Unnamed: 0
int64 0
389k
| code
stringlengths 26
79.6k
| docstring
stringlengths 1
46.9k
|
---|---|---|
10,900 | def _link_or_update_vars(self):
for d, source in self.links.items():
target = os.path.join(self.inventory_directory, d)
source = os.path.join(self._config.scenario.directory, source)
if not os.path.exists(source):
msg = "The source path does not exist.".format(source)
util.sysexit_with_message(msg)
msg = "Inventory {} linked to {}".format(source, target)
LOG.info(msg)
os.symlink(source, target) | Creates or updates the symlink to group_vars and returns None.
:returns: None |
10,901 | def align(*objects, **kwargs):
join = kwargs.pop(, )
copy = kwargs.pop(, True)
indexes = kwargs.pop(, None)
exclude = kwargs.pop(, _DEFAULT_EXCLUDE)
if indexes is None:
indexes = {}
if kwargs:
raise TypeError(
% list(kwargs))
if not indexes and len(objects) == 1:
obj, = objects
return (obj.copy(deep=copy),)
all_indexes = defaultdict(list)
unlabeled_dim_sizes = defaultdict(set)
for obj in objects:
for dim in obj.dims:
if dim not in exclude:
try:
index = obj.indexes[dim]
except KeyError:
unlabeled_dim_sizes[dim].add(obj.sizes[dim])
else:
all_indexes[dim].append(index)
joiner = _get_joiner(join)
joined_indexes = {}
for dim, matching_indexes in all_indexes.items():
if dim in indexes:
index = utils.safe_cast_to_index(indexes[dim])
if (any(not index.equals(other) for other in matching_indexes) or
dim in unlabeled_dim_sizes):
joined_indexes[dim] = index
else:
if (any(not matching_indexes[0].equals(other)
for other in matching_indexes[1:]) or
dim in unlabeled_dim_sizes):
if join == :
raise ValueError(
.format(dim))
index = joiner(matching_indexes)
joined_indexes[dim] = index
else:
index = matching_indexes[0]
if dim in unlabeled_dim_sizes:
unlabeled_sizes = unlabeled_dim_sizes[dim]
labeled_size = index.size
if len(unlabeled_sizes | {labeled_size}) > 1:
raise ValueError(
% (dim, unlabeled_sizes, labeled_size))
for dim in unlabeled_dim_sizes:
if dim not in all_indexes:
sizes = unlabeled_dim_sizes[dim]
if len(sizes) > 1:
raise ValueError(
% (dim, sizes))
result = []
for obj in objects:
valid_indexers = {k: v for k, v in joined_indexes.items()
if k in obj.dims}
if not valid_indexers:
new_obj = obj.copy(deep=copy)
else:
new_obj = obj.reindex(copy=copy, **valid_indexers)
new_obj.encoding = obj.encoding
result.append(new_obj)
return tuple(result) | align(*objects, join='inner', copy=True, indexes=None,
exclude=frozenset())
Given any number of Dataset and/or DataArray objects, returns new
objects with aligned indexes and dimension sizes.
Array from the aligned objects are suitable as input to mathematical
operators, because along each dimension they have the same index and size.
Missing values (if ``join != 'inner'``) are filled with NaN.
Parameters
----------
*objects : Dataset or DataArray
Objects to align.
join : {'outer', 'inner', 'left', 'right', 'exact'}, optional
Method for joining the indexes of the passed objects along each
dimension:
- 'outer': use the union of object indexes
- 'inner': use the intersection of object indexes
- 'left': use indexes from the first object with each dimension
- 'right': use indexes from the last object with each dimension
- 'exact': instead of aligning, raise `ValueError` when indexes to be
aligned are not equal
copy : bool, optional
If ``copy=True``, data in the return values is always copied. If
``copy=False`` and reindexing is unnecessary, or can be performed with
only slice operations, then the output may share memory with the input.
In either case, new xarray objects are always returned.
exclude : sequence of str, optional
Dimensions that must be excluded from alignment
indexes : dict-like, optional
Any indexes explicitly provided with the `indexes` argument should be
used in preference to the aligned indexes.
Returns
-------
aligned : same as *objects
Tuple of objects with aligned coordinates.
