code
stringlengths
75
104k
docstring
stringlengths
1
46.9k
def run(self, **kwargs): """ Does the magic! """ logger.info('UpdateLocationsIfNecessaryTask was called') # read last ip count try: with open(app_settings.IP_ASSEMBLER_IP_CHANGED_FILE, 'r') as f: content_list = f.readlines() if len(content_list) == 0: ip_count_old = -1 else: ip_count_old = int(content_list[0]) except IOError: ip_count_old = -1 logger.info('read IP count of %(count)d' % {'count': ip_count_old}) # if IPs have significantly changed, update the locations ip_count_now = IP.objects.count() if ip_count_now == -1 or ip_count_now > ip_count_old + app_settings.IP_ASSEMBLER_IP_CHANGED_THRESHOLD: logger.info('Checking IP counts, last: %(ip_count_old)d - now: %(ip_count_now)d' % { 'ip_count_old': ip_count_old, 'ip_count_now': ip_count_now }) # call the updater task UpdateHtaccessLocationsTask().delay() # write the new count to the file try: open(app_settings.IP_ASSEMBLER_IP_CHANGED_FILE, 'w').close() with open(app_settings.IP_ASSEMBLER_IP_CHANGED_FILE, 'w') as f: f.write(str(ip_count_now)) except IOError: logger.exception('unable to write to file %(file_path)s' % {'file_path': app_settings.IP_ASSEMBLER_IP_CHANGED_FILE}) else: logger.info('nothing to do here')
Does the magic!
def info_post_request(self, node, info): """Run when a request to create an info is complete.""" for agent in node.neighbors(): node.transmit(what=info, to_whom=agent)
Run when a request to create an info is complete.
def _parse_args(): """Parse and return command line arguments.""" parser = argparse.ArgumentParser( description=__doc__, formatter_class=_CliFormatter) parser.add_argument('-v', '--verbose', action='store_true', help='Enable verbose output.') fb_group = parser.add_argument_group('FogBugz arguments') fb_group.add_argument( '-u', '--url', help=( 'URL for bugzscout requests to be sent. Should be something ' 'like .../scoutSubmit.asp.')) fb_group.add_argument( '--user', help='User to designate when submitting via bugzscout.') fb_group.add_argument( '--project', help='Fogbugz project to file cases under.') fb_group.add_argument( '--area', help='Fogbugz area to file cases under.') error_group = parser.add_argument_group('error arguments') error_group.add_argument('-e', '--extra', help='Extra data to send with error.') error_group.add_argument('--default-message', help='Set default message if case is new.') error_group.add_argument('description', help=('Description of error. Will be matched ' 'against existing cases.')) parser.set_defaults(**_defaults()) return parser.parse_args()
Parse and return command line arguments.
def collect_segment_partitions(self): """Return a dict of segments partitions, keyed on the name of the parent partition """ from collections import defaultdict # Group the segments by their parent partition name, which is the # same name, but without the segment. partitions = defaultdict(set) for p in self.dataset.partitions: if p.type == p.TYPE.SEGMENT: name = p.identity.name name.segment = None partitions[name].add(p) return partitions
Return a dict of segments partitions, keyed on the name of the parent partition
def submit(self, spec): """Submit a new skein application. Parameters ---------- spec : ApplicationSpec, str, or dict A description of the application to run. Can be an ``ApplicationSpec`` object, a path to a yaml/json file, or a dictionary description of an application specification. Returns ------- app_id : str The id of the submitted application. """ spec = ApplicationSpec._from_any(spec) resp = self._call('submit', spec.to_protobuf()) return resp.id
Submit a new skein application. Parameters ---------- spec : ApplicationSpec, str, or dict A description of the application to run. Can be an ``ApplicationSpec`` object, a path to a yaml/json file, or a dictionary description of an application specification. Returns ------- app_id : str The id of the submitted application.
def find_lexer_class_for_filename(_fn, code=None): """Get a lexer for a filename. If multiple lexers match the filename pattern, use ``analyse_text()`` to figure out which one is more appropriate. Returns None if not found. """ matches = [] fn = basename(_fn) for modname, name, _, filenames, _ in itervalues(LEXERS): for filename in filenames: if _fn_matches(fn, filename): if name not in _lexer_cache: _load_lexers(modname) matches.append((_lexer_cache[name], filename)) for cls in find_plugin_lexers(): for filename in cls.filenames: if _fn_matches(fn, filename): matches.append((cls, filename)) if sys.version_info > (3,) and isinstance(code, bytes): # decode it, since all analyse_text functions expect unicode code = guess_decode(code) def get_rating(info): cls, filename = info # explicit patterns get a bonus bonus = '*' not in filename and 0.5 or 0 # The class _always_ defines analyse_text because it's included in # the Lexer class. The default implementation returns None which # gets turned into 0.0. Run scripts/detect_missing_analyse_text.py # to find lexers which need it overridden. if code: return cls.analyse_text(code) + bonus, cls.__name__ return cls.priority + bonus, cls.__name__ if matches: matches.sort(key=get_rating) # print "Possible lexers, after sort:", matches return matches[-1][0]
Get a lexer for a filename. If multiple lexers match the filename pattern, use ``analyse_text()`` to figure out which one is more appropriate. Returns None if not found.
def create_object_if_not_exists(self, alias, name=None, *args, **kwargs): """Constructs the type with the given alias using the given args and kwargs. NB: aliases may be the alias' object type itself if that type is known. :API: public :param alias: Either the type alias or the type itself. :type alias: string|type :param *args: These pass through to the underlying callable object. :param **kwargs: These pass through to the underlying callable object. :returns: The created object, or an existing object with the same `name`. """ if name is None: raise ValueError("Method requires an object `name`.") obj_creator = functools.partial(self.create_object, alias, name=name, *args, **kwargs) return self._storage.add_if_not_exists(name, obj_creator)
Constructs the type with the given alias using the given args and kwargs. NB: aliases may be the alias' object type itself if that type is known. :API: public :param alias: Either the type alias or the type itself. :type alias: string|type :param *args: These pass through to the underlying callable object. :param **kwargs: These pass through to the underlying callable object. :returns: The created object, or an existing object with the same `name`.
def _send_msg(self, header, payload): """send message to server""" if self.verbose: print('->', repr(header)) print('..', repr(payload)) assert header.payload == len(payload) try: sent = self.socket.send(header + payload) except IOError as err: raise ConnError(*err.args) # FIXME FIXME FIXME: # investigate under which situations socket.send should be retried # instead of aborted. # FIXME FIXME FIXME if sent < len(header + payload): raise ShortWrite(sent, len(header + payload)) assert sent == len(header + payload), sent
send message to server
def get_dev_details(ip_address, auth, url): """Takes string input of IP address to issue RESTUL call to HP IMC\n :param ip_address: string object of dotted decimal notation of IPv4 address :param auth: requests auth object #usually auth.creds from auth pyhpeimc.auth.class :param url: base url of IMC RS interface #usually auth.url from pyhpeimc.auth.authclass :return: dictionary of device details :rtype: dict >>> from pyhpeimc.auth import * >>> from pyhpeimc.plat.device import * >>> auth = IMCAuth("http://", "10.101.0.203", "8080", "admin", "admin") >>> dev_1 = get_dev_details('10.101.0.221', auth.creds, auth.url) >>> assert type(dev_1) is dict >>> assert 'sysName' in dev_1 >>> dev_2 = get_dev_details('8.8.8.8', auth.creds, auth.url) Device not found >>> assert type(dev_2) is str """ get_dev_details_url = "/imcrs/plat/res/device?resPrivilegeFilter=false&ip=" + \ str(ip_address) + "&start=0&size=1000&orderBy=id&desc=false&total=false" f_url = url + get_dev_details_url # creates the URL using the payload variable as the contents r = requests.get(f_url, auth=auth, headers=HEADERS) # r.status_code try: if r.status_code == 200: dev_details = (json.loads(r.text)) if len(dev_details) == 0: print("Device not found") return "Device not found" elif type(dev_details['device']) == list: for i in dev_details['device']: if i['ip'] == ip_address: dev_details = i return dev_details elif type(dev_details['device']) == dict: return dev_details['device'] except requests.exceptions.RequestException as e: return "Error:\n" + str(e) + " get_dev_details: An Error has occured"
Takes string input of IP address to issue RESTUL call to HP IMC\n :param ip_address: string object of dotted decimal notation of IPv4 address :param auth: requests auth object #usually auth.creds from auth pyhpeimc.auth.class :param url: base url of IMC RS interface #usually auth.url from pyhpeimc.auth.authclass :return: dictionary of device details :rtype: dict >>> from pyhpeimc.auth import * >>> from pyhpeimc.plat.device import * >>> auth = IMCAuth("http://", "10.101.0.203", "8080", "admin", "admin") >>> dev_1 = get_dev_details('10.101.0.221', auth.creds, auth.url) >>> assert type(dev_1) is dict >>> assert 'sysName' in dev_1 >>> dev_2 = get_dev_details('8.8.8.8', auth.creds, auth.url) Device not found >>> assert type(dev_2) is str
def delete_user(self, username, params=None): """ `<https://www.elastic.co/guide/en/elasticsearch/reference/current/security-api-delete-user.html>`_ :arg username: username :arg refresh: If `true` (the default) then refresh the affected shards to make this operation visible to search, if `wait_for` then wait for a refresh to make this operation visible to search, if `false` then do nothing with refreshes., valid choices are: 'true', 'false', 'wait_for' """ if username in SKIP_IN_PATH: raise ValueError("Empty value passed for a required argument 'username'.") return self.transport.perform_request( "DELETE", _make_path("_security", "user", username), params=params )
`<https://www.elastic.co/guide/en/elasticsearch/reference/current/security-api-delete-user.html>`_ :arg username: username :arg refresh: If `true` (the default) then refresh the affected shards to make this operation visible to search, if `wait_for` then wait for a refresh to make this operation visible to search, if `false` then do nothing with refreshes., valid choices are: 'true', 'false', 'wait_for'
def parse(self, paramfile): """ Read parameter file and set parameter values. File should have python-like syntax. Full file name needed. """ with open(paramfile, 'r') as f: for line in f.readlines(): line_clean = line.rstrip('\n').split('#')[0] # trim out comments and trailing cr if line_clean and '=' in line: # use valid lines only attribute, value = line_clean.split('=') try: value_eval = eval(value.strip()) except NameError: value_eval = value.strip() finally: setattr(self, attribute.strip(), value_eval)
Read parameter file and set parameter values. File should have python-like syntax. Full file name needed.
def write(url, content, **args): """Put an object into a ftp URL.""" relay = urlparse.urlparse(args.pop('relay', 'lmtp://localhot')) try: smtplib_SMTPS = functools.partial(smtplib.SMTP_SSL, keyfile=args.pop('keyfile', None), certfile=args.pop('certfile', None)) except AttributeError: def smtplib_SMTPS(): raise ValueError(relay.geturl()) filename = args.pop('filename', '') content_type, encoding = mimetypes.guess_type(filename) content_type = args.pop('content_type', content_type) encoding = args.pop('content_encoding', encoding) maintype, subtype = content_type.split('/') content = content_types.get(content_types).format(content, **args) content = content_encodings.get(encoding).encode(content) message = { 'application': application.MIMEApplication, 'text': text.MIMEText}[maintype](content, subtype) if filename: message.set_param('filename', ('UTF-8', '', filename.decode('UTF-8'))) if encoding: message['Content-Encoding'] = encoding message['To'] = urllib.unquote(url.path) for name, value in urlparse.parse_qsl(url.query): message[name.replace('_', '-')] = value if message['From'] is None: username = os.environ.get('USERNAME') username = os.environ.get('LOGNAME', username) username = os.environ.get('USER', username) message['From'] = '{}@{}'.format(username, socket.getfqdn()) # ``mailto`` scheme allow for a body param. We don't. del message['body'] # Send the email. client = {'smtp': smtplib.SMTP, 'lmtp': smtplib.LMTP, 'smtps': smtplib_SMTPS}[relay.scheme]() client.connect(''.join([relay.hostname, relay.path]), relay.port) if relay.username and relay.password: client.login(relay.username, relay.password) client.sendmail(message['From'], [message['To']], message.as_string()) client.quit()
Put an object into a ftp URL.
def tap_and_hold(self, xcoord, ycoord): """ Touch down at given coordinates. :Args: - xcoord: X Coordinate to touch down. - ycoord: Y Coordinate to touch down. """ self._actions.append(lambda: self._driver.execute( Command.TOUCH_DOWN, { 'x': int(xcoord), 'y': int(ycoord)})) return self
Touch down at given coordinates. :Args: - xcoord: X Coordinate to touch down. - ycoord: Y Coordinate to touch down.
def reddening(self,extval): """Compute the reddening for the given extinction. .. math:: A(V) = R(V) \\; \\times \\; E(B-V) \\textnormal{THRU} = 10^{-0.4 \\; A(V)} .. note:: ``self.litref`` is passed into ``ans.citation``. Parameters ---------- extval : float Value of :math:`E(B-V)` in magnitudes. Returns ------- ans : `~pysynphot.spectrum.ArraySpectralElement` Extinction curve to apply to a source spectrum. """ T = 10.0**(-0.4*extval*self.obscuration) ans = ExtinctionSpectralElement(wave=self.wave, waveunits=self.waveunits, throughput=T, name='%s(EBV=%g)'%(self.name, extval)) ans.citation = self.litref return ans
Compute the reddening for the given extinction. .. math:: A(V) = R(V) \\; \\times \\; E(B-V) \\textnormal{THRU} = 10^{-0.4 \\; A(V)} .. note:: ``self.litref`` is passed into ``ans.citation``. Parameters ---------- extval : float Value of :math:`E(B-V)` in magnitudes. Returns ------- ans : `~pysynphot.spectrum.ArraySpectralElement` Extinction curve to apply to a source spectrum.
