self, dim_vals, data, sort=True, update=True): """ Adds item to the data, applying dimension types and ensuring key conforms to Dimension type and values. """ sort = sort and self.sort if not isinstance(dim_vals, tuple): dim_vals = (dim_vals,) self._item_check(dim_vals, data) # Apply dimension types dim_types = zip([kd.type for kd in self.kdims], dim_vals) dim_vals = tuple(v if None in [t, v] else t(v) for t, v in dim_types) valid_vals = zip(self.kdims, dim_vals) for dim, val in valid_vals: if dim.values and val is not None and val not in dim.values: raise KeyError('%s dimension value %s not in' ' specified dimension values.' % (dim, repr(val))) # Updates nested data structures rather than simply overriding them. if (update and (dim_vals in self.data) and isinstance(self.data[dim_vals], (MultiDimensionalMapping, OrderedDict))): self.data[dim_vals].update(data) else: self.data[dim_vals] = data if sort: self._resort()
Adds item to the data, applying dimension types and ensuring key conforms to Dimension type and values.
def _validate(self, msg): """Validate an Enum value. Raises: TypeError if the value is not an instance of self._message_type. """ if not isinstance(msg, self._message_type): raise TypeError('Expected a %s instance for %s property', self._message_type.__name__, self._code_name or self._name)
Validate an Enum value. Raises: TypeError if the value is not an instance of self._message_type.
def _makeColorableInstance(self, clazz, args, kwargs): """ Create an object, if fill, stroke or strokewidth is not specified, get them from the _canvas :param clazz: :param args: :param kwargs: :return: """ kwargs = dict(kwargs) fill = kwargs.get('fill', self._canvas.fillcolor) if not isinstance(fill, Color): fill = Color(fill, mode='rgb', color_range=1) kwargs['fill'] = fill stroke = kwargs.get('stroke', self._canvas.strokecolor) if not isinstance(stroke, Color): stroke = Color(stroke, mode='rgb', color_range=1) kwargs['stroke'] = stroke kwargs['strokewidth'] = kwargs.get('strokewidth', self._canvas.strokewidth) inst = clazz(self, *args, **kwargs) return inst
Create an object, if fill, stroke or strokewidth is not specified, get them from the _canvas :param clazz: :param args: :param kwargs: :return:
def GpuUsage(**kargs): """ Get the current GPU usage of available GPUs """ usage = (False, None) gpu_status = {'vent_usage': {'dedicated': [], 'mem_mb': {}}} path_dirs = PathDirs(**kargs) path_dirs.host_config() template = Template(template=path_dirs.cfg_file) # get running jobs using gpus try: d_client = docker.from_env() c = d_client.containers.list(all=False, filters={'label': 'vent-plugin'}) for container in c: if ('vent.gpu' in container.attrs['Config']['Labels'] and container.attrs['Config']['Labels']['vent.gpu'] == 'yes'): device = container.attrs['Config']['Labels']['vent.gpu.device'] if ('vent.gpu.dedicated' in container.attrs['Config']['Labels'] and container.attrs['Config']['Labels']['vent.gpu.dedicated'] == 'yes'): gpu_status['vent_usage']['dedicated'].append(device) elif 'vent.gpu.mem_mb' in container.attrs['Config']['Labels']: if device not in gpu_status['vent_usage']['mem_mb']: gpu_status['vent_usage']['mem_mb'][device] = 0 gpu_status['vent_usage']['mem_mb'][device] += int( container.attrs['Config']['Labels']['vent.gpu.mem_mb']) except Exception as e: # pragma: no cover logger.error('Could not get running jobs ' + str(e)) port = '3476' # default docker gateway host = '172.17.0.1' result = template.option('nvidia-docker-plugin', 'port') if result[0]: port = result[1] result = template.option('nvidia-docker-plugin', 'host') if result[0]: host = result[1] else: try: # now just requires ip, ifconfig route = check_output(('ip', 'route')).decode('utf-8').split('\n') default = '' # grab the default network device. for device in route: if 'default' in device: default = device.split()[4] break # grab the IP address for the default device ip_addr = check_output(('ifconfig', default)).decode('utf-8') ip_addr = ip_addr.split('\n')[1].split()[1] host = ip_addr except Exception as e: # pragma: no cover