Raises
------
ValueError
If any dimensions without labels on the arguments have different sizes,
or a different size than the size of the aligned dimension labels. |
10,902 | def bundles(ctx):
bundles = _get_bundles(ctx.obj.data[])
print_table((, ),
[(bundle.name, f)
for bundle in bundles]) | List discovered bundles. |
10,903 | def parse_array(raw_array):
array_strip_brackets = raw_array.replace(, ).replace(, )
array_strip_spaces = array_strip_brackets.replace(, ).replace(, )
return array_strip_spaces.split() | Parse a WMIC array. |
10,904 | def createModel(modelName, **kwargs):
if modelName not in TemporalMemoryTypes.getTypes():
raise RuntimeError("Unknown model type: " + modelName)
return getattr(TemporalMemoryTypes, modelName)(**kwargs) | Return a classification model of the appropriate type. The model could be any
supported subclass of ClassficationModel based on modelName.
@param modelName (str) A supported temporal memory type
@param kwargs (dict) Constructor argument for the class that will be
instantiated. Keyword parameters specific to each
model type should be passed in here. |
10,905 | def run_next(self):
while 1:
(op, obj) = self.work_queue.get()
if op is STOP_SIGNAL:
return
try:
(job_id, command_line) = obj
try:
os.remove(self._job_file(job_id, JOB_FILE_COMMAND_LINE))
except Exception:
log.exception("Running command but failed to delete - command may rerun on Pulsar boot.")
self._run(job_id, command_line, background=False)
except Exception:
log.warn("Uncaught exception running job with job_id %s" % job_id)
traceback.print_exc() | Run the next item in the queue (a job waiting to run). |
10,906 | def list_sources(embedding_name=None):
text_embedding_reg = registry.get_registry(TokenEmbedding)
if embedding_name is not None:
embedding_name = embedding_name.lower()
if embedding_name not in text_embedding_reg:
raise KeyError(
.format(embedding_name))
return list(text_embedding_reg[embedding_name].source_file_hash.keys())
else:
return {embedding_name: list(embedding_cls.source_file_hash.keys())
for embedding_name, embedding_cls in registry.get_registry(TokenEmbedding).items()} | Get valid token embedding names and their pre-trained file names.
To load token embedding vectors from an externally hosted pre-trained token embedding file,
such as those of GloVe and FastText, one should use
`gluonnlp.embedding.create(embedding_name, source)`. This method returns all the
valid names of `source` for the specified `embedding_name`. If `embedding_name` is set to
None, this method returns all the valid names of `embedding_name` with their associated
`source`.
Parameters
----------
embedding_name : str or None, default None
The pre-trained token embedding name.
Returns
-------
dict or list:
A list of all the valid pre-trained token embedding file names (`source`) for the
specified token embedding name (`embedding_name`). If the text embedding name is set to
None, returns a dict mapping each valid token embedding name to a list of valid pre-trained
files (`source`). They can be plugged into
`gluonnlp.embedding.create(embedding_name, source)`. |
10,907 | def cumulative_sum(self):
from .. import extensions
agg_op = "__builtin__cum_sum__"
return SArray(_proxy = self.__proxy__.builtin_cumulative_aggregate(agg_op)) | Return the cumulative sum of the elements in the SArray.
Returns an SArray where each element in the output corresponds to the
sum of all the elements preceding and including it. The SArray is
expected to be of numeric type (int, float), or a numeric vector type.
Returns
-------
out : sarray[int, float, array.array]
Notes
-----
- Missing values are ignored while performing the cumulative
aggregate operation.
- For SArray's of type array.array, all entries are expected to
be of the same size.