def _generate_author_query(self, author_name): """Generates a query handling specifically authors. Notes: The match query is generic enough to return many results. Then, using the filter clause we truncate these so that we imitate legacy's behaviour on returning more "exact" results. E.g. Searching for `Smith, John` shouldn't return papers of 'Smith, Bob'. Additionally, doing a ``match`` with ``"operator": "and"`` in order to be even more exact in our search, by requiring that ``full_name`` field contains both """ name_variations = [name_variation.lower() for name_variation in generate_minimal_name_variations(author_name)] # When the query contains sufficient data, i.e. full names, e.g. ``Mele, Salvatore`` (and not ``Mele, S`` or # ``Mele``) we can improve our filtering in order to filter out results containing records with authors that # have the same non lastnames prefix, e.g. 'Mele, Samuele'. if author_name_contains_fullnames(author_name): specialized_author_filter = [ { 'bool': { 'must': [ { 'term': {ElasticSearchVisitor.AUTHORS_NAME_VARIATIONS_FIELD: names_variation[0]} }, generate_match_query( ElasticSearchVisitor.KEYWORD_TO_ES_FIELDNAME['author'], names_variation[1], with_operator_and=True ) ] } } for names_variation in product(name_variations, name_variations) ] else: # In the case of initials or even single lastname search, filter with only the name variations. specialized_author_filter = [ {'term': {ElasticSearchVisitor.AUTHORS_NAME_VARIATIONS_FIELD: name_variation}} for name_variation in name_variations ] query = { 'bool': { 'filter': { 'bool': { 'should': specialized_author_filter } }, 'must': { 'match': { ElasticSearchVisitor.KEYWORD_TO_ES_FIELDNAME['author']: author_name } } } } return generate_nested_query(ElasticSearchVisitor.AUTHORS_NESTED_QUERY_PATH, query)
Generates a query handling specifically authors. Notes: The match query is generic enough to return many results. Then, using the filter clause we truncate these so that we imitate legacy's behaviour on returning more "exact" results. E.g. Searching for `Smith, John` shouldn't return papers of 'Smith, Bob'. Additionally, doing a ``match`` with ``"operator": "and"`` in order to be even more exact in our search, by requiring that ``full_name`` field contains both
def bitop_or(self, dest, key, *keys): """Perform bitwise OR operations between strings.""" return self.execute(b'BITOP', b'OR', dest, key, *keys)
Perform bitwise OR operations between strings.
def remove_sample(self, md5): """Delete a specific sample""" # Grab the sample record = self.database[self.sample_collection].find_one({'md5': md5}) if not record: return # Delete it print 'Deleting sample: %s (%.2f MB)...' % (record['md5'], record['length']/1024.0/1024.0) self.database[self.sample_collection].remove({'md5': record['md5']}) self.gridfs_handle.delete(record['__grid_fs']) # Print info print 'Sample Storage: %.2f out of %.2f MB' % (self.sample_storage_size(), self.samples_cap)
Delete a specific sample
def deleteMapTable(self, name, session): """ Remove duplicate map table if it exists """ duplicate_map_tables = session.query(MapTable).filter(MapTable.mapTableFile == self).filter(MapTable.name == name).all() for duplicate_map_table in duplicate_map_tables: if duplicate_map_table.indexMap: session.delete(duplicate_map_table.indexMap) session.delete(duplicate_map_table) session.commit()
Remove duplicate map table if it exists
def expect_keyword(parser, value): # type: (Parser, str) -> Token """If the next token is a keyword with the given value, return that token after advancing the parser. Otherwise, do not change the parser state and return False.""" token = parser.token if token.kind == TokenKind.NAME and token.value == value: advance(parser) return token raise GraphQLSyntaxError( parser.source, token.start, u'Expected "{}", found {}'.format(value, get_token_desc(token)), )
If the next token is a keyword with the given value, return that token after advancing the parser. Otherwise, do not change the parser state and return False.
def update_service_definitions(self, service_definitions): """UpdateServiceDefinitions. [Preview API] :param :class:`<VssJsonCollectionWrapper> <azure.devops.v5_0.location.models.VssJsonCollectionWrapper>` service_definitions: """ content = self._serialize.body(service_definitions, 'VssJsonCollectionWrapper') self._send(http_method='PATCH', location_id='d810a47d-f4f4-4a62-a03f-fa1860585c4c', version='5.0-preview.1', content=content)
UpdateServiceDefinitions. [Preview API] :param :class:`<VssJsonCollectionWrapper> <azure.devops.v5_0.location.models.VssJsonCollectionWrapper>` service_definitions:
def has_nvme_ssd(system_obj): """Gets if the system has any drive as NVMe SSD drive :param system_obj: The HPESystem object. :returns True if system has SSD drives and protocol is NVMe. """ storage_value = False storage_resource = _get_attribute_value_of(system_obj, 'storages') if storage_resource is not None: storage_value = _get_attribute_value_of( storage_resource, 'has_nvme_ssd', default=False) return storage_value
Gets if the system has any drive as NVMe SSD drive :param system_obj: The HPESystem object. :returns True if system has SSD drives and protocol is NVMe.
def _helper(result, graph, number_edges_remaining: int, node_blacklist: Set[BaseEntity], invert_degrees: Optional[bool] = None, ): """Help build a random graph. :type result: networkx.Graph :type graph: networkx.Graph """ original_node_count = graph.number_of_nodes() log.debug('adding remaining %d edges', number_edges_remaining) for _ in range(number_edges_remaining): source, possible_step_nodes, c = None, set(), 0 while not source or not possible_step_nodes: source = get_random_node(result, node_blacklist, invert_degrees=invert_degrees) c += 1 if c >= original_node_count: log.warning('infinite loop happening') log.warning('source: %s', source) log.warning('no grow: %s', node_blacklist) return # Happens when after exhausting the connected components. Try increasing the number seed edges if source is None: continue # maybe do something else? # Only keep targets in the original graph that aren't in the result graph possible_step_nodes = set(graph[source]) - set(result[source]) if not possible_step_nodes: node_blacklist.add( source) # there aren't any possible nodes to step to, so try growing from somewhere else step_node = random.choice(list(possible_step_nodes)) # it's not really a big deal which, but it might be possible to weight this by the utility of edges later key, attr_dict = random.choice(list(graph[source][step_node].items())) result.add_edge(source, step_node, key=key, **attr_dict)
Help build a random graph. :type result: networkx.Graph :type graph: networkx.Graph
def search(self, args): """ Executes a search flickr:(credsfile),search,(arg1)=(val1),(arg2)=(val2)... """ kwargs = {} for a in args: k, v = a.split('=') kwargs[k] = v return self._paged_api_call(self.flickr.photos_search, kwargs)
Executes a search flickr:(credsfile),search,(arg1)=(val1),(arg2)=(val2)...
def process_csxml_file(self, filename, interval=None, lazy=False): """Processes a filehandle to MedScan csxml input into INDRA statements. The CSXML format consists of a top-level `<batch>` root element containing a series of `<doc>` (document) elements, in turn containing `<sec>` (section) elements, and in turn containing `<sent>` (sentence) elements. Within the `<sent>` element, a series of additional elements appear in the following order: * `<toks>`, which contains a tokenized form of the sentence in its text attribute * `<textmods>`, which describes any preprocessing/normalization done to the underlying text * `<match>` elements, each of which contains one of more `<entity>` elements, describing entities in the text with their identifiers. The local IDs of each entities are given in the `msid` attribute of this element; these IDs are then referenced in any subsequent SVO elements. * `<svo>` elements, representing subject-verb-object triples. SVO elements with a `type` attribute of `CONTROL` represent normalized regulation relationships; they often represent the normalized extraction of the immediately preceding (but unnormalized SVO element). However, in some cases there can be a "CONTROL" SVO element without its parent immediately preceding it. Parameters ---------- filename : string The path to a Medscan csxml file. interval : (start, end) or None Select the interval of documents to read, starting with the `start`th document and ending before the `end`th document. If either is None, the value is considered undefined. If the value exceeds the bounds of available documents, it will simply be ignored. lazy : bool If True, only create a generator which can be used by the `get_statements` method. If True, populate the statements list now. """ if interval is None: interval = (None, None) tmp_fname = tempfile.mktemp(os.path.basename(filename)) fix_character_encoding(filename, tmp_fname) self.__f = open(tmp_fname, 'rb') self._gen = self._iter_through_csxml_file_from_handle(*interval) if not lazy: for stmt in self._gen: self.statements.append(stmt) return
Processes a filehandle to MedScan csxml input into INDRA statements. The CSXML format consists of a top-level `<batch>` root element containing a series of `<doc>` (document) elements, in turn containing `<sec>` (section) elements, and in turn containing `<sent>` (sentence) elements. Within the `<sent>` element, a series of additional elements appear in the following order: * `<toks>`, which contains a tokenized form of the sentence in its text attribute * `<textmods>`, which describes any preprocessing/normalization done to the underlying text * `<match>` elements, each of which contains one of more `<entity>` elements, describing entities in the text with their identifiers. The local IDs of each entities are given in the `msid` attribute of this element; these IDs are then referenced in any subsequent SVO elements. * `<svo>` elements, representing subject-verb-object triples. SVO elements with a `type` attribute of `CONTROL` represent normalized regulation relationships; they often represent the normalized extraction of the immediately preceding (but unnormalized SVO element). However, in some cases there can be a "CONTROL" SVO element without its parent immediately preceding it. Parameters ---------- filename : string The path to a Medscan csxml file. interval : (start, end) or None Select the interval of documents to read, starting with the `start`th document and ending before the `end`th document. If either is None, the value is considered undefined. If the value exceeds the bounds of available documents, it will simply be ignored. lazy : bool If True, only create a generator which can be used by the `get_statements` method. If True, populate the statements list now.
def report_error(self, line_number, offset, text, check): """ Report an error, according to options. """ if options.quiet == 1 and not self.file_errors: message(self.filename) self.file_errors += 1 code = text[:4] options.counters[code] = options.counters.get(code, 0) + 1 options.messages[code] = text[5:] if options.quiet: return if options.testsuite: base = os.path.basename(self.filename)[:4] if base == code: return if base[0] == 'E' and code[0] == 'W': return if ignore_code(code): return if options.counters[code] == 1 or options.repeat: message("%s:%s:%d: %s" % (self.filename, line_number, offset + 1, text)) if options.show_source: line = self.lines[line_number - 1] message(line.rstrip()) message(' ' * offset + '^') if options.show_pep8: message(check.__doc__.lstrip('\n').rstrip())
Report an error, according to options.
def _prep_ssh( self, tgt, fun, arg=(), timeout=None, tgt_type='glob', kwarg=None, **kwargs): ''' Prepare the arguments ''' opts = copy.deepcopy(self.opts) opts.update(kwargs) if timeout: opts['timeout'] = timeout arg = salt.utils.args.condition_input(arg, kwarg) opts['argv'] = [fun] + arg opts['selected_target_option'] = tgt_type opts['tgt'] = tgt opts['arg'] = arg return salt.client.ssh.SSH(opts)
Prepare the arguments
def gradient(self): r"""Gradient of the KL functional. The gradient of `KullbackLeibler` with ``prior`` :math:`g` is given as .. math:: \nabla F(x) = 1 - \frac{g}{x}. The gradient is not defined in points where one or more components are non-positive. """ functional = self class KLGradient(Operator): """The gradient operator of this functional.""" def __init__(self): """Initialize a new instance.""" super(KLGradient, self).__init__( functional.domain, functional.domain, linear=False) def _call(self, x): """Apply the gradient operator to the given point. The gradient is not defined in points where one or more components are non-positive. """ if functional.prior is None: return (-1.0) / x + 1 else: return (-functional.prior) / x + 1 return KLGradient()
r"""Gradient of the KL functional. The gradient of `KullbackLeibler` with ``prior`` :math:`g` is given as .. math:: \nabla F(x) = 1 - \frac{g}{x}. The gradient is not defined in points where one or more components are non-positive.
def __software_to_pkg_id(self, publisher, name, is_component, is_32bit): ''' Determine the Package ID of a software/component using the software/component ``publisher``, ``name``, whether its a software or a component, and if its 32bit or 64bit archiecture. Args: publisher (str): Publisher of the software/component. name (str): Name of the software. is_component (bool): True if package is a component. is_32bit (bool): True if the software/component is 32bit architecture. Returns: str: Package Id ''' if publisher: # remove , and lowercase as , are used as list separators pub_lc = publisher.replace(',', '').lower() else: # remove , and lowercase pub_lc = 'NoValue' # Capitals/Special Value if name: name_lc = name.replace(',', '').lower() # remove , OR we do the URL Encode on chars we do not want e.g. \\ and , else: name_lc = 'NoValue' # Capitals/Special Value if is_component: soft_type = 'comp' else: soft_type = 'soft' if is_32bit: soft_type += '32' # Tag only the 32bit only default_pkg_id = pub_lc+'\\\\'+name_lc+'\\\\'+soft_type # Check to see if class was initialise with pkg_obj with a method called # to_pkg_id, and if so use it for the naming standard instead of the default if self.__pkg_obj and hasattr(self.__pkg_obj, 'to_pkg_id'): pkg_id = self.__pkg_obj.to_pkg_id(publisher, name, is_component, is_32bit) if pkg_id: return pkg_id return default_pkg_id
Determine the Package ID of a software/component using the software/component ``publisher``, ``name``, whether its a software or a component, and if its 32bit or 64bit archiecture. Args: publisher (str): Publisher of the software/component. name (str): Name of the software. is_component (bool): True if package is a component. is_32bit (bool): True if the software/component is 32bit architecture. Returns: str: Package Id
def remove_range(self, start, end): '''Remove a range by score. ''' return self._sl.remove_range( start, end, callback=lambda sc, value: self._dict.pop(value))
Remove a range by score.