logger.error('Something with the ip addresses' 'went wrong ' + str(e)) # have to get the info separately to determine how much memory is availabe nd_url = 'http://' + host + ':' + port + '/v1.0/gpu/info/json' try: r = requests.get(nd_url) if r.status_code == 200: status = r.json() for i, device in enumerate(status['Devices']): gm = int(round(math.log(int(device['Memory']['Global']), 2))) gpu_status[i] = {'global_memory': 2**gm, 'cores': device['Cores']} else: usage = (False, 'Unable to get GPU usage request error code: ' + str(r.status_code)) except Exception as e: # pragma: no cover usage = (False, 'Error: ' + str(e)) # get actual status of each gpu nd_url = 'http://' + host + ':' + port + '/v1.0/gpu/status/json' try: r = requests.get(nd_url) if r.status_code == 200: status = r.json() for i, device in enumerate(status['Devices']): if i not in gpu_status: gpu_status[i] = {} gpu_status[i]['utilization'] = device['Utilization'] gpu_status[i]['memory'] = device['Memory'] gpu_status[i]['processes'] = device['Processes'] usage = (True, gpu_status) else: usage = (False, 'Unable to get GPU usage request error code: ' + str(r.status_code)) except Exception as e: # pragma: no cover usage = (False, 'Error: ' + str(e)) return usage
Get the current GPU usage of available GPUs
def set(self, id, translation, domain='messages'): """ Sets a message translation. """ assert isinstance(id, (str, unicode)) assert isinstance(translation, (str, unicode)) assert isinstance(domain, (str, unicode)) self.add({id: translation}, domain)
Sets a message translation.
def workers(self, pattern=None, negate=False, stats=True): """Filters known workers and prints their current status. Args: Filter args: pattern (Optional[str]): a pattern to filter workers ex.: '^dispatch|^email' to filter names starting with that or 'dispatch.*123456' to filter that exact name and number or even '123456' to filter that exact number anywhere. negate (bool): if True, finds tasks that do not match criteria Display args: stats (bool): if True shows worker stats """ request = clearly_pb2.FilterWorkersRequest( workers_filter=clearly_pb2.PatternFilter(pattern=pattern or '.', negate=negate), ) for worker in about_time(ClearlyClient._fetched_callback, self._stub.filter_workers(request)): ClearlyClient._display_worker(worker, stats)
Filters known workers and prints their current status. Args: Filter args: pattern (Optional[str]): a pattern to filter workers ex.: '^dispatch|^email' to filter names starting with that or 'dispatch.*123456' to filter that exact name and number or even '123456' to filter that exact number anywhere. negate (bool): if True, finds tasks that do not match criteria Display args: stats (bool): if True shows worker stats
def frames(self): """ Returns the length of a video stream in frames. Returns 0 if not a video stream. """ f=0 if self.isVideo() or self.isAudio(): if self.__dict__['nb_frames']: try: f=int(self.__dict__['nb_frames']) except Exception as e: print "None integer frame count" return f
Returns the length of a video stream in frames. Returns 0 if not a video stream.
def get_required_status_checks(self): """ :calls: `GET /repos/:owner/:repo/branches/:branch/protection/required_status_checks <https://developer.github.com/v3/repos/branches>`_ :rtype: :class:`github.RequiredStatusChecks.RequiredStatusChecks` """ headers, data = self._requester.requestJsonAndCheck( "GET", self.protection_url + "/required_status_checks" ) return github.RequiredStatusChecks.RequiredStatusChecks(self._requester, headers, data, completed=True)
:calls: `GET /repos/:owner/:repo/branches/:branch/protection/required_status_checks <https://developer.github.com/v3/repos/branches>`_ :rtype: :class:`github.RequiredStatusChecks.RequiredStatusChecks`
def create_legacy_graph_tasks(): """Create tasks to recursively parse the legacy graph.""" return [ transitive_hydrated_targets, transitive_hydrated_target, hydrated_targets, hydrate_target, find_owners, hydrate_sources, hydrate_bundles, RootRule(OwnersRequest), ]
Create tasks to recursively parse the legacy graph.