Examples
--------
>>> sa = SArray([1, 2, 3, 4, 5])
>>> sa.cumulative_sum()
dtype: int
rows: 3
[1, 3, 6, 10, 15] |
10,908 | def _get_all_children(self,):
res =
if self.child_nodes:
for c in self.child_nodes:
res += + str(c) +
if c.child_nodes:
for grandchild in c.child_nodes:
res += + str(grandchild) +
else:
res +=
return res | return the list of children of a node |
10,909 | def get_context_file_name(pid_file):
root = os.path.dirname(pid_file)
port_file = os.path.join(root, "context.json")
return port_file | When the daemon is started write out the information which port it was using. |
10,910 | def do_info(self, arg, arguments):
if arguments["--all"]:
Console.ok(70 * "-")
Console.ok()
Console.ok(70 * "-")
for element in dir(self):
Console.ok(str(element))
Console.ok(70 * "-")
self.print_info() | ::
Usage:
info [--all]
Options:
--all -a more extensive information
Prints some internal information about the shell |
10,911 | def go_to_step(self, step):
self.stackedWidget.setCurrentWidget(step)
self.pbnNext.setEnabled(step.is_ready_to_next_step())
if step == self.step_fc_analysis:
self.step_fc_analysis.setup_and_run_analysis()
if step == self.step_kw_purpose and self.parent_step:
if self.parent_step in [self.step_fc_hazlayer_from_canvas,
self.step_fc_hazlayer_from_browser]:
text_label = category_question_hazard
elif self.parent_step in [self.step_fc_explayer_from_canvas,
self.step_fc_explayer_from_browser]:
text_label = category_question_exposure
else:
text_label = category_question_aggregation
self.step_kw_purpose.lblSelectCategory.setText(text_label) | Set the stacked widget to the given step, set up the buttons,
and run all operations that should start immediately after
entering the new step.
:param step: The step widget to be moved to.
:type step: WizardStep |
10,912 | def get_full_current_object(arn, current_model):
LOG.debug(f)
item = list(current_model.query(arn))
if not item:
return None
return item[0] | Utility method to fetch items from the Current table if they are too big for SNS/SQS.
:param record:
:param current_model:
:return: |
10,913 | def connect(self):
self._connect()
logger.debug()
self._detect_deluge_version()
logger.debug(.format(self.deluge_version))
if self.deluge_version == 2:
result = self.call(, self.username, self.password, client_version=)
else:
result = self.call(, self.username, self.password)
logger.debug( % result)
self.connected = True | Connects to the Deluge instance |
10,914 | def job_terminate(object_id, input_params={}, always_retry=True, **kwargs):
return DXHTTPRequest( % object_id, input_params, always_retry=always_retry, **kwargs) | Invokes the /job-xxxx/terminate API method.
For more info, see: https://wiki.dnanexus.com/API-Specification-v1.0.0/Applets-and-Entry-Points#API-method%3A-%2Fjob-xxxx%2Fterminate |
10,915 | def remove(self, path, recursive=True):
if recursive:
cmd = ["rm", "-r", path]
else:
cmd = ["rm", path]
self.remote_context.check_output(cmd) | Remove file or directory at location `path`. |
10,916 | def make_command(tasks, *args, **kwargs):
command = TaskCommand(tasks=tasks, *args, **kwargs)
return command | Create a TaskCommand with defined tasks.
This is a helper function to avoid boiletplate when dealing with simple
cases (e.g., all cli arguments can be handled by TaskCommand), with no
special processing. In general, this means a command only needs to run
established tasks.
Arguments:
tasks - the tasks to execute
args - extra arguments to pass to the TargetCommand constructor
kwargs - extra keyword arguments to pass to the TargetCommand constructor |
10,917 | def serve_forever(self, poll_interval=0.5):
self._serving_event.set()
self._shutdown_request_event.clear()
TCPServer.serve_forever(self, poll_interval=poll_interval) | Handle one request at a time until shutdown.
Polls for shutdown every poll_interval seconds. Ignores
self.timeout. If you need to do periodic tasks, do them in
another thread. |
10,918 | def _get_nets_other(self, *args, **kwargs):
from warnings import warn
warn(
)
return self.get_nets_other(*args, **kwargs) | Deprecated. This will be removed in a future release. |
10,919 | def query_mongo_sort_decend(
database_name,
collection_name,
query={},
skip=0,
limit=getattr(
settings,
,
200),
return_keys=(),
sortkey=None):
l = []
response_dict = {}
try:
mongodb_client_url = getattr(settings, ,
)
mc = MongoClient(mongodb_client_url,document_class=OrderedDict)
db = mc[str(database_name)]
collection = db[str(collection_name)]
if return_keys:
return_dict = {}
for k in return_keys:
return_dict[k] = 1
mysearchresult = collection.find(
query, return_dict).skip(skip).limit(limit).sort(
sortkey, DESCENDING)
else:
mysearchresult = collection.find(query).skip(
skip).limit(limit).sort(sortkey, DESCENDING)
response_dict[] = 200
response_dict[] = "search-results"
for d in mysearchresult:
d[] = d[].__str__()
del d[]
l.append(d)
response_dict[] = l
except:
print("Error reading from Mongo")
print(str(sys.exc_info()))
response_dict[] = 0
response_dict[] = 500
response_dict[] = "Error"
response_dict[] = []
response_dict[] = str(sys.exc_info())
return response_dict | return a response_dict with a list of search results in decending
order based on a sort key |
10,920 | def setbit(self, key, offset, value):
if not isinstance(offset, int):
raise TypeError("offset argument must be int")
if offset < 0:
raise ValueError("offset must be greater equal 0")
if value not in (0, 1):
raise ValueError("value argument must be either 1 or 0")
return self.execute(b, key, offset, value) | Sets or clears the bit at offset in the string value stored at key.