def disassemble(qobj): """Dissasemble a qobj and return the circuits, run_config, and user header Args: qobj (Qobj): The input qobj object to dissasemble Returns: circuits (list): A list of quantum circuits run_config (dict): The dist of the run config user_qobj_header (dict): The dict of any user headers in the qobj """ run_config = qobj.config.to_dict() user_qobj_header = qobj.header.to_dict() circuits = _experiments_to_circuits(qobj) return circuits, run_config, user_qobj_header
Dissasemble a qobj and return the circuits, run_config, and user header Args: qobj (Qobj): The input qobj object to dissasemble Returns: circuits (list): A list of quantum circuits run_config (dict): The dist of the run config user_qobj_header (dict): The dict of any user headers in the qobj
def t_INDENTIFIER(t): r'(\$?[_a-zA-Z][_a-zA-Z0-9]*)|(__[A-Z_]+__)' if t.value in reserved: t.type = t.value.upper() if t.value in reservedMap: t.value = reservedMap[t.value] elif t.value in strStatment: t.type = 'STATEMENT' return t
r'(\$?[_a-zA-Z][_a-zA-Z0-9]*)|(__[A-Z_]+__)
def updateAnomalyLikelihoods(anomalyScores, params, verbosity=0): """ Compute updated probabilities for anomalyScores using the given params. :param anomalyScores: a list of records. Each record is a list with the following three elements: [timestamp, value, score] Example:: [datetime.datetime(2013, 8, 10, 23, 0), 6.0, 1.0] :param params: the JSON dict returned by estimateAnomalyLikelihoods :param verbosity: integer controlling extent of printouts for debugging :type verbosity: int :returns: 3-tuple consisting of: - likelihoods numpy array of likelihoods, one for each aggregated point - avgRecordList list of averaged input records - params an updated JSON object containing the state of this metric. """ if verbosity > 3: print("In updateAnomalyLikelihoods.") print("Number of anomaly scores:", len(anomalyScores)) print("First 20:", anomalyScores[0:min(20, len(anomalyScores))]) print("Params:", params) if len(anomalyScores) == 0: raise ValueError("Must have at least one anomalyScore") if not isValidEstimatorParams(params): raise ValueError("'params' is not a valid params structure") # For backward compatibility. if "historicalLikelihoods" not in params: params["historicalLikelihoods"] = [1.0] # Compute moving averages of these new scores using the previous values # as well as likelihood for these scores using the old estimator historicalValues = params["movingAverage"]["historicalValues"] total = params["movingAverage"]["total"] windowSize = params["movingAverage"]["windowSize"] aggRecordList = numpy.zeros(len(anomalyScores), dtype=float) likelihoods = numpy.zeros(len(anomalyScores), dtype=float) for i, v in enumerate(anomalyScores): newAverage, historicalValues, total = ( MovingAverage.compute(historicalValues, total, v[2], windowSize) ) aggRecordList[i] = newAverage likelihoods[i] = tailProbability(newAverage, params["distribution"]) # Filter the likelihood values. First we prepend the historical likelihoods # to the current set. Then we filter the values. We peel off the likelihoods # to return and the last windowSize values to store for later. likelihoods2 = params["historicalLikelihoods"] + list(likelihoods) filteredLikelihoods = _filterLikelihoods(likelihoods2) likelihoods[:] = filteredLikelihoods[-len(likelihoods):] historicalLikelihoods = likelihoods2[-min(windowSize, len(likelihoods2)):] # Update the estimator newParams = { "distribution": params["distribution"], "movingAverage": { "historicalValues": historicalValues, "total": total, "windowSize": windowSize, }, "historicalLikelihoods": historicalLikelihoods, } assert len(newParams["historicalLikelihoods"]) <= windowSize if verbosity > 3: print("Number of likelihoods:", len(likelihoods)) print("First 20 likelihoods:", likelihoods[0:min(20, len(likelihoods))]) print("Leaving updateAnomalyLikelihoods.") return (likelihoods, aggRecordList, newParams)
Compute updated probabilities for anomalyScores using the given params. :param anomalyScores: a list of records. Each record is a list with the following three elements: [timestamp, value, score] Example:: [datetime.datetime(2013, 8, 10, 23, 0), 6.0, 1.0] :param params: the JSON dict returned by estimateAnomalyLikelihoods :param verbosity: integer controlling extent of printouts for debugging :type verbosity: int :returns: 3-tuple consisting of: - likelihoods numpy array of likelihoods, one for each aggregated point - avgRecordList list of averaged input records - params an updated JSON object containing the state of this metric.
def select_many(self, *args): ''' Select several instances from the instance pool. Query operators such as where_eq(), order_by() or filter functions may be passed as optional arguments. ''' s = apply_query_operators(self.storage, args) if isinstance(s, QuerySet): return s else: return QuerySet(s)
Select several instances from the instance pool. Query operators such as where_eq(), order_by() or filter functions may be passed as optional arguments.
def generate_kmers(seq, k=4): """Return a generator of all the unique substrings (k-mer or q-gram strings) within a sequence/string Not effiicent for large k and long strings. Doesn't form substrings that are shorter than k, only exactly k-mers Used for algorithms like UniqTag for genome unique identifier locality sensitive hashing. jellyfish is a C implementation of k-mer counting If seq is a string generate a sequence of k-mer string If seq is a sequence of strings then generate a sequence of generators or sequences of k-mer strings If seq is a sequence of sequences of strings generate a sequence of sequence of generators ... Default k = 4 because that's the length of a gene base-pair? >>> ' '.join(generate_kmers('AGATAGATAGACACAGAAATGGGACCACAC')) 'AGAT GATA ATAG TAGA AGAT GATA ATAG TAGA AGAC GACA ACAC CACA ACAG ... CCAC CACA ACAC' """ if isinstance(seq, basestring): for i in range(len(seq) - k + 1): yield seq[i:i + k] elif isinstance(seq, (int, float, Decimal)): for s in generate_kmers(str(seq)): yield s else: for s in seq: yield generate_kmers(s, k)
Return a generator of all the unique substrings (k-mer or q-gram strings) within a sequence/string Not effiicent for large k and long strings. Doesn't form substrings that are shorter than k, only exactly k-mers Used for algorithms like UniqTag for genome unique identifier locality sensitive hashing. jellyfish is a C implementation of k-mer counting If seq is a string generate a sequence of k-mer string If seq is a sequence of strings then generate a sequence of generators or sequences of k-mer strings If seq is a sequence of sequences of strings generate a sequence of sequence of generators ... Default k = 4 because that's the length of a gene base-pair? >>> ' '.join(generate_kmers('AGATAGATAGACACAGAAATGGGACCACAC')) 'AGAT GATA ATAG TAGA AGAT GATA ATAG TAGA AGAC GACA ACAC CACA ACAG ... CCAC CACA ACAC'
def get_locations(self, url): """Get valid location header values from responses. :param url: a URL address. If a HEAD request sent to it fails because the address has invalid schema, times out or there is a connection error, the generator yields nothing. :returns: valid redirection addresses. If a request for a redirection address fails, and the address is still a valid URL string, it's included as the last yielded value. If it's not, the previous value is the last one. :raises ValuError: if the argument is not a valid URL """ if not is_valid_url(url): raise InvalidURLError('{} is not a valid URL'.format(url)) try: response = self.session.head(url) except (ConnectionError, InvalidSchema, Timeout): raise StopIteration try: generator = self.session.resolve_redirects( response, response.request ) for response in generator: yield response.url except InvalidURL: pass except (ConnectionError, InvalidSchema, Timeout) as error: last_url = response.headers['location'] if isinstance(error, Timeout) or is_valid_url(last_url): yield last_url
Get valid location header values from responses. :param url: a URL address. If a HEAD request sent to it fails because the address has invalid schema, times out or there is a connection error, the generator yields nothing. :returns: valid redirection addresses. If a request for a redirection address fails, and the address is still a valid URL string, it's included as the last yielded value. If it's not, the previous value is the last one. :raises ValuError: if the argument is not a valid URL
def std(self): """Standard deviation Note that is by default normalizd by n - 1 # TODO, what does pandas do for multiple grouping columns? # Currently we are just going to use one grouping column """ std_expr = grizzly_impl.groupby_std( [self.column], [self.column_type], self.grouping_columns, self.grouping_column_types ) unzipped_columns = grizzly_impl.unzip_columns( std_expr, self.grouping_column_types + [WeldDouble()], ) index_expr = LazyOpResult( grizzly_impl.get_field(unzipped_columns, 0), self.grouping_column_types[0], 1 ) column_expr = LazyOpResult( grizzly_impl.get_field(unzipped_columns, 1), self.grouping_column_types[0], 1 ) group_expr = utils.group([index_expr, column_expr]) return SeriesWeld( group_expr.expr, WeldDouble(), index_type=self.grouping_column_types[0], index_name=self.grouping_column_names[0] )
Standard deviation Note that is by default normalizd by n - 1 # TODO, what does pandas do for multiple grouping columns? # Currently we are just going to use one grouping column
def evaluate_and_log_bleu(estimator, bleu_writer, bleu_source, bleu_ref): """Calculate and record the BLEU score.""" subtokenizer = tokenizer.Subtokenizer( os.path.join(FLAGS.data_dir, FLAGS.vocab_file)) uncased_score, cased_score = translate_and_compute_bleu( estimator, subtokenizer, bleu_source, bleu_ref) print("Bleu score (uncased):", uncased_score) print("Bleu score (cased):", cased_score) summary = tf.Summary(value=[ tf.Summary.Value(tag="bleu/uncased", simple_value=uncased_score), tf.Summary.Value(tag="bleu/cased", simple_value=cased_score), ]) bleu_writer.add_summary(summary, get_global_step(estimator)) bleu_writer.flush() return uncased_score, cased_score
Calculate and record the BLEU score.
def add_project_name_or_id_arg(arg_parser, required=True, help_text_suffix="manage"): """ Adds project name or project id argument. These two are mutually exclusive. :param arg_parser: :param required: :param help_text: :return: """ project_name_or_id = arg_parser.add_mutually_exclusive_group(required=required) name_help_text = "Name of the project to {}.".format(help_text_suffix) add_project_name_arg(project_name_or_id, required=False, help_text=name_help_text) id_help_text = "ID of the project to {}.".format(help_text_suffix) add_project_id_arg(project_name_or_id, required=False, help_text=id_help_text)
Adds project name or project id argument. These two are mutually exclusive. :param arg_parser: :param required: :param help_text: :return:
def _parse_jetconfig(self): """ Undocumented cross-compatability functionality with jetconfig (https://github.com/shakefu/jetconfig) that is very sloppy. """ conf = env('JETCONFIG_ETCD', None) if not conf: return import urlparse auth = None port = None conf = conf.split(',').pop() entry = urlparse.urlparse(conf) scheme = entry.scheme host = entry.netloc or entry.path # Path is where it goes if there's no # scheme on the URL if '@' in host: auth, host = host.split('@') if ':' in host: host, port = host.split(':') if not port and scheme == 'https': port = '443' if scheme: os.environ['PYCONFIG_ETCD_PROTOCOL'] = scheme if auth: os.environ['PYCONFIG_ETCD_AUTH'] = auth if port: host = host + ":" + port os.environ['PYCONFIG_ETCD_HOSTS'] = host
Undocumented cross-compatability functionality with jetconfig (https://github.com/shakefu/jetconfig) that is very sloppy.
def clear_samples(self): """Clears the chain and blobs from memory. """ # store the iteration that the clear is occuring on self._lastclear = self.niterations self._itercounter = 0 # now clear the chain self._sampler.reset()
Clears the chain and blobs from memory.