def _recomputeRecordFromKNN(self, record): """ returns the classified labeling of record """ inputs = { "categoryIn": [None], "bottomUpIn": self._getStateAnomalyVector(record), } outputs = {"categoriesOut": numpy.zeros((1,)), "bestPrototypeIndices":numpy.zeros((1,)), "categoryProbabilitiesOut":numpy.zeros((1,))} # Only use points before record to classify and after the wait period. classifier_indexes = numpy.array( self._knnclassifier.getParameter('categoryRecencyList')) valid_idx = numpy.where( (classifier_indexes >= self.getParameter('trainRecords')) & (classifier_indexes < record.ROWID) )[0].tolist() if len(valid_idx) == 0: return None self._knnclassifier.setParameter('inferenceMode', None, True) self._knnclassifier.setParameter('learningMode', None, False) self._knnclassifier.compute(inputs, outputs) self._knnclassifier.setParameter('learningMode', None, True) classifier_distances = self._knnclassifier.getLatestDistances() valid_distances = classifier_distances[valid_idx] if valid_distances.min() <= self._classificationMaxDist: classifier_indexes_prev = classifier_indexes[valid_idx] rowID = classifier_indexes_prev[valid_distances.argmin()] indexID = numpy.where(classifier_indexes == rowID)[0][0] category = self._knnclassifier.getCategoryList()[indexID] return category return None
returns the classified labeling of record
def _GetArgsDescription(self, args_type): """Get a simplified description of the args_type for a flow.""" args = {} if args_type: for type_descriptor in args_type.type_infos: if not type_descriptor.hidden: args[type_descriptor.name] = { "description": type_descriptor.description, "default": type_descriptor.default, "type": "", } if type_descriptor.type: args[type_descriptor.name]["type"] = type_descriptor.type.__name__ return args
Get a simplified description of the args_type for a flow.
def eventFilter(self, widget, event): """A filter to control the zooming and panning of the figure canvas.""" # ---- Zooming if event.type() == QEvent.Wheel: modifiers = QApplication.keyboardModifiers() if modifiers == Qt.ControlModifier: if event.angleDelta().y() > 0: self.zoom_in() else: self.zoom_out() return True else: return False # ---- Panning # Set ClosedHandCursor: elif event.type() == QEvent.MouseButtonPress: if event.button() == Qt.LeftButton: QApplication.setOverrideCursor(Qt.ClosedHandCursor) self._ispanning = True self.xclick = event.globalX() self.yclick = event.globalY() # Reset Cursor: elif event.type() == QEvent.MouseButtonRelease: QApplication.restoreOverrideCursor() self._ispanning = False # Move ScrollBar: elif event.type() == QEvent.MouseMove: if self._ispanning: dx = self.xclick - event.globalX() self.xclick = event.globalX() dy = self.yclick - event.globalY() self.yclick = event.globalY() scrollBarH = self.horizontalScrollBar() scrollBarH.setValue(scrollBarH.value() + dx) scrollBarV = self.verticalScrollBar() scrollBarV.setValue(scrollBarV.value() + dy) return QWidget.eventFilter(self, widget, event)
A filter to control the zooming and panning of the figure canvas.
def build_schema(m, c_c): ''' Build an xsd schema from a bridgepoint component. ''' schema = ET.Element('xs:schema') schema.set('xmlns:xs', 'http://www.w3.org/2001/XMLSchema') global_filter = lambda selected: ooaofooa.is_global(selected) for s_dt in m.select_many('S_DT', global_filter): datatype = build_type(s_dt) if datatype is not None: schema.append(datatype) scope_filter = lambda selected: ooaofooa.is_contained_in(selected, c_c) for s_dt in m.select_many('S_DT', scope_filter): datatype = build_type(s_dt) if datatype is not None: schema.append(datatype) component = build_component(m, c_c) schema.append(component) return schema
Build an xsd schema from a bridgepoint component.
def metadata_path(self): """Determine the metadata path.""" xml_name = _granule_identifier_to_xml_name(self.granule_identifier) metadata_path = os.path.join(self.granule_path, xml_name) try: assert os.path.isfile(metadata_path) or \ metadata_path in self.dataset._zipfile.namelist() except AssertionError: raise S2ReaderIOError( "Granule metadata XML does not exist:", metadata_path) return metadata_path
Determine the metadata path.
def grok_template_file(src): """Determine the real deal template file""" if not src.startswith('builtin:'): return abspath(src) builtin = src.split(':')[1] builtin = "templates/%s.j2" % builtin return resource_filename(__name__, builtin)
Determine the real deal template file
def add_options(self, parser, env=None): """Non-camel-case version of func name for backwards compatibility. .. warning :: DEPRECATED: Do not use this method, use :meth:`options <nose.plugins.base.IPluginInterface.options>` instead. """ # FIXME raise deprecation warning if wasn't called by wrapper if env is None: env = os.environ try: self.options(parser, env) self.can_configure = True except OptionConflictError, e: warn("Plugin %s has conflicting option string: %s and will " "be disabled" % (self, e), RuntimeWarning) self.enabled = False self.can_configure = False
Non-camel-case version of func name for backwards compatibility. .. warning :: DEPRECATED: Do not use this method, use :meth:`options <nose.plugins.base.IPluginInterface.options>` instead.