:raises TypeError: if offset is not int
:raises ValueError: if offset is less than 0 or value is not 0 or 1 |
10,921 | def getChildren(self, forgetter, field=None, where=None, orderBy=None):
if type(where) in (types.StringType, types.UnicodeType):
where = (where,)
if not field:
for (i_field, i_class) in forgetter._userClasses.items():
if isinstance(self, i_class):
field = i_field
break
if not field:
raise "No field found, check forgetter%s'" % (sqlname, myID)]
if where:
whereList.extend(where)
return forgetter.getAll(whereList, orderBy=orderBy) | Return the children that links to me.
That means that I have to be listed in their _userClasses
somehow. If field is specified, that field in my children is
used as the pointer to me. Use this if you have multiple fields
referring to my class. |
10,922 | async def call_command(bot: NoneBot, ctx: Context_T,
name: Union[str, CommandName_T], *,
current_arg: str = ,
args: Optional[CommandArgs_T] = None,
check_perm: bool = True,
disable_interaction: bool = False) -> bool:
cmd = _find_command(name)
if not cmd:
return False
session = CommandSession(bot, ctx, cmd, current_arg=current_arg, args=args)
return await _real_run_command(session, context_id(session.ctx),
check_perm=check_perm,
disable_interaction=disable_interaction) | Call a command internally.
This function is typically called by some other commands
or "handle_natural_language" when handling NLPResult object.
Note: If disable_interaction is not True, after calling this function,
any previous command session will be overridden, even if the command
being called here does not need further interaction (a.k.a asking
the user for more info).
:param bot: NoneBot instance
:param ctx: message context
:param name: command name
:param current_arg: command current argument string
:param args: command args
:param check_perm: should check permission before running command
:param disable_interaction: disable the command's further interaction
:return: the command is successfully called |
10,923 | def parse_extension_arg(arg, arg_dict):
match = re.match(r, arg)
if match is None:
raise ValueError(
"invalid extension argument , must be in key=value form" % arg
)
name = match.group(1)
value = match.group(4)
arg_dict[name] = value | Converts argument strings in key=value or key.namespace=value form
to dictionary entries
Parameters
----------
arg : str
The argument string to parse, which must be in key=value or
key.namespace=value form.
arg_dict : dict
The dictionary into which the key/value pair will be added |
10,924 | def _parse_abbreviation(self, abbr):
abbr = re.sub(r, , str(abbr))
abbr = re.sub(r, , abbr)
return abbr | Parse a team's abbreviation.
Given the team's HTML name tag, parse their abbreviation.
Parameters
----------
abbr : string
A string of a team's HTML name tag.
Returns
-------
string
Returns a ``string`` of the team's abbreviation. |
10,925 | def delete(self):
r = self.jfs.post(url=self.path, params={:})
return r | Delete this file and return the new, deleted JFSFile |
10,926 | def inputAnalyzeCallback(self, *args, **kwargs):
b_status = False
filesRead = 0
filesAnalyzed = 0
for k, v in kwargs.items():
if k == : d_DCMRead = v
if k == : str_path = v
if len(args):
at_data = args[0]
str_path = at_data[0]
d_read = at_data[1]
b_status = True
self.dp.qprint("analyzing:\n%s" %
self.pp.pformat(d_read[]),
level = 5)
if int(self.f_sleepLength):
self.dp.qprint("sleeping for: %f" % self.f_sleepLength, level = 5)
time.sleep(self.f_sleepLength)
filesAnalyzed = len(d_read[])
return {
: b_status,
: filesAnalyzed,
: d_read[]
} | Test method for inputAnalzeCallback
This method loops over the passed number of files,
and optionally "delays" in each loop to simulate
some analysis. The delay length is specified by
the '--test <delay>' flag. |
10,927 | def _reproduce_stages(
G,
stages,
node,
force,
dry,
interactive,
ignore_build_cache,
no_commit,
downstream,
):
r
import networkx as nx
if downstream:
force = True
result += ret
except Exception as ex:
raise ReproductionError(stages[n].relpath, ex)
return result | r"""Derive the evaluation of the given node for the given graph.