def jitter_run(res, rstate=None, approx=False): """ Probes **statistical uncertainties** on a nested sampling run by explicitly generating a *realization* of the prior volume associated with each sample (dead point). Companion function to :meth:`resample_run` and :meth:`simulate_run`. Parameters ---------- res : :class:`~dynesty.results.Results` instance The :class:`~dynesty.results.Results` instance taken from a previous nested sampling run. rstate : `~numpy.random.RandomState`, optional `~numpy.random.RandomState` instance. approx : bool, optional Whether to approximate all sets of uniform order statistics by their associated marginals (from the Beta distribution). Default is `False`. Returns ------- new_res : :class:`~dynesty.results.Results` instance A new :class:`~dynesty.results.Results` instance with corresponding weights based on our "jittered" prior volume realizations. """ if rstate is None: rstate = np.random # Initialize evolution of live points over the course of the run. nsamps, samples_n = _get_nsamps_samples_n(res) logl = res.logl # Simulate the prior volume shrinkage associated with our set of "dead" # points. At each iteration, if the number of live points is constant or # increasing, our prior volume compresses by the maximum value of a set # of `K_i` uniformly distributed random numbers (i.e. as `Beta(K_i, 1)`). # If instead the number of live points is decreasing, that means we're # instead sampling down a set of uniform random variables # (i.e. uniform order statistics). nlive_flag = np.ones(nsamps, dtype='bool') nlive_start, bounds = [], [] if not approx: # Find all instances where the number of live points is either constant # or increasing. nlive_flag[1:] = np.diff(samples_n) >= 0 # For all the portions that are decreasing, find out where they start, # where they end, and how many live points are present at that given # iteration. if np.any(~nlive_flag): i = 0 while i < nsamps: if not nlive_flag[i]: bound = [] bound.append(i-1) nlive_start.append(samples_n[i-1]) while i < nsamps and not nlive_flag[i]: i += 1 bound.append(i) bounds.append(bound) i += 1 # The maximum out of a set of `K_i` uniformly distributed random variables # has a marginal distribution of `Beta(K_i, 1)`. t_arr = np.zeros(nsamps) t_arr[nlive_flag] = rstate.beta(a=samples_n[nlive_flag], b=1) # If we instead are sampling the set of uniform order statistics, # we note that the jth largest value is marginally distributed as # `Beta(j, K_i-j+1)`. The full joint distribution is:: # # X_(j) / X_N = (Y_1 + ... + Y_j) / (Y_1 + ... + Y_{K+1}) # # where X_(j) is the prior volume of the live point with the `j`-th # *best* likelihood (i.e. prior volume shrinks as likelihood increases) # and the `Y_i`'s are i.i.d. exponentially distributed random variables. nunif = len(nlive_start) for i in range(nunif): nstart = nlive_start[i] bound = bounds[i] sn = samples_n[bound[0]:bound[1]] y_arr = rstate.exponential(scale=1.0, size=nstart+1) ycsum = y_arr.cumsum() ycsum /= ycsum[-1] uorder = ycsum[np.append(nstart, sn-1)] rorder = uorder[1:] / uorder[:-1] t_arr[bound[0]:bound[1]] = rorder # These are the "compression factors" at each iteration. Let's turn # these into associated ln(volumes). logvol = np.log(t_arr).cumsum() # Compute weights using quadratic estimator. h = 0. logz = -1.e300 loglstar = -1.e300 logzvar = 0. logvols_pad = np.concatenate(([0.], logvol)) logdvols = misc.logsumexp(a=np.c_[logvols_pad[:-1], logvols_pad[1:]], axis=1, b=np.c_[np.ones(nsamps), -np.ones(nsamps)]) logdvols += math.log(0.5) dlvs = -np.diff(np.append(0., res.logvol)) saved_logwt, saved_logz, saved_logzvar, saved_h = [], [], [], [] for i in range(nsamps): loglstar_new = logl[i] logdvol, dlv = logdvols[i], dlvs[i] logwt = np.logaddexp(loglstar_new, loglstar) + logdvol logz_new = np.logaddexp(logz, logwt) lzterm = (math.exp(loglstar - logz_new) * loglstar + math.exp(loglstar_new - logz_new) * loglstar_new) h_new = (math.exp(logdvol) * lzterm + math.exp(logz - logz_new) * (h + logz) - logz_new) dh = h_new - h h = h_new logz = logz_new logzvar += dh * dlv loglstar = loglstar_new saved_logwt.append(logwt) saved_logz.append(logz) saved_logzvar.append(logzvar) saved_h.append(h) # Copy results. new_res = Results([item for item in res.items()]) # Overwrite items with our new estimates. new_res.logvol = np.array(logvol) new_res.logwt = np.array(saved_logwt) new_res.logz = np.array(saved_logz) with warnings.catch_warnings(): warnings.simplefilter("ignore") new_res.logzerr = np.sqrt(np.array(saved_logzvar)) new_res.h = np.array(saved_h) return new_res
Probes **statistical uncertainties** on a nested sampling run by explicitly generating a *realization* of the prior volume associated with each sample (dead point). Companion function to :meth:`resample_run` and :meth:`simulate_run`. Parameters ---------- res : :class:`~dynesty.results.Results` instance The :class:`~dynesty.results.Results` instance taken from a previous nested sampling run. rstate : `~numpy.random.RandomState`, optional `~numpy.random.RandomState` instance. approx : bool, optional Whether to approximate all sets of uniform order statistics by their associated marginals (from the Beta distribution). Default is `False`. Returns ------- new_res : :class:`~dynesty.results.Results` instance A new :class:`~dynesty.results.Results` instance with corresponding weights based on our "jittered" prior volume realizations.
def create_vpc(self): """Create a virtual private cloud on Amazon's Web services configured for deploying JupyterHubs. """ self.create_stack( self.vpc_name, 'amazon-eks-vpc.yaml', parameters=define_parameters( VpcBlock="10.42.0.0/16", Subnet01Block="10.42.1.0/24", Subnet02Block="10.42.2.0/24", Subnet03Block="10.42.3.0/24" ) )
Create a virtual private cloud on Amazon's Web services configured for deploying JupyterHubs.
def resizeEvent(self, event): """Emit custom signal when the window is re-sized. :param event: The re-sized event. :type event: QResizeEvent """ self.resized.emit() return super(MetadataConverterDialog, self).resizeEvent(event)
Emit custom signal when the window is re-sized. :param event: The re-sized event. :type event: QResizeEvent
def _tp__get_typed_properties(self): """Return a tuple of typed attrs that can be used for comparisons. Raises: NotImplementedError: Raised if this class was mixed into a class that was not created by _AnnotatedObjectMeta. """ try: return tuple(getattr(self, p) for p in self._tp__typed_properties) except AttributeError: raise NotImplementedError
Return a tuple of typed attrs that can be used for comparisons. Raises: NotImplementedError: Raised if this class was mixed into a class that was not created by _AnnotatedObjectMeta.
def save(evt, designer): "Basic save functionality: just replaces the gui code" # ask the user if we should save the changes: ok = gui.confirm("Save the changes?", "GUI2PY Designer", cancel=True, default=True) if ok: wx_obj = evt.GetEventObject() w = wx_obj.obj try: if DEBUG: print "saving..." # make a backup: fin = open(designer.filename, "r") fout = open(designer.filename + ".bak", "w") fout.write(fin.read()) fout.close() fin.close() if designer.filename.endswith(".rsrc.py"): # serialize and save the resource gui.save(designer.filename, [gui.dump(w)]) else: # reopen the files to proccess them fin = open(designer.filename + ".bak", "r") fout = open(designer.filename, "w") copy = True newlines = fin.newlines or "\n" def dump(obj, indent=1): "recursive convert object to string" for ctl in obj[:]: write(ctl, indent) def write(ctl, indent): if ctl[:]: fout.write(" " * indent * 4) fout.write("with %s:" % ctl.__repr__(parent=None, indent=indent, context=True)) fout.write(newlines) dump(ctl, indent + 1) else: fout.write(" " * indent * 4) fout.write(ctl.__repr__(parent=None, indent=indent)) fout.write(newlines) dumped = False for line in fin: if line.startswith("# --- gui2py designer generated code starts ---"): fout.write(line) fout.write(newlines) write(w, indent=0) fout.write(newlines) dumped = True copy = False if line.startswith("# --- gui2py designer generated code ends ---"): copy = True if copy: fout.write(line) #fout.write("\n\r") if not dumped: gui.alert("No valid # --- gui2py... delimiters! \n" "Unable to write down design code!", "Design not updated:") fout.close() fin.close() except Exception, e: import traceback print(traceback.print_exc()) ok = gui.confirm("Close anyway?\n%s" % str(e), 'Unable to save:', ok=True, cancel=True) if ok is not None: wx.CallAfter(exit) # terminate the designer program return ok
Basic save functionality: just replaces the gui code
def get_items(self, container_id, scope=None, item_path=None, metadata=None, format=None, download_file_name=None, include_download_tickets=None, is_shallow=None): """GetItems. [Preview API] :param long container_id: :param str scope: :param str item_path: :param bool metadata: :param str format: :param str download_file_name: :param bool include_download_tickets: :param bool is_shallow: :rtype: [FileContainerItem] """ route_values = {} if container_id is not None: route_values['containerId'] = self._serialize.url('container_id', container_id, 'long') query_parameters = {} if scope is not None: query_parameters['scope'] = self._serialize.query('scope', scope, 'str') if item_path is not None: query_parameters['itemPath'] = self._serialize.query('item_path', item_path, 'str') if metadata is not None: query_parameters['metadata'] = self._serialize.query('metadata', metadata, 'bool') if format is not None: query_parameters['$format'] = self._serialize.query('format', format, 'str') if download_file_name is not None: query_parameters['downloadFileName'] = self._serialize.query('download_file_name', download_file_name, 'str') if include_download_tickets is not None: query_parameters['includeDownloadTickets'] = self._serialize.query('include_download_tickets', include_download_tickets, 'bool') if is_shallow is not None: query_parameters['isShallow'] = self._serialize.query('is_shallow', is_shallow, 'bool') response = self._send(http_method='GET', location_id='e4f5c81e-e250-447b-9fef-bd48471bea5e', version='5.0-preview.4', route_values=route_values, query_parameters=query_parameters) return self._deserialize('[FileContainerItem]', self._unwrap_collection(response))
GetItems. [Preview API] :param long container_id: :param str scope: :param str item_path: :param bool metadata: :param str format: :param str download_file_name: :param bool include_download_tickets: :param bool is_shallow: :rtype: [FileContainerItem]
def pip_command_output(pip_args): """ Get output (as a string) from pip command :param pip_args: list o pip switches to pass :return: string with results """ import sys import pip from io import StringIO # as pip will write to stdout we use some nasty hacks # to substitute system stdout with our own old_stdout = sys.stdout sys.stdout = mystdout = StringIO() pip.main(pip_args) output = mystdout.getvalue() mystdout.truncate(0) sys.stdout = old_stdout return output
Get output (as a string) from pip command :param pip_args: list o pip switches to pass :return: string with results
def strip_praw_submission(cls, sub): """ Parse through a submission and return a dict with data ready to be displayed through the terminal. Definitions: permalink - URL to the reddit page with submission comments. url_full - URL that the submission points to. url - URL that will be displayed on the subreddit page, may be "selfpost", "x-post submission", "x-post subreddit", or an external link. """ reddit_link = re.compile( r'https?://(www\.)?(np\.)?redd(it\.com|\.it)/r/.*') author = getattr(sub, 'author', '[deleted]') name = getattr(author, 'name', '[deleted]') flair = getattr(sub, 'link_flair_text', '') data = {} data['object'] = sub data['type'] = 'Submission' data['title'] = sub.title data['text'] = sub.selftext data['html'] = sub.selftext_html or '' data['created'] = cls.humanize_timestamp(sub.created_utc) data['created_long'] = cls.humanize_timestamp(sub.created_utc, True) data['comments'] = '{0} comments'.format(sub.num_comments) data['score'] = '{0} pts'.format('-' if sub.hide_score else sub.score) data['author'] = name data['permalink'] = sub.permalink data['subreddit'] = six.text_type(sub.subreddit) data['flair'] = '[{0}]'.format(flair.strip(' []')) if flair else '' data['url_full'] = sub.url data['likes'] = sub.likes data['gold'] = sub.gilded data['nsfw'] = sub.over_18 data['stickied'] = sub.stickied data['hidden'] = sub.hidden data['xpost_subreddit'] = None data['index'] = None # This is filled in later by the method caller data['saved'] = sub.saved if sub.edited: data['edited'] = '(edit {})'.format( cls.humanize_timestamp(sub.edited)) data['edited_long'] = '(edit {})'.format( cls.humanize_timestamp(sub.edited, True)) else: data['edited'] = '' data['edited_long'] = '' if sub.url.split('/r/')[-1] == sub.permalink.split('/r/')[-1]: data['url'] = 'self.{0}'.format(data['subreddit']) data['url_type'] = 'selfpost' elif reddit_link.match(sub.url): # Strip the subreddit name from the permalink to avoid having # submission.subreddit.url make a separate API call url_parts = sub.url.split('/') data['xpost_subreddit'] = url_parts[4] data['url'] = 'self.{0}'.format(url_parts[4]) if 'comments' in url_parts: data['url_type'] = 'x-post submission' else: data['url_type'] = 'x-post subreddit' else: data['url'] = sub.url data['url_type'] = 'external' return data
Parse through a submission and return a dict with data ready to be displayed through the terminal. Definitions: permalink - URL to the reddit page with submission comments. url_full - URL that the submission points to. url - URL that will be displayed on the subreddit page, may be "selfpost", "x-post submission", "x-post subreddit", or an external link.
def replace(self, year=None, week=None): """Return a Week with either the year or week attribute value replaced""" return self.__class__(self.year if year is None else year, self.week if week is None else week)
Return a Week with either the year or week attribute value replaced
def shadow_calc(data): """计算上下影线 Arguments: data {DataStruct.slice} -- 输入的是一个行情切片 Returns: up_shadow {float} -- 上影线 down_shdow {float} -- 下影线 entity {float} -- 实体部分 date {str} -- 时间 code {str} -- 代码 """ up_shadow = abs(data.high - (max(data.open, data.close))) down_shadow = abs(data.low - (min(data.open, data.close))) entity = abs(data.open - data.close) towards = True if data.open < data.close else False print('=' * 15) print('up_shadow : {}'.format(up_shadow)) print('down_shadow : {}'.format(down_shadow)) print('entity: {}'.format(entity)) print('towards : {}'.format(towards)) return up_shadow, down_shadow, entity, data.date, data.code
计算上下影线 Arguments: data {DataStruct.slice} -- 输入的是一个行情切片 Returns: up_shadow {float} -- 上影线 down_shdow {float} -- 下影线 entity {float} -- 实体部分 date {str} -- 时间 code {str} -- 代码
def not_(self, value, name=''): """ Bitwise integer complement: name = ~value """ if isinstance(value.type, types.VectorType): rhs = values.Constant(value.type, (-1,) * value.type.count) else: rhs = values.Constant(value.type, -1) return self.xor(value, rhs, name=name)
Bitwise integer complement: name = ~value
def _load(self, url, verbose): """ Execute a request against the Salesking API to fetch the items :param url: url to fetch :return response :raises SaleskingException with the corresponding http errors """ msg = u"_load url: %s" % url self._last_query_str = url log.debug(msg) if verbose: print msg response = self.__api__.request(url) return response
Execute a request against the Salesking API to fetch the items :param url: url to fetch :return response :raises SaleskingException with the corresponding http errors
def value_ranges(self, value_ranges): '''Set the types, min/max values for tunable parameters Args: value_ranges (list): each element defines a tunable variable in the form "(type ('int' or 'float'), (min_val, max_val))"; initial, random values for each bee will between "min_val" and "max_val" ''' self._value_ranges = value_ranges self._logger.log('debug', 'Value ranges set to {}'.format( value_ranges ))
Set the types, min/max values for tunable parameters Args: value_ranges (list): each element defines a tunable variable in the form "(type ('int' or 'float'), (min_val, max_val))"; initial, random values for each bee will between "min_val" and "max_val"
def stretch_cv(x,sr,sc,interpolation=cv2.INTER_AREA): """ Stretches image x horizontally by sr+1, and vertically by sc+1 while retaining the original image size and proportion. """ if sr==0 and sc==0: return x r,c,*_ = x.shape x = cv2.resize(x, None, fx=sr+1, fy=sc+1, interpolation=interpolation) nr,nc,*_ = x.shape cr = (nr-r)//2; cc = (nc-c)//2 return x[cr:r+cr, cc:c+cc]
Stretches image x horizontally by sr+1, and vertically by sc+1 while retaining the original image size and proportion.