def set_token(self): """Get token using Client ID/Secret credentials. :raises: AuthenticationError if credentials invalid, or call fails. """ super(ServicePrincipalCredentials, self).set_token() try: token = self._context.acquire_token_with_client_credentials( self.resource, self.id, self.secret ) self.token = self._convert_token(token) except adal.AdalError as err: raise_with_traceback(AuthenticationError, "", err)
Get token using Client ID/Secret credentials. :raises: AuthenticationError if credentials invalid, or call fails.
def customize_form_field(self, name, field): """ Allows views to customize their form fields. By default, Smartmin replaces the plain textbox date input with it's own DatePicker implementation. """ if isinstance(field, forms.fields.DateField) and isinstance(field.widget, forms.widgets.DateInput): field.widget = widgets.DatePickerWidget() field.input_formats = [field.widget.input_format[1]] + list(field.input_formats) if isinstance(field, forms.fields.ImageField) and isinstance(field.widget, forms.widgets.ClearableFileInput): field.widget = widgets.ImageThumbnailWidget() return field
Allows views to customize their form fields. By default, Smartmin replaces the plain textbox date input with it's own DatePicker implementation.
def rename_state_fluent(name: str) -> str: '''Returns current state fluent canonical name. Args: name (str): The next state fluent name. Returns: str: The current state fluent name. ''' i = name.index('/') functor = name[:i] arity = name[i+1:] return "{}'/{}".format(functor, arity)
Returns current state fluent canonical name. Args: name (str): The next state fluent name. Returns: str: The current state fluent name.
def convert(self, request, response, data): """ Performs the desired formatting. :param request: The webob Request object describing the request. :param response: The webob Response object describing the response. :param data: The data dictionary list returned by the prepare() method. :returns: A string, the results of which are the desired conversion. """ result = [] for conv, datum in zip(self.conversions, data): # Only include conversion if it's allowed if conv.modifier.accept(response.status_code): result.append(conv.convert(request, response, datum)) else: result.append('-') return ''.join(result)
Performs the desired formatting. :param request: The webob Request object describing the request. :param response: The webob Response object describing the response. :param data: The data dictionary list returned by the prepare() method. :returns: A string, the results of which are the desired conversion.
def update_detail(self, request): """ :param request: an apiv2 request object :return: request if successful with entities set on request """ entity = request.context_params[self.detail_property_name] updated_entity = self.update_entity( request, entity, **request.context_params['data']) request.context_params[self.updated_property_name] = updated_entity return request
:param request: an apiv2 request object :return: request if successful with entities set on request
def alias(cls, typemap, base, *names): """ Declare an alternate (humane) name for a measurement protocol parameter """ cls.parameter_alias[base] = (typemap, base) for i in names: cls.parameter_alias[i] = (typemap, base)
Declare an alternate (humane) name for a measurement protocol parameter
def send(x, inter=0, loop=0, count=None, verbose=None, realtime=None, *args, **kargs): """Send packets at layer 3 send(packets, [inter=0], [loop=0], [verbose=conf.verb]) -> None""" __gen_send(conf.L3socket(*args, **kargs), x, inter=inter, loop=loop, count=count,verbose=verbose, realtime=realtime)
Send packets at layer 3 send(packets, [inter=0], [loop=0], [verbose=conf.verb]) -> None
def get_queues(self, service_desk_id, include_count=False, start=0, limit=50): """ Returns a page of queues defined inside a service desk, for a given service desk ID. The returned queues will include an issue count for each queue (represented in issueCount field) if the query param includeCount is set to true (defaults to false). Permissions: The calling user must be an agent of the given service desk. :param service_desk_id: str :param include_count: bool :param start: int :param limit: int :return: a page of queues """ url = 'rest/servicedeskapi/servicedesk/{}/queue'.format(service_desk_id) params = {} if include_count is not None: params['includeCount'] = bool(include_count) if start is not None: params['start'] = int(start) if limit is not None: params['limit'] = int(limit) return self.get(url, headers=self.experimental_headers, params=params)