When you _reproduce a stage_, you want to _evaluate the descendants_
to know if it make sense to _recompute_ it. A post-ordered search
will give us an order list of the nodes we want.
For example, let's say that we have the following pipeline:
E
/ \
D F
/ \ \
B C G
\ /
A
The derived evaluation of D would be: [A, B, C, D]
In case that `downstream` option is specifed, the desired effect
is to derive the evaluation starting from the given stage up to the
ancestors. However, the `networkx.ancestors` returns a set, without
any guarantee of any order, so we are going to reverse the graph and
use a pre-ordered search using the given stage as a starting point.
E A
/ \ / \
D F B C G
/ \ \ --- reverse --> \ / /
B C G D F
\ / \ /
A E
The derived evaluation of _downstream_ B would be: [B, D, E] |
10,928 | def _get_data(self, url, config, send_sc=True):
if config.username and config.password:
auth = (config.username, config.password)
else:
auth = None
if isinstance(config.ssl_verify, bool) or isinstance(config.ssl_verify, str):
verify = config.ssl_verify
else:
verify = None
if config.ssl_cert:
if config.ssl_key:
cert = (config.ssl_cert, config.ssl_key)
else:
cert = config.ssl_cert
else:
cert = None
resp = None
try:
resp = requests.get(
url, timeout=config.timeout, headers=headers(self.agentConfig), auth=auth, verify=verify, cert=cert
)
resp.raise_for_status()
except Exception as e:
if resp and resp.status_code == 400:
raise AuthenticationError("The ElasticSearch credentials are incorrect")
if send_sc:
self.service_check(
self.SERVICE_CHECK_CONNECT_NAME,
AgentCheck.CRITICAL,
message="Error {} when hitting {}".format(e, url),
tags=config.service_check_tags,
)
raise
self.log.debug("request to url {} returned: {}".format(url, resp))
return resp.json() | Hit a given URL and return the parsed json |
10,929 | async def restart(request):
def wait_and_restart():
log.info()
sleep(1)
os.system()
Thread(target=wait_and_restart).start()
return web.json_response({"message": "restarting"}) | Returns OK, then waits approximately 1 second and restarts container |
10,930 | def _build_kreemer_cell(data, loc):
temp_poly = np.empty([5, 2], dtype=float)
for ival in range(1, 6):
value = data[loc + ival].rstrip()
value = value.lstrip()
value = np.array((value.split(, 1))).astype(float)
temp_poly[ival - 1, :] = value.flatten()
return temp_poly | Constructs the "Kreemer Cell" from the input file. The Kreemer cell is
simply a set of five lines describing the four nodes of the square (closed)
:param list data:
Strain data as list of text lines (input from linecache.getlines)
:param int loc:
Pointer to location in data
:returns:
temp_poly - 5 by 2 numpy array of cell longitudes and latitudes |
10,931 | def simulation_manager(self, thing=None, **kwargs):
if thing is None:
thing = [ self.entry_state() ]
elif isinstance(thing, (list, tuple)):
if any(not isinstance(val, SimState) for val in thing):
raise AngrError("Bad type to initialize SimulationManager")
elif isinstance(thing, SimState):
thing = [ thing ]
else:
raise AngrError("BadType to initialze SimulationManager: %s" % repr(thing))
return SimulationManager(self.project, active_states=thing, **kwargs) | Constructs a new simulation manager.
:param thing: Optional - What to put in the new SimulationManager's active stash (either a SimState or a list of SimStates).
:param kwargs: Any additional keyword arguments will be passed to the SimulationManager constructor
:returns: The new SimulationManager
:rtype: angr.sim_manager.SimulationManager
Many different types can be passed to this method:
* If nothing is passed in, the SimulationManager is seeded with a state initialized for the program
entry point, i.e. :meth:`entry_state()`.