def setConnStringForWindows(): """ Set Conn String for Windiws Windows has a different way of forking processes, which causes the @worker_process_init.connect signal not to work in "CeleryDbConnInit" """ global _dbConnectString from peek_platform.file_config.PeekFileConfigABC import PeekFileConfigABC from peek_platform.file_config.PeekFileConfigSqlAlchemyMixin import \ PeekFileConfigSqlAlchemyMixin from peek_platform import PeekPlatformConfig class _WorkerTaskConfigMixin(PeekFileConfigABC, PeekFileConfigSqlAlchemyMixin): pass PeekPlatformConfig.componentName = peekWorkerName _dbConnectString = _WorkerTaskConfigMixin().dbConnectString
Set Conn String for Windiws Windows has a different way of forking processes, which causes the @worker_process_init.connect signal not to work in "CeleryDbConnInit"
def list_jobs(self, argument_filters=None): ''' a method to list jobs in the scheduler :param argument_filters: list of query criteria dictionaries for class argument keys :return: list of jobs (which satisfy the filters) NOTE: query criteria architecture each item in the argument filters list must be a dictionary which is composed of one or more key names which represent the dotpath to a key in the job record to be queried with a value that is a dictionary of conditional operators used to test the value in the corresponding key in each record in the list of jobs. eg. argument_filters = [ { '.function': { 'must_contain': [ 'debug' ] } } ] this example filter looks in the function key of each job for a value which contains the characters 'debug'. NOTE: the filter method uses a query filters list structure to represent the disjunctive normal form of a logical expression. a record is added to the results list if any query criteria dictionary in the list evaluates to true. within each query criteria dictionary, all declared conditional operators must evaluate to true. in this way, the argument_filters represents a boolean OR operator and each criteria dictionary inside the list represents a boolean AND operator between all keys in the dictionary. NOTE: each query_criteria uses the architecture of query declaration in the jsonModel.query method the list of keys in each query_criteria is the same as the arguments for adding a job to the scheduler query_criteria = { '.id': {}, '.function': {}, '.name': {}, '.dt': {}, '.interval': {}, '.month': {}, '.day': {}, '.weekday': {}, '.hour': {}, '.minute': {}, '.second': {}, '.start_date': {}, '.end_date': {} } conditional operators for '.id', '.function', '.name': "byte_data": false, "discrete_values": [ "" ], "excluded_values": [ "" ], "greater_than": "", "less_than": "", "max_length": 0, "max_value": "", "min_length": 0, "min_value": "", "must_contain": [ "" ], "must_not_contain": [ "" ], "contains_either": [ "" ] conditional operators for '.dt', 'start', 'end': "discrete_values": [ 0.0 ], "excluded_values": [ 0.0 ], "greater_than": 0.0, "less_than": 0.0, "max_value": 0.0, "min_value": 0.0 operators for '.interval', '.month', '.day', '.weekday', '.hour', '.minute', '.second': "discrete_values": [ 0 ], "excluded_values": [ 0 ], "greater_than": 0, "less_than": 0, "max_value": 0, "min_value": 0 ''' title = '%s.list_jobs' % self.__class__.__name__ # validate inputs if argument_filters: self.fields.validate(argument_filters, '.argument_filters') # send request to get jobs url = '%s/scheduler/jobs' % self.url job_list = self._get_request(url) # construct filter function def query_function(**kwargs): job_details = {} for key, value in kwargs.items(): if key in self.job_model.schema.keys(): job_details[key] = value for query_criteria in argument_filters: if self.job_model.query(query_criteria, job_details): return True return False # construct empty list results_list = [] # add refactored jobs to results list for job in job_list: job_details = self._construct_details(job) if argument_filters: if query_function(**job_details): results_list.append(job_details) else: results_list.append(job_details) return results_list
a method to list jobs in the scheduler :param argument_filters: list of query criteria dictionaries for class argument keys :return: list of jobs (which satisfy the filters) NOTE: query criteria architecture each item in the argument filters list must be a dictionary which is composed of one or more key names which represent the dotpath to a key in the job record to be queried with a value that is a dictionary of conditional operators used to test the value in the corresponding key in each record in the list of jobs. eg. argument_filters = [ { '.function': { 'must_contain': [ 'debug' ] } } ] this example filter looks in the function key of each job for a value which contains the characters 'debug'. NOTE: the filter method uses a query filters list structure to represent the disjunctive normal form of a logical expression. a record is added to the results list if any query criteria dictionary in the list evaluates to true. within each query criteria dictionary, all declared conditional operators must evaluate to true. in this way, the argument_filters represents a boolean OR operator and each criteria dictionary inside the list represents a boolean AND operator between all keys in the dictionary. NOTE: each query_criteria uses the architecture of query declaration in the jsonModel.query method the list of keys in each query_criteria is the same as the arguments for adding a job to the scheduler query_criteria = { '.id': {}, '.function': {}, '.name': {}, '.dt': {}, '.interval': {}, '.month': {}, '.day': {}, '.weekday': {}, '.hour': {}, '.minute': {}, '.second': {}, '.start_date': {}, '.end_date': {} } conditional operators for '.id', '.function', '.name': "byte_data": false, "discrete_values": [ "" ], "excluded_values": [ "" ], "greater_than": "", "less_than": "", "max_length": 0, "max_value": "", "min_length": 0, "min_value": "", "must_contain": [ "" ], "must_not_contain": [ "" ], "contains_either": [ "" ] conditional operators for '.dt', 'start', 'end': "discrete_values": [ 0.0 ], "excluded_values": [ 0.0 ], "greater_than": 0.0, "less_than": 0.0, "max_value": 0.0, "min_value": 0.0 operators for '.interval', '.month', '.day', '.weekday', '.hour', '.minute', '.second': "discrete_values": [ 0 ], "excluded_values": [ 0 ], "greater_than": 0, "less_than": 0, "max_value": 0, "min_value": 0
def recover_devices(cls): """Track devices. Creates global dict to track device names across driver invocations and populates based on current devices configured on the system. """ if "_devices" in globals(): return global _devices confs_dir = os.path.abspath(os.path.normpath(cfg.CONF.dhcp_confs)) for netid in os.listdir(confs_dir): conf_dir = os.path.join(confs_dir, netid) intf_filename = os.path.join(conf_dir, 'interface') try: with open(intf_filename, 'r') as f: ifname = f.read() _devices[netid] = ifname except IOError: LOG.error('Unable to read interface file: %s', intf_filename) LOG.debug("Recovered device %s for network %s'", ifname, netid)
Track devices. Creates global dict to track device names across driver invocations and populates based on current devices configured on the system.
def get_profile(A): "Fail-soft profile getter; if no profile is present assume none and quietly ignore." try: with open(os.path.expanduser(A.profile)) as I: profile = json.load(I) return profile except: return {}
Fail-soft profile getter; if no profile is present assume none and quietly ignore.
def badge_label(self, badge): '''Display the badge label for a given kind''' kind = badge.kind if isinstance(badge, Badge) else badge return self.__badges__[kind]
Display the badge label for a given kind
def _upload(auth_http, project_id, bucket_name, file_path, object_name, acl): """Uploads a file to Google Cloud Storage. Args: auth_http: An authorized httplib2.Http instance. project_id: The project to upload to. bucket_name: The bucket to upload to. file_path: Path to the file to upload. object_name: The name within the bucket to upload to. acl: The ACL to assign to the uploaded file. """ with open(file_path, 'rb') as f: data = f.read() content_type, content_encoding = mimetypes.guess_type(file_path) headers = { 'x-goog-project-id': project_id, 'x-goog-api-version': API_VERSION, 'x-goog-acl': acl, 'Content-Length': '%d' % len(data) } if content_type: headers['Content-Type'] = content_type if content_type: headers['Content-Encoding'] = content_encoding try: response, content = auth_http.request( 'http://%s.storage.googleapis.com/%s' % (bucket_name, object_name), method='PUT', headers=headers, body=data) except httplib2.ServerNotFoundError, se: raise Error(404, 'Server not found.') if response.status >= 300: raise Error(response.status, response.reason) return content
Uploads a file to Google Cloud Storage. Args: auth_http: An authorized httplib2.Http instance. project_id: The project to upload to. bucket_name: The bucket to upload to. file_path: Path to the file to upload. object_name: The name within the bucket to upload to. acl: The ACL to assign to the uploaded file.
def expand_tpm(tpm): """Broadcast a state-by-node TPM so that singleton dimensions are expanded over the full network. """ unconstrained = np.ones([2] * (tpm.ndim - 1) + [tpm.shape[-1]]) return tpm * unconstrained
Broadcast a state-by-node TPM so that singleton dimensions are expanded over the full network.
def _finalize_step(self): """Finalize simulation step after all agents have acted for the current step. """ t = time.time() if self._callback is not None: self._callback(self.age) t2 = time.time() self._step_processing_time += t2 - t self._log(logging.INFO, "Step {} run in: {:.3f}s ({:.3f}s of " "actual processing time used)" .format(self.age, self._step_processing_time, t2 - self._step_start_time)) self._processing_time += self._step_processing_time
Finalize simulation step after all agents have acted for the current step.
def apply_gemm(scope, input_name, output_name, container, operator_name=None, alpha=1.0, beta=1.0, transA=0, transB=0): """ Applies operator `gemm <https://github.com/onnx/onnx/blob/master/docs/Operators.md#gemm>`. """ name = _create_name_or_use_existing_one(scope, 'Gemm', operator_name) attrs = {'alpha': alpha, 'beta': beta, 'transA': transA, 'transB': transB} if container.target_opset < 5: attrs['op_version'] = 1 attrs['broadcast'] = 1 elif container.target_opset < 7: attrs['op_version'] = 6 attrs['broadcast'] = 1 else: attrs['op_version'] = 7 container.add_node('Gemm', input_name, output_name, name=name, **attrs)
Applies operator `gemm <https://github.com/onnx/onnx/blob/master/docs/Operators.md#gemm>`.
def terminate_process(self, idf): """ Terminate a process by id """ try: p = self.q.pop(idf) p.terminate() return p except: return None
Terminate a process by id
def qsnorm(p): """ rational approximation for x where q(x)=d, q being the cumulative normal distribution function. taken from Abramowitz & Stegun p. 933 |error(x)| < 4.5*10**-4 """ d = p if d < 0. or d > 1.: print('d not in (1,1) ') sys.exit() x = 0. if (d - 0.5) > 0: d = 1. - d if (d - 0.5) < 0: t2 = -2. * np.log(d) t = np.sqrt(t2) x = t - old_div((2.515517 + .802853 * t + .010328 * t2), (1. + 1.432788 * t + .189269 * t2 + .001308 * t * t2)) if p < 0.5: x = -x return x
rational approximation for x where q(x)=d, q being the cumulative normal distribution function. taken from Abramowitz & Stegun p. 933 |error(x)| < 4.5*10**-4
def CountFlowOutputPluginLogEntries(self, client_id, flow_id, output_plugin_id, with_type=None): """Returns number of flow output plugin log entries of a given flow.""" return len( self.ReadFlowOutputPluginLogEntries( client_id, flow_id, output_plugin_id, 0, sys.maxsize, with_type=with_type))
Returns number of flow output plugin log entries of a given flow.