Returns a page of queues defined inside a service desk, for a given service desk ID. The returned queues will include an issue count for each queue (represented in issueCount field) if the query param includeCount is set to true (defaults to false). Permissions: The calling user must be an agent of the given service desk. :param service_desk_id: str :param include_count: bool :param start: int :param limit: int :return: a page of queues
def scoreatpercentile(data,per,axis=0): 'like the function in scipy.stats but with an axis argument and works on arrays' a = np.sort(data,axis=axis) idx = per/100. * (data.shape[axis]-1) if (idx % 1 == 0): return a[[slice(None) if ii != axis else idx for ii in range(a.ndim)]] else: lowerweight = 1-(idx % 1) upperweight = (idx % 1) idx = int(np.floor(idx)) return lowerweight * a[[slice(None) if ii != axis else idx for ii in range(a.ndim)]] \ + upperweight * a[[slice(None) if ii != axis else idx+1 for ii in range(a.ndim)]]
like the function in scipy.stats but with an axis argument and works on arrays
def extend( self, itemseq ): """ Add sequence of elements to end of ParseResults list of elements. Example:: patt = OneOrMore(Word(alphas)) # use a parse action to append the reverse of the matched strings, to make a palindrome def make_palindrome(tokens): tokens.extend(reversed([t[::-1] for t in tokens])) return ''.join(tokens) print(patt.addParseAction(make_palindrome).parseString("lskdj sdlkjf lksd")) # -> 'lskdjsdlkjflksddsklfjkldsjdksl' """ if isinstance(itemseq, ParseResults): self += itemseq else: self.__toklist.extend(itemseq)
Add sequence of elements to end of ParseResults list of elements. Example:: patt = OneOrMore(Word(alphas)) # use a parse action to append the reverse of the matched strings, to make a palindrome def make_palindrome(tokens): tokens.extend(reversed([t[::-1] for t in tokens])) return ''.join(tokens) print(patt.addParseAction(make_palindrome).parseString("lskdj sdlkjf lksd")) # -> 'lskdjsdlkjflksddsklfjkldsjdksl'
def expected_number_of_transactions_in_first_n_periods(self, n): r""" Return expected number of transactions in first n n_periods. Expected number of transactions occurring across first n transaction opportunities. Used by Fader and Hardie to assess in-sample fit. .. math:: Pr(X(n) = x| \alpha, \beta, \gamma, \delta) See (7) in Fader & Hardie 2010. Parameters ---------- n: float number of transaction opportunities Returns ------- DataFrame: Predicted values, indexed by x """ params = self._unload_params("alpha", "beta", "gamma", "delta") alpha, beta, gamma, delta = params x_counts = self.data.groupby("frequency")["weights"].sum() x = np.asarray(x_counts.index) p1 = binom(n, x) * exp( betaln(alpha + x, beta + n - x) - betaln(alpha, beta) + betaln(gamma, delta + n) - betaln(gamma, delta) ) I = np.arange(x.min(), n) @np.vectorize def p2(j, x): i = I[int(j) :] return np.sum( binom(i, x) * exp( betaln(alpha + x, beta + i - x) - betaln(alpha, beta) + betaln(gamma + 1, delta + i) - betaln(gamma, delta) ) ) p1 += np.fromfunction(p2, (x.shape[0],), x=x) idx = pd.Index(x, name="frequency") return DataFrame(p1 * x_counts.sum(), index=idx, columns=["model"])
r""" Return expected number of transactions in first n n_periods. Expected number of transactions occurring across first n transaction opportunities. Used by Fader and Hardie to assess in-sample fit. .. math:: Pr(X(n) = x| \alpha, \beta, \gamma, \delta) See (7) in Fader & Hardie 2010. Parameters ---------- n: float number of transaction opportunities Returns ------- DataFrame: Predicted values, indexed by x
def run(self, visitor): """ :param visitor: visitor to call with every node in the domain tree. :type visitor: subclass of :class:`everest.entities.traversal.DomainVisitor` """ if __debug__: self.__log_run(visitor) visitor.prepare() if self.__root_is_sequence: if not self._tgt_prx is None: tgts = iter(self._tgt_prx) else: tgts = None if not self._src_prx is None: srcs = iter(self._src_prx) else: srcs = None self.traverse_many(None, srcs, tgts, visitor) else: self.traverse_one(None, self._src_prx, self._tgt_prx, visitor) visitor.finalize()
:param visitor: visitor to call with every node in the domain tree. :type visitor: subclass of :class:`everest.entities.traversal.DomainVisitor`
def detach_all_classes(self): """ Detach from all tracked classes. """ classes = list(self._observers.keys()) for cls in classes: self.detach_class(cls)
Detach from all tracked classes.
def list_directories(dir_pathname, recursive=True, topdown=True, followlinks=False): """ Enlists all the directories using their absolute paths within the specified directory, optionally recursively. :param dir_pathname: The directory to traverse. :param recursive: ``True`` for walking recursively through the directory tree; ``False`` otherwise. :param topdown: Please see the documentation for :func:`os.walk` :param followlinks: Please see the documentation for :func:`os.walk` """ for root, dirnames, filenames\ in walk(dir_pathname, recursive, topdown, followlinks): for dirname in dirnames: yield absolute_path(os.path.join(root, dirname))
Enlists all the directories using their absolute paths within the specified directory, optionally recursively. :param dir_pathname: The directory to traverse. :param recursive: ``True`` for walking recursively through the directory tree; ``False`` otherwise. :param topdown: Please see the documentation for :func:`os.walk` :param followlinks: Please see the documentation for :func:`os.walk`
def on_click_dispatcher(self, module_name, event, command): """ Dispatch on_click config parameters to either: - Our own methods for special py3status commands (listed below) - The i3-msg program which is part of i3wm """ if command is None: return elif command == "refresh_all": self.py3_wrapper.refresh_modules() elif command == "refresh": self.py3_wrapper.refresh_modules(module_name) else: # In commands we are able to use substitutions for the text output # of a module if "$OUTPUT" in command or "$OUTPUT_PART" in command: full_text, partial_text = self.get_module_text(module_name, event) command = command.replace("$OUTPUT_PART", shell_quote(partial_text)) command = command.replace("$OUTPUT", shell_quote(full_text)) # this is a i3 message self.wm_msg(module_name, command) # to make the bar more responsive to users we ask for a refresh # of the module or of i3status if the module is an i3status one self.py3_wrapper.refresh_modules(module_name)
Dispatch on_click config parameters to either: - Our own methods for special py3status commands (listed below) - The i3-msg program which is part of i3wm
def lazy_approximate_personalized_pagerank(s, r, w_i, a_i, out_degree, in_degree, seed_node, rho=0.2, epsilon=0.00001, laziness_factor=0.5): """ Calculates the approximate personalized PageRank starting from a seed node with self-loops. Introduced in: Andersen, R., Chung, F., & Lang, K. (2006, October). Local graph partitioning using pagerank vectors. In Foundations of Computer Science, 2006. FOCS'06. 47th Annual IEEE Symposium on (pp. 475-486). IEEE. """ # Initialize approximate PageRank and residual distributions # s = np.zeros(number_of_nodes, dtype=np.float64) # r = np.zeros(number_of_nodes, dtype=np.float64) r[seed_node] = 1.0 # Initialize queue of nodes to be pushed pushable = deque() pushable.append(seed_node) # Do one push anyway push_node = pushable.popleft() pagerank_lazy_push(s, r, w_i[push_node], a_i[push_node], push_node, rho, laziness_factor) number_of_push_operations = 1 i = np.where(np.divide(r[a_i[push_node]], in_degree[a_i[push_node]]) >= epsilon)[0] if i.size > 0: pushable.extend(a_i[push_node][i]) while r[push_node]/in_degree[push_node] >= epsilon: pagerank_lazy_push(s, r, w_i[push_node], a_i[push_node], push_node, rho, laziness_factor) number_of_push_operations += 1 # While there are nodes with large residual probabilities, push while len(pushable) > 0: push_node = pushable.popleft() if r[push_node]/in_degree[push_node] >= epsilon: pagerank_lazy_push(s, r, w_i[push_node], a_i[push_node], push_node, rho, laziness_factor) number_of_push_operations += 1 i = np.where(np.divide(r[a_i[push_node]], in_degree[a_i[push_node]]) >= epsilon)[0] if i.size > 0: pushable.extend(a_i[push_node][i]) while r[push_node]/in_degree[push_node] >= epsilon: pagerank_lazy_push(s, r, w_i[push_node], a_i[push_node], push_node, rho, laziness_factor) number_of_push_operations += 1 return number_of_push_operations
Calculates the approximate personalized PageRank starting from a seed node with self-loops. Introduced in: Andersen, R., Chung, F., & Lang, K. (2006, October). Local graph partitioning using pagerank vectors. In Foundations of Computer Science, 2006. FOCS'06. 47th Annual IEEE Symposium on (pp. 475-486). IEEE.