def _is_valid_duration(self, inpt, metadata): """Checks if input is a valid Duration""" # NEED TO ADD CHECKS FOR OTHER METADATA, LIKE MINIMUM, MAXIMUM, ETC. from dlkit.abstract_osid.calendaring.primitives import Duration as abc_duration if isinstance(inpt, abc_duration): return True else: return False
Checks if input is a valid Duration
def md5(self, raw_output=False): """ Calculates the md5 hash of a given string :example 'cfcd208495d565ef66e7dff9f98764da' """ res = hashlib.md5(str(self.generator.random.random()).encode('utf-8')) if raw_output: return res.digest() return res.hexdigest()
Calculates the md5 hash of a given string :example 'cfcd208495d565ef66e7dff9f98764da'
def get_mcu_definition(self, project_file): """ Parse project file to get mcu definition """ project_file = join(getcwd(), project_file) uvproj_dic = xmltodict.parse(file(project_file), dict_constructor=dict) # Generic Target, should get from Target class ! mcu = MCU_TEMPLATE try: mcu['tool_specific'] = { # legacy device 'uvision' : { 'TargetOption' : { 'Device' : [uvproj_dic['Project']['Targets']['Target']['TargetOption']['TargetCommonOption']['Device']], 'DeviceId' : [None if not uvproj_dic['Project']['Targets']['Target']['TargetOption']['TargetCommonOption']['DeviceId'] else int(uvproj_dic['Project']['Targets']['Target']['TargetOption']['TargetCommonOption']['DeviceId'])], 'Vendor' : [uvproj_dic['Project']['Targets']['Target']['TargetOption']['TargetCommonOption']['Vendor']], 'Cpu' : [uvproj_dic['Project']['Targets']['Target']['TargetOption']['TargetCommonOption']['Cpu']], 'FlashDriverDll' : [uvproj_dic['Project']['Targets']['Target']['TargetOption']['TargetCommonOption']['FlashDriverDll']], 'SFDFile' : [uvproj_dic['Project']['Targets']['Target']['TargetOption']['TargetCommonOption']['SFDFile']], 'RegisterFile': [uvproj_dic['Project']['Targets']['Target']['TargetOption']['TargetCommonOption']['RegisterFile']], } } } except KeyError: # validity check for uvision project logging.debug("The project_file %s seems to be not valid .uvproj file.") return mcu return mcu
Parse project file to get mcu definition
def get_all_chats(self): """ Fetches all chats :return: List of chats :rtype: list[Chat] """ chats = self.wapi_functions.getAllChats() if chats: return [factory_chat(chat, self) for chat in chats] else: return []
Fetches all chats :return: List of chats :rtype: list[Chat]
def notices(self): """pops and returns all notices http://initd.org/psycopg/docs/connection.html#connection.notices """ return [self._db.notices.pop()[8:].strip() for x in range(len(self._db.notices))]
pops and returns all notices http://initd.org/psycopg/docs/connection.html#connection.notices
def get_config_directory(): """Return the directory the config file is located in. This enables us to use relative paths in config values. """ # avoid circular import from .commands.stacker import Stacker command = Stacker() namespace = command.parse_args() return os.path.dirname(namespace.config.name)
Return the directory the config file is located in. This enables us to use relative paths in config values.
def simple_generate_batch(cls, create, size, **kwargs): """Generate a batch of instances. These instances will be either 'built' or 'created'. Args: size (int): the number of instances to generate create (bool): whether to 'build' or 'create' the instances. Returns: object list: the generated instances """ strategy = enums.CREATE_STRATEGY if create else enums.BUILD_STRATEGY return cls.generate_batch(strategy, size, **kwargs)
Generate a batch of instances. These instances will be either 'built' or 'created'. Args: size (int): the number of instances to generate create (bool): whether to 'build' or 'create' the instances. Returns: object list: the generated instances
def Nu_Mokry(Re, Pr, rho_w=None, rho_b=None): r'''Calculates internal convection Nusselt number for turbulent vertical upward flow in a pipe under supercritical conditions according to [1]_, and reviewed in [2]_. .. math:: Nu_b = 0.0061 Re_b^{0.904} \bar{Pr}_b^{0.684} \left(\frac{\rho_w}{\rho_b}\right)^{0.564} \bar{Cp} = \frac{H_w-H_b}{T_w-T_b} Parameters ---------- Re : float Reynolds number with bulk fluid properties, [-] Pr : float Prandtl number with bulk fluid properties and an average heat capacity between the wall and bulk temperatures [-] rho_w : float, optional Density at the wall temperature, [kg/m^3] rho_b : float, optional Density at the bulk temperature, [kg/m^3] Returns ------- Nu : float Nusselt number with bulk fluid properties, [-] Notes ----- For the data used to develop the correlation, P was set at 20 MPa, and D was 10 mm. G varied from 200-1500 kg/m^2/s and q varied from 0 to 1250 kW/m^2. Cp used in the calculation of Prandtl number should be the average value of those at the wall and the bulk temperatures. For deteriorated heat transfer, this was the four most accurate correlation in [2]_ with a MAD of 24.0%. It was also the 7th most accurate against enhanced heat transfer, with a MAD of 14.7%, and the most accurate for the normal heat transfer database as well as the top correlation in all categories combined. If the extra density information is not provided, it will not be used. Examples -------- >>> Nu_Mokry(1E5, 1.2, 330, 290.) 246.1156319156992 References ---------- .. [1] Mokry, Sarah, Igor Pioro, Amjad Farah, Krysten King, Sahil Gupta, Wargha Peiman, and Pavel Kirillov. "Development of Supercritical Water Heat-Transfer Correlation for Vertical Bare Tubes." Nuclear Engineering and Design, International Conference on Nuclear Energy for New Europe 2009, 241, no. 4 (April 2011): 1126-36. doi:10.1016/j.nucengdes.2010.06.012. .. [2] Chen, Weiwei, Xiande Fang, Yu Xu, and Xianghui Su. "An Assessment of Correlations of Forced Convection Heat Transfer to Water at Supercritical Pressure." Annals of Nuclear Energy 76 (February 2015): 451-60. doi:10.1016/j.anucene.2014.10.027. ''' Nu = 0.0061*Re**0.904*Pr**0.684 if rho_w and rho_b: Nu *= (rho_w/rho_b)**0.564 return Nu
r'''Calculates internal convection Nusselt number for turbulent vertical upward flow in a pipe under supercritical conditions according to [1]_, and reviewed in [2]_. .. math:: Nu_b = 0.0061 Re_b^{0.904} \bar{Pr}_b^{0.684} \left(\frac{\rho_w}{\rho_b}\right)^{0.564} \bar{Cp} = \frac{H_w-H_b}{T_w-T_b} Parameters ---------- Re : float Reynolds number with bulk fluid properties, [-] Pr : float Prandtl number with bulk fluid properties and an average heat capacity between the wall and bulk temperatures [-] rho_w : float, optional Density at the wall temperature, [kg/m^3] rho_b : float, optional Density at the bulk temperature, [kg/m^3] Returns ------- Nu : float Nusselt number with bulk fluid properties, [-] Notes ----- For the data used to develop the correlation, P was set at 20 MPa, and D was 10 mm. G varied from 200-1500 kg/m^2/s and q varied from 0 to 1250 kW/m^2. Cp used in the calculation of Prandtl number should be the average value of those at the wall and the bulk temperatures. For deteriorated heat transfer, this was the four most accurate correlation in [2]_ with a MAD of 24.0%. It was also the 7th most accurate against enhanced heat transfer, with a MAD of 14.7%, and the most accurate for the normal heat transfer database as well as the top correlation in all categories combined. If the extra density information is not provided, it will not be used. Examples -------- >>> Nu_Mokry(1E5, 1.2, 330, 290.) 246.1156319156992 References ---------- .. [1] Mokry, Sarah, Igor Pioro, Amjad Farah, Krysten King, Sahil Gupta, Wargha Peiman, and Pavel Kirillov. "Development of Supercritical Water Heat-Transfer Correlation for Vertical Bare Tubes." Nuclear Engineering and Design, International Conference on Nuclear Energy for New Europe 2009, 241, no. 4 (April 2011): 1126-36. doi:10.1016/j.nucengdes.2010.06.012. .. [2] Chen, Weiwei, Xiande Fang, Yu Xu, and Xianghui Su. "An Assessment of Correlations of Forced Convection Heat Transfer to Water at Supercritical Pressure." Annals of Nuclear Energy 76 (February 2015): 451-60. doi:10.1016/j.anucene.2014.10.027.
def sample(self, nsims=1000): """ Samples from the posterior predictive distribution Parameters ---------- nsims : int (default : 1000) How many draws from the posterior predictive distribution Returns ---------- - np.ndarray of draws from the data """ if self.latent_variables.estimation_method not in ['BBVI', 'M-H']: raise Exception("No latent variables estimated!") else: lv_draws = self.draw_latent_variables(nsims=nsims) sigmas = [self._model(lv_draws[:,i])[0] for i in range(nsims)] data_draws = np.array([ss.t.rvs(loc=self.latent_variables.z_list[-1].prior.transform(lv_draws[-1,i]), df=self.latent_variables.z_list[-2].prior.transform(lv_draws[-2,i]), scale=np.exp(sigmas[i]/2.0)) for i in range(nsims)]) return data_draws
Samples from the posterior predictive distribution Parameters ---------- nsims : int (default : 1000) How many draws from the posterior predictive distribution Returns ---------- - np.ndarray of draws from the data
def ASRS(self, params): """ ASRS [Ra,] Ra, Rc ASRS [Ra,] Rb, #imm5_counting Arithmetic shift right Rb by Rc or imm5_counting and store the result in Ra imm5 counting is [1, 32] In the register shift, the first two operands must be the same register Ra, Rb, and Rc must be low registers If Ra is omitted, then it is assumed to be Rb """ # This instruction allows for an optional destination register # If it is omitted, then it is assumed to be Rb # As defined in http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dui0662b/index.html try: Ra, Rb, Rc = self.get_three_parameters(self.THREE_PARAMETER_COMMA_SEPARATED, params) except iarm.exceptions.ParsingError: Rb, Rc = self.get_two_parameters(self.TWO_PARAMETER_COMMA_SEPARATED, params) Ra = Rb if self.is_register(Rc): # ASRS Ra, Ra, Rb self.check_arguments(low_registers=(Ra, Rc)) self.match_first_two_parameters(Ra, Rb) def ASRS_func(): # Set the C flag, or the last shifted out bit if (self.register[Rc] > 0) and (self.register[Rb] & (1 << (self.register[Rc] - 1))): self.set_APSR_flag_to_value('C', 1) else: self.set_APSR_flag_to_value('C', 0) if self.register[Ra] & (1 << (self._bit_width - 1)): self.register[Ra] = (self.register[Ra] >> self.register[Rc]) | ( int('1' * self.register[Rc], 2) << (self._bit_width - self.register[Rc])) else: self.register[Ra] = self.register[Ra] >> self.register[Rc] self.set_NZ_flags(self.register[Ra]) else: # ASRS Ra, Rb, #imm5_counting self.check_arguments(low_registers=(Ra, Rb), imm5_counting=(Rc,)) shift_amount = self.check_immediate(Rc) def ASRS_func(): # Set the C flag, or the last shifted out bit if self.register[Rb] & (1 << (shift_amount - 1)): self.set_APSR_flag_to_value('C', 1) else: self.set_APSR_flag_to_value('C', 0) if self.register[Ra] & (1 << (self._bit_width - 1)): self.register[Ra] = (self.register[Ra] >> shift_amount) | ( int('1' * shift_amount, 2) << (self._bit_width - shift_amount)) else: self.register[Ra] = self.register[Rb] >> shift_amount self.set_NZ_flags(self.register[Ra]) return ASRS_func
ASRS [Ra,] Ra, Rc ASRS [Ra,] Rb, #imm5_counting Arithmetic shift right Rb by Rc or imm5_counting and store the result in Ra imm5 counting is [1, 32] In the register shift, the first two operands must be the same register Ra, Rb, and Rc must be low registers If Ra is omitted, then it is assumed to be Rb
def compile(self): """ Compile this expression into an ODPS SQL :return: compiled DAG :rtype: str """ from ..engines import get_default_engine engine = get_default_engine(self) return engine.compile(self)
Compile this expression into an ODPS SQL :return: compiled DAG :rtype: str
def how_long(length=4, choices=len(words), speed=1000 * 1000 * 1000 * 1000, optimism=2): """ How long might it take to guess a password? @param length: the number of words that we're going to choose. @type length: L{int} @param choice: the number of words we might choose between. @type choice: L{int} @param speed: the speed of our hypothetical password guesser, in guesses per second. @type speed: L{int} @param optimism: When we start guessing all the options, we probably won't have to guess I{all} of them to get a hit. This assumes that the guesser will have to guess only C{1/optimism} of the total number of possible options before it finds a hit. """ return ((choices ** length) / (speed * optimism))
How long might it take to guess a password? @param length: the number of words that we're going to choose. @type length: L{int} @param choice: the number of words we might choose between. @type choice: L{int} @param speed: the speed of our hypothetical password guesser, in guesses per second. @type speed: L{int} @param optimism: When we start guessing all the options, we probably won't have to guess I{all} of them to get a hit. This assumes that the guesser will have to guess only C{1/optimism} of the total number of possible options before it finds a hit.
def get_as_string(self, key): """ Converts map element into a string or returns "" if conversion is not possible. :param key: an index of element to get. :return: string value ot the element or "" if conversion is not supported. """ value = self.get(key) return StringConverter.to_string(value)
Converts map element into a string or returns "" if conversion is not possible. :param key: an index of element to get. :return: string value ot the element or "" if conversion is not supported.
def missing_particle(separation=0.0, radius=RADIUS, SNR=20): """ create a two particle state and compare it to featuring using a single particle guess """ # create a base image of one particle s = init.create_two_particle_state(imsize=6*radius+4, axis='x', sigma=1.0/SNR, delta=separation, radius=radius, stateargs={'varyn': True}, psfargs={'error': 1e-6}) s.obj.typ[1] = 0. s.reset() return s, s.obj.pos.copy()
create a two particle state and compare it to featuring using a single particle guess
def get_group_member_profile(self, group_id, user_id, timeout=None): """Call get group member profile API. https://devdocs.line.me/en/#get-group-room-member-profile Gets the user profile of a member of a group that the bot is in. This can be the user ID of a user who has not added the bot as a friend or has blocked the bot. :param str group_id: Group ID :param str user_id: User ID :param timeout: (optional) How long to wait for the server to send data before giving up, as a float, or a (connect timeout, read timeout) float tuple. Default is self.http_client.timeout :type timeout: float | tuple(float, float) :rtype: :py:class:`linebot.models.responses.Profile` :return: Profile instance """ response = self._get( '/v2/bot/group/{group_id}/member/{user_id}'.format(group_id=group_id, user_id=user_id), timeout=timeout ) return Profile.new_from_json_dict(response.json)
Call get group member profile API. https://devdocs.line.me/en/#get-group-room-member-profile Gets the user profile of a member of a group that the bot is in. This can be the user ID of a user who has not added the bot as a friend or has blocked the bot. :param str group_id: Group ID :param str user_id: User ID :param timeout: (optional) How long to wait for the server to send data before giving up, as a float, or a (connect timeout, read timeout) float tuple. Default is self.http_client.timeout :type timeout: float | tuple(float, float) :rtype: :py:class:`linebot.models.responses.Profile` :return: Profile instance
def locate(self, pattern): '''Find sequences matching a pattern. For a circular sequence, the search extends over the origin. :param pattern: str or NucleicAcidSequence for which to find matches. :type pattern: str or coral.DNA :returns: A list of top and bottom strand indices of matches. :rtype: list of lists of indices (ints) :raises: ValueError if the pattern is longer than either the input sequence (for linear DNA) or twice as long as the input sequence (for circular DNA). ''' top_matches = self.top.locate(pattern) bottom_matches = self.bottom.locate(pattern) return [top_matches, bottom_matches]
Find sequences matching a pattern. For a circular sequence, the search extends over the origin. :param pattern: str or NucleicAcidSequence for which to find matches. :type pattern: str or coral.DNA :returns: A list of top and bottom strand indices of matches. :rtype: list of lists of indices (ints) :raises: ValueError if the pattern is longer than either the input sequence (for linear DNA) or twice as long as the input sequence (for circular DNA).
def _hmmalign(self, input_path, directions, pipeline, forward_reads_output_path, reverse_reads_output_path): ''' Align reads to the aln_hmm. Receives unaligned sequences and aligns them. Parameters ---------- input_path : str Filename of unaligned hits to be aligned directions : dict dictionary containing read names as keys, and complement as the entry (True=Forward, False=Reverse) pipeline: str either PIPELINE_AA = "P" or PIPELINE_NT = "D" forward_reads_output_fh: str Where to write aligned forward reads reverse_reads_output_fh: str Where to write aligned reverse reads Returns ------- Nothing. ''' if pipeline == PIPELINE_AA: reverse_direction_reads_present=False else: reverse_direction_reads_present=False in directions.values() with tempfile.NamedTemporaryFile(prefix='for_file', suffix='.fa') as for_file_fh: for_file = for_file_fh.name with tempfile.NamedTemporaryFile(prefix='rev_file', suffix='.fa') as rev_file_fh: rev_file = rev_file_fh.name # Align input reads to a specified hmm. if reverse_direction_reads_present: # Any that are in the reverse direction would be True reverse = [] forward = [] records = list(SeqIO.parse(open(input_path), 'fasta')) # Split the reads into reverse and forward lists for record in records: read_id = record.id if directions[read_id] == True: forward.append(record) elif directions[read_id] == False: reverse.append(record) else: raise Exception(logging.error('Programming error: hmmalign')) exit(1) logging.debug("Found %i forward direction reads" % len(forward)) logging.debug("Found %i reverse direction reads" % len(reverse)) # Write reverse complement and forward reads to files with open(for_file, 'w') as for_aln: logging.debug("Writing forward direction reads to %s" % for_file) for record in forward: for_aln.write('>' + record.id + '\n') for_aln.write(str(record.seq) + '\n') # HMMalign and convert to fasta format if any(forward): self.hmmalign_sequences(self.aln_hmm, for_file, forward_reads_output_path) else: cmd = 'touch %s' % (forward_reads_output_path) extern.run(cmd) with open(rev_file, 'w') as rev_aln: logging.debug("Writing reverse direction reads to %s" % rev_file) for record in reverse: if record.id and record.seq: rev_aln.write('>' + record.id + '\n') rev_aln.write(str(record.seq.reverse_complement()) + '\n') self.hmmalign_sequences(self.aln_hmm, rev_file, reverse_reads_output_path) conv_files = [forward_reads_output_path, reverse_reads_output_path] return conv_files else: # If there are only forward reads, just hmmalign and be done with it. self.hmmalign_sequences(self.aln_hmm, input_path, forward_reads_output_path) conv_files = [forward_reads_output_path] return conv_files
Align reads to the aln_hmm. Receives unaligned sequences and aligns them. Parameters ---------- input_path : str Filename of unaligned hits to be aligned directions : dict dictionary containing read names as keys, and complement as the entry (True=Forward, False=Reverse) pipeline: str either PIPELINE_AA = "P" or PIPELINE_NT = "D" forward_reads_output_fh: str Where to write aligned forward reads reverse_reads_output_fh: str Where to write aligned reverse reads Returns ------- Nothing.
def get_stp_mst_detail_output_msti_instance_id(self, **kwargs): """Auto Generated Code """ config = ET.Element("config") get_stp_mst_detail = ET.Element("get_stp_mst_detail") config = get_stp_mst_detail output = ET.SubElement(get_stp_mst_detail, "output") msti = ET.SubElement(output, "msti") instance_id = ET.SubElement(msti, "instance-id") instance_id.text = kwargs.pop('instance_id') callback = kwargs.pop('callback', self._callback) return callback(config)
Auto Generated Code
def get_bounds(self, bin_num): """Get the bonds of a bin, given its index `bin_num`. :returns: a `Bounds` namedtuple with properties min and max respectively. """ min_value = pow(2.0, float(bin_num) / 2.0) * self.min_value max_value = pow(2.0, float(bin_num + 1.0) / 2.0) * self.min_value return self.Bounds(min_value, max_value)
Get the bonds of a bin, given its index `bin_num`. :returns: a `Bounds` namedtuple with properties min and max respectively.
def sphgen(self, force_rerun=False): """Create sphere representation (sph file) of receptor from the surface representation Args: force_rerun (bool): If method should be rerun even if output file exists """ log.debug('{}: running sphere generation...'.format(self.id)) if not self.dms_path: return ValueError('Please run dms_maker') sph = op.join(self.dock_dir, '{}_receptor.sph'.format(self.id)) insph = op.join(self.dock_dir, 'INSPH') if ssbio.utils.force_rerun(flag=force_rerun, outfile=sph): with open(insph, "w") as f: f.write("{}\n".format(self.dms_path)) f.write("R\n") f.write("X\n") f.write("0.0\n") f.write("4.0\n") f.write("1.4\n") f.write("{}\n".format(sph)) os.chdir(self.dock_dir) cmd = "sphgen_cpp" os.system(cmd) os.remove(insph) if ssbio.utils.is_non_zero_file(sph): self.sphgen_path = sph log.debug('{}: successful sphgen execution'.format(self.sphgen_path)) else: log.critical('{}: sphgen_cpp failed to run on dms file'.format(self.dms_path))
Create sphere representation (sph file) of receptor from the surface representation Args: force_rerun (bool): If method should be rerun even if output file exists
def generate_config_parser(config, include_all=False): """ Generates a config parser from a configuration dictionary. The dictionary contains the merged informations of the schema and, optionally, of a source configuration file. Values of the source configuration file will be stored in the *value* field of an option. """ # The allow_no_value allows us to output commented lines. config_parser = SafeConfigParser(allow_no_value=True) for section_name, option_name in _get_included_schema_sections_options(config, include_all): if not config_parser.has_section(section_name): config_parser.add_section(section_name) option = config[section_name][option_name] if option.get('required'): config_parser.set(section_name, '# REQUIRED') config_parser.set(section_name, '# ' + option.get('description', 'No description provided.')) if option.get('deprecated'): config_parser.set(section_name, '# DEPRECATED') option_value = _get_value(option) config_parser.set(section_name, option_name, option_value) config_parser.set(section_name, '') return config_parser
Generates a config parser from a configuration dictionary. The dictionary contains the merged informations of the schema and, optionally, of a source configuration file. Values of the source configuration file will be stored in the *value* field of an option.
def filter_tess_lcdict(lcdict, filterqualityflags=True, nanfilter='sap,pdc,time', timestoignore=None, quiet=False): '''This filters the provided TESS `lcdict`, removing nans and bad observations. By default, this function removes points in the TESS LC that have ANY quality flags set. Parameters ---------- lcdict : lcdict An `lcdict` produced by `consolidate_tess_fitslc` or `read_tess_fitslc`. filterflags : bool If True, will remove any measurements that have non-zero quality flags present. This usually indicates an issue with the instrument or spacecraft. nanfilter : {'sap','pdc','sap,pdc'} Indicates the flux measurement type(s) to apply the filtering to. timestoignore : list of tuples or None This is of the form:: [(time1_start, time1_end), (time2_start, time2_end), ...] and indicates the start and end times to mask out of the final lcdict. Use this to remove anything that wasn't caught by the quality flags. Returns ------- lcdict Returns an `lcdict` (this is useable by most astrobase functions for LC processing). The `lcdict` is filtered IN PLACE! ''' cols = lcdict['columns'] # filter all bad LC points as noted by quality flags if filterqualityflags: nbefore = lcdict['time'].size filterind = lcdict['quality'] == 0 for col in cols: if '.' in col: key, subkey = col.split('.') lcdict[key][subkey] = lcdict[key][subkey][filterind] else: lcdict[col] = lcdict[col][filterind] nafter = lcdict['time'].size if not quiet: LOGINFO('applied quality flag filter, ' 'ndet before = %s, ndet after = %s' % (nbefore, nafter)) if nanfilter and nanfilter == 'sap,pdc,time': notnanind = ( np.isfinite(lcdict['sap']['sap_flux']) & np.isfinite(lcdict['sap']['sap_flux_err']) & np.isfinite(lcdict['pdc']['pdcsap_flux']) & np.isfinite(lcdict['pdc']['pdcsap_flux_err']) & np.isfinite(lcdict['time']) ) elif nanfilter and nanfilter == 'sap,time': notnanind = ( np.isfinite(lcdict['sap']['sap_flux']) & np.isfinite(lcdict['sap']['sap_flux_err']) & np.isfinite(lcdict['time']) ) elif nanfilter and nanfilter == 'pdc,time': notnanind = ( np.isfinite(lcdict['pdc']['pdcsap_flux']) & np.isfinite(lcdict['pdc']['pdcsap_flux_err']) & np.isfinite(lcdict['time']) ) elif nanfilter is None: pass else: raise NotImplementedError # remove nans from all columns if nanfilter: nbefore = lcdict['time'].size for col in cols: if '.' in col: key, subkey = col.split('.') lcdict[key][subkey] = lcdict[key][subkey][notnanind] else: lcdict[col] = lcdict[col][notnanind] nafter = lcdict['time'].size if not quiet: LOGINFO('removed nans, ndet before = %s, ndet after = %s' % (nbefore, nafter)) # exclude all times in timestoignore if (timestoignore and isinstance(timestoignore, list) and len(timestoignore) > 0): exclind = np.full_like(lcdict['time'],True).astype(bool) nbefore = exclind.size # get all the masks for ignoretime in timestoignore: time0, time1 = ignoretime[0], ignoretime[1] thismask = ~((lcdict['time'] >= time0) & (lcdict['time'] <= time1)) exclind = exclind & thismask # apply the masks for col in cols: if '.' in col: key, subkey = col.split('.') lcdict[key][subkey] = lcdict[key][subkey][exclind] else: lcdict[col] = lcdict[col][exclind] nafter = lcdict['time'].size if not quiet: LOGINFO('removed timestoignore, ndet before = %s, ndet after = %s' % (nbefore, nafter)) return lcdict
This filters the provided TESS `lcdict`, removing nans and bad observations. By default, this function removes points in the TESS LC that have ANY quality flags set. Parameters ---------- lcdict : lcdict An `lcdict` produced by `consolidate_tess_fitslc` or `read_tess_fitslc`. filterflags : bool If True, will remove any measurements that have non-zero quality flags present. This usually indicates an issue with the instrument or spacecraft. nanfilter : {'sap','pdc','sap,pdc'} Indicates the flux measurement type(s) to apply the filtering to. timestoignore : list of tuples or None This is of the form:: [(time1_start, time1_end), (time2_start, time2_end), ...] and indicates the start and end times to mask out of the final lcdict. Use this to remove anything that wasn't caught by the quality flags. Returns ------- lcdict Returns an `lcdict` (this is useable by most astrobase functions for LC processing). The `lcdict` is filtered IN PLACE!
def status_pipeline(conf, args): """Stop a pipeline.""" host = conf.config['instances'][args.host_instance] url = api.build_pipeline_url(build_instance_url(host)) auth = tuple([conf.creds['instances'][args.host_instance]['user'], conf.creds['instances'][args.host_instance]['pass']]) verify_ssl = host.get('verify_ssl', True) status_result = api.pipeline_status(url, args.pipeline_id, auth, verify_ssl) return status_result['status']
Stop a pipeline.
async def set_lock(self, resource, lock_identifier): """ Tries to set the lock to all the redis instances :param resource: The resource string name to lock :param lock_identifier: The id of the lock. A unique string :return float: The elapsed time that took to lock the instances in seconds :raises: LockError if the lock has not been set to at least (N/2 + 1) instances """ start_time = time.time() lock_timeout = self.lock_timeout successes = await asyncio.gather(*[ i.set_lock(resource, lock_identifier, lock_timeout) for i in self.instances ], return_exceptions=True) successful_sets = sum(s is None for s in successes) elapsed_time = time.time() - start_time locked = True if successful_sets >= int(len(self.instances) / 2) + 1 else False self.log.debug('Lock "%s" is set on %d/%d instances in %s seconds', resource, successful_sets, len(self.instances), elapsed_time) if not locked: raise LockError('Can not acquire the lock "%s"' % resource) return elapsed_time
Tries to set the lock to all the redis instances :param resource: The resource string name to lock :param lock_identifier: The id of the lock. A unique string :return float: The elapsed time that took to lock the instances in seconds :raises: LockError if the lock has not been set to at least (N/2 + 1) instances
def requires_authentication(func): """ Function decorator that throws an exception if the user is not authenticated, and executes the function normally if the user is authenticated. """ def _auth(self, *args, **kwargs): if not self._authenticated: raise NotAuthenticatedException('Function {} requires' .format(func.__name__) + ' authentication') else: return func(self, *args, **kwargs) return _auth
Function decorator that throws an exception if the user is not authenticated, and executes the function normally if the user is authenticated.
def linear_connection(plist, lane): """Connects a linear list of processes into a list of dictionaries Parameters ---------- plist : list List with process names. This list should contain at least two entries. lane : int Corresponding lane of the processes Returns ------- res : list List of dictionaries with the links between processes """ logger.debug( "Establishing linear connection with processes: {}".format(plist)) res = [] previous = None for p in plist: # Skip first process if not previous: previous = p continue res.append({ "input": { "process": previous, "lane": lane }, "output": { "process": p, "lane": lane } }) previous = p return res
Connects a linear list of processes into a list of dictionaries Parameters ---------- plist : list List with process names. This list should contain at least two entries. lane : int Corresponding lane of the processes Returns ------- res : list List of dictionaries with the links between processes
def open_url(url, httpuser=None, httppassword=None, method=None): """ Open a URL using an opener that will simulate a browser user-agent url: The URL httpuser, httppassword: HTTP authentication credentials (either both or neither must be provided) method: The HTTP method Caller is reponsible for calling close() on the returned object """ if os.getenv('OMEGO_SSL_NO_VERIFY') == '1': # This needs to come first to override the default HTTPS handler log.debug('OMEGO_SSL_NO_VERIFY=1') try: sslctx = ssl.create_default_context() except Exception as e: log.error('Failed to create Default SSL context: %s' % e) raise Stop( 'Failed to create Default SSL context, OMEGO_SSL_NO_VERIFY ' 'is not supported on older versions of Python') sslctx.check_hostname = False sslctx.verify_mode = ssl.CERT_NONE opener = urllib2.build_opener(urllib2.HTTPSHandler(context=sslctx)) else: opener = urllib2.build_opener() if 'USER_AGENT' in os.environ: opener.addheaders = [('User-agent', os.environ.get('USER_AGENT'))] log.debug('Setting user-agent: %s', os.environ.get('USER_AGENT')) if httpuser and httppassword: mgr = urllib2.HTTPPasswordMgrWithDefaultRealm() mgr.add_password(None, url, httpuser, httppassword) log.debug('Enabling HTTP authentication') opener.add_handler(urllib2.HTTPBasicAuthHandler(mgr)) opener.add_handler(urllib2.HTTPDigestAuthHandler(mgr)) elif httpuser or httppassword: raise FileException( 'httpuser and httppassword must be used together', url) # Override method http://stackoverflow.com/a/4421485 req = urllib2.Request(url) if method: req.get_method = lambda: method return opener.open(req)
Open a URL using an opener that will simulate a browser user-agent url: The URL httpuser, httppassword: HTTP authentication credentials (either both or neither must be provided) method: The HTTP method Caller is reponsible for calling close() on the returned object
def update_field(self, elements): """ Update the field with a list of provided values but only if the values are different. Return a boolean indicating whether a change was made indicating whether `save` should be called. If the field is currently set to any or none, then no comparison is made and field is updated. :param list elements: list of elements in href or Element format to compare to existing field :rtype: bool """ changed = False if isinstance(elements, list): if self.is_any or self.is_none: self.add_many(elements) changed = True else: _elements = element_resolver(elements, do_raise=False) if set(self.all_as_href()) ^ set(_elements): self.data[self.typeof] = _elements changed = True if changed and self.rule and (isinstance(self, (Source, Destination)) and \ self.rule.typeof in ('fw_ipv4_nat_rule', 'fw_ipv6_nat_rule')): # Modify NAT cell if necessary self.rule._update_nat_field(self) return changed
Update the field with a list of provided values but only if the values are different. Return a boolean indicating whether a change was made indicating whether `save` should be called. If the field is currently set to any or none, then no comparison is made and field is updated. :param list elements: list of elements in href or Element format to compare to existing field :rtype: bool
def dispatch(self, frame): ''' Override the default dispatch since we don't need the rest of the stack. ''' if frame.type() == HeartbeatFrame.type(): self.send_heartbeat() elif frame.type() == MethodFrame.type(): if frame.class_id == 10: cb = self._method_map.get(frame.method_id) if cb: method = self.clear_synchronous_cb(cb) method(frame) else: raise Channel.InvalidMethod( "unsupported method %d on channel %d", frame.method_id, self.channel_id) else: raise Channel.InvalidClass( "class %d is not supported on channel %d", frame.class_id, self.channel_id) else: raise Frame.InvalidFrameType( "frame type %d is not supported on channel %d", frame.type(), self.channel_id)
Override the default dispatch since we don't need the rest of the stack.
def infer_batch(self, dataloader): """ Description : inference for LipNet """ sum_losses = 0 len_losses = 0 for input_data, input_label in dataloader: data = gluon.utils.split_and_load(input_data, self.ctx, even_split=False) label = gluon.utils.split_and_load(input_label, self.ctx, even_split=False) sum_losses, len_losses = self.infer(data, label) sum_losses += sum_losses len_losses += len_losses return sum_losses, len_losses
Description : inference for LipNet
def get_js(self): """ Fetches and returns javascript file path or contents, depending if we want a standalone presentation or not. """ js_file = os.path.join(self.theme_dir, 'js', 'slides.js') if not os.path.exists(js_file): js_file = os.path.join(THEMES_DIR, 'default', 'js', 'slides.js') if not os.path.exists(js_file): raise IOError(u"Cannot find slides.js in default theme") with codecs.open(js_file, encoding=self.encoding) as js_file_obj: return { 'path_url': utils.get_path_url(js_file, self.relative), 'contents': js_file_obj.read(), }
Fetches and returns javascript file path or contents, depending if we want a standalone presentation or not.
def getnamedargs(*args, **kwargs): """allows you to pass a dict and named args so you can pass ({'a':5, 'b':3}, c=8) and get dict(a=5, b=3, c=8)""" adict = {} for arg in args: if isinstance(arg, dict): adict.update(arg) adict.update(kwargs) return adict
allows you to pass a dict and named args so you can pass ({'a':5, 'b':3}, c=8) and get dict(a=5, b=3, c=8)
def EndEdit(self, row, col, grid, oldVal=None): """ End editing the cell. This function must check if the current value of the editing control is valid and different from the original value (available as oldval in its string form.) If it has not changed then simply return None, otherwise return the value in its string form. *Must Override* """ # Mirror our changes onto the main_window's code bar self._tc.Unbind(wx.EVT_KEY_UP) self.ApplyEdit(row, col, grid) del self._col del self._row del self._grid
End editing the cell. This function must check if the current value of the editing control is valid and different from the original value (available as oldval in its string form.) If it has not changed then simply return None, otherwise return the value in its string form. *Must Override*
def copy_(name, source, force=False, makedirs=False, preserve=False, user=None, group=None, mode=None, subdir=False, **kwargs): ''' If the file defined by the ``source`` option exists on the minion, copy it to the named path. The file will not be overwritten if it already exists, unless the ``force`` option is set to ``True``. .. note:: This state only copies files from one location on a minion to another location on the same minion. For copying files from the master, use a :py:func:`file.managed <salt.states.file.managed>` state. name The location of the file to copy to source The location of the file to copy to the location specified with name force If the target location is present then the file will not be moved, specify "force: True" to overwrite the target file makedirs If the target subdirectories don't exist create them preserve .. versionadded:: 2015.5.0 Set ``preserve: True`` to preserve user/group ownership and mode after copying. Default is ``False``. If ``preserve`` is set to ``True``, then user/group/mode attributes will be ignored. user .. versionadded:: 2015.5.0 The user to own the copied file, this defaults to the user salt is running as on the minion. If ``preserve`` is set to ``True``, then this will be ignored group .. versionadded:: 2015.5.0 The group to own the copied file, this defaults to the group salt is running as on the minion. If ``preserve`` is set to ``True`` or on Windows this will be ignored mode .. versionadded:: 2015.5.0 The permissions to set on the copied file, aka 644, '0775', '4664'. If ``preserve`` is set to ``True``, then this will be ignored. Not supported on Windows. The default mode for new files and directories corresponds umask of salt process. For existing files and directories it's not enforced. subdir .. versionadded:: 2015.5.0 If the name is a directory then place the file inside the named directory .. note:: The copy function accepts paths that are local to the Salt minion. This function does not support salt://, http://, or the other additional file paths that are supported by :mod:`states.file.managed <salt.states.file.managed>` and :mod:`states.file.recurse <salt.states.file.recurse>`. ''' name = os.path.expanduser(name) source = os.path.expanduser(source) ret = { 'name': name, 'changes': {}, 'comment': 'Copied "{0}" to "{1}"'.format(source, name), 'result': True} if not name: return _error(ret, 'Must provide name to file.copy') changed = True if not os.path.isabs(name): return _error( ret, 'Specified file {0} is not an absolute path'.format(name)) if not os.path.exists(source): return _error(ret, 'Source file "{0}" is not present'.format(source)) if preserve: user = __salt__['file.get_user'](source) group = __salt__['file.get_group'](source) mode = __salt__['file.get_mode'](source) else: user = _test_owner(kwargs, user=user) if user is None: user = __opts__['user'] if salt.utils.platform.is_windows(): if group is not None: log.warning( 'The group argument for %s has been ignored as this is ' 'a Windows system.', name ) group = user if group is None: group = __salt__['file.gid_to_group']( __salt__['user.info'](user).get('gid', 0) ) u_check = _check_user(user, group) if u_check: # The specified user or group do not exist return _error(ret, u_check) if mode is None: mode = __salt__['file.get_mode'](source) if os.path.isdir(name) and subdir: # If the target is a dir, and overwrite_dir is False, copy into the dir name = os.path.join(name, os.path.basename(source)) if os.path.lexists(source) and os.path.lexists(name): # if this is a file which did not change, do not update if force and os.path.isfile(name): hash1 = salt.utils.hashutils.get_hash(name) hash2 = salt.utils.hashutils.get_hash(source) if hash1 == hash2: changed = True ret['comment'] = ' '.join([ret['comment'], '- files are identical but force flag is set']) if not force: changed = False elif not __opts__['test'] and changed: # Remove the destination to prevent problems later try: # On windows, if a file has the read-only attribute then we are unable # to complete this copy unless force is set to true. __salt__['file.remove'](name, force=force) except (IOError, OSError): return _error( ret, 'Failed to delete "{0}" in preparation for ' 'forced move'.format(name) ) if __opts__['test']: if changed: ret['comment'] = 'File "{0}" is set to be copied to "{1}"'.format( source, name ) ret['result'] = None else: ret['comment'] = ('The target file "{0}" exists and will not be ' 'overwritten'.format(name)) ret['result'] = True return ret if not changed: ret['comment'] = ('The target file "{0}" exists and will not be ' 'overwritten'.format(name)) ret['result'] = True return ret # Run makedirs dname = os.path.dirname(name) if not os.path.isdir(dname): if makedirs: try: _makedirs(name=name, user=user, group=group, dir_mode=mode) except CommandExecutionError as exc: return _error(ret, 'Drive {0} is not mapped'.format(exc.message)) else: return _error( ret, 'The target directory {0} is not present'.format(dname)) # All tests pass, move the file into place try: if os.path.isdir(source): shutil.copytree(source, name, symlinks=True) for root, dirs, files in salt.utils.path.os_walk(name): for dir_ in dirs: __salt__['file.lchown'](os.path.join(root, dir_), user, group) for file_ in files: __salt__['file.lchown'](os.path.join(root, file_), user, group) else: shutil.copy(source, name) ret['changes'] = {name: source} # Preserve really means just keep the behavior of the cp command. If # the filesystem we're copying to is squashed or doesn't support chown # then we shouldn't be checking anything. if not preserve: __salt__['file.check_perms'](name, ret, user, group, mode) except (IOError, OSError): return _error( ret, 'Failed to copy "{0}" to "{1}"'.format(source, name)) return ret
If the file defined by the ``source`` option exists on the minion, copy it to the named path. The file will not be overwritten if it already exists, unless the ``force`` option is set to ``True``. .. note:: This state only copies files from one location on a minion to another location on the same minion. For copying files from the master, use a :py:func:`file.managed <salt.states.file.managed>` state. name The location of the file to copy to source The location of the file to copy to the location specified with name force If the target location is present then the file will not be moved, specify "force: True" to overwrite the target file makedirs If the target subdirectories don't exist create them preserve .. versionadded:: 2015.5.0 Set ``preserve: True`` to preserve user/group ownership and mode after copying. Default is ``False``. If ``preserve`` is set to ``True``, then user/group/mode attributes will be ignored. user .. versionadded:: 2015.5.0 The user to own the copied file, this defaults to the user salt is running as on the minion. If ``preserve`` is set to ``True``, then this will be ignored group .. versionadded:: 2015.5.0 The group to own the copied file, this defaults to the group salt is running as on the minion. If ``preserve`` is set to ``True`` or on Windows this will be ignored mode .. versionadded:: 2015.5.0 The permissions to set on the copied file, aka 644, '0775', '4664'. If ``preserve`` is set to ``True``, then this will be ignored. Not supported on Windows. The default mode for new files and directories corresponds umask of salt process. For existing files and directories it's not enforced. subdir .. versionadded:: 2015.5.0 If the name is a directory then place the file inside the named directory .. note:: The copy function accepts paths that are local to the Salt minion. This function does not support salt://, http://, or the other additional file paths that are supported by :mod:`states.file.managed <salt.states.file.managed>` and :mod:`states.file.recurse <salt.states.file.recurse>`.