* If a :class:`SimState` is passed in, the SimulationManager is seeded with that state.
* If a list is passed in, the list must contain only SimStates and the whole list will be used to seed the SimulationManager. |
10,932 | def _variant_levels(level, variant):
return (level + variant, level + variant) \
if variant != 0 else (variant, level) | Gets the level for the variant.
:param int level: the current variant level
:param int variant: the value for this level if variant
:returns: a level for the object and one for the function
:rtype: int * int |
10,933 | def _read(self, directory, filename, session, path, name, extension, spatial, spatialReferenceID, replaceParamFile):
| Private file object read method. Classes that inherit from this base class must implement this method.
The ``read()`` method that each file object inherits from this base class performs the processes common to all
file read methods, after which it calls the file object's ``_read()`` (the preceding underscore denotes that
the method is a private method).
The purpose of the ``_read()`` method is to perform the file read operations that are specific to the file that
the file object represents. This method should add any supporting SQLAlchemy objects to the session without
committing. The common ``read()`` method handles the database commit for all file objects.
The ``read()`` method processes the user input and passes on the information through the many parameters of the
``_read()`` method. As the ``_read()`` method should never be called by the user directly, the arguments will
be defined in terms of what they offer for the developer of a new file object needing to implement this method.
Args:
directory (str): Directory containing the file to be read. Same as given by user in ``read()``.
filename (str): Name of the file which will be read (e.g.: 'example.prj'). Same as given by user. Same as
given by user in ``read()``.
session (:mod:`sqlalchemy.orm.session.Session`): SQLAlchemy session object bound to PostGIS enabled
database. Same as given by user in ``read()``.
path (str): Directory and filename combined into the path to the file. This is a convenience parameter.
name (str): Name of the file without extension. This is a convenience parameter.
extension (str): Extension of the file without the name. This is a convenience parameter.
spatial (bool, optional): If True, spatially enabled objects will be read in as PostGIS spatial objects.
Defaults to False. Same as given by user in ``read()``.
spatialReferenceID (int, optional): Integer id of spatial reference system for the model. Required if
spatial is True. Same as given by user in ``read()``.
replaceParamFile (:class:`gsshapy.orm.ReplaceParamFile`, optional): Handle the case when replacement
parameters are used in place of normal variables. If this is not None, then the user expects there
to be replacement variables in the file. Use the gsshapy.lib.parsetools.valueReadPreprocessor() to
handle these. |
10,934 | def escape(u):
if not isinstance(u, unicode_type):
raise ValueError()
return quote(u.encode(), safe=b) | Escape a string in an OAuth-compatible fashion.
TODO: verify whether this can in fact be used for OAuth 2 |
10,935 | def _constexpr_transform(fn):
code_string = inspect.getsource(fn)
while _s.match(code_string):
code_string = textwrap.dedent(code_string)
module = ast.parse(code_string)
fn_ast = module.body[0]
fn: types.FunctionType
fn_name = fn.__name__
closure = fn.__closure__
closure_dict = {v: c.cell_contents for v, c in zip(fn.__code__.co_freevars, closure if closure else ())}
ctx = CompilingTimeMapping(fn.__globals__, closure_dict)
ce = ConstExpr(ctx, [], OrderedDict(), {}, [], fn.__code__.co_filename)
body = fn_ast.body
macro_def = new_transformer(ce, MazcroDef)
macro_invoke = new_transformer(ce, MacroInvoke)
const_def = new_transformer(ce, ConstExprConstDef)
const_if = new_transformer(ce, ConstExprIf)
name_fold = new_transformer(ce, ConstExprNameFold)
body = _visit_suite(macro_def.visit, body)
body = _visit_suite(macro_invoke.visit, body)
body = _visit_suite(const_def.visit, body)
body = _visit_suite(const_if.visit, body)
body = _visit_suite(name_fold.visit, body)
fn_ast.body = body
module.body = [fn_ast]
code = compile(module, "<const-optimize>", "exec")
fn_code: types.CodeType = next(
each for each in code.co_consts if isinstance(each, types.CodeType) and each.co_name == fn_name)
fn_code = const_link(fn_code, ce.constant_symbols, ce.additional_consts, fn.__code__, ce.nonlocal_names)
new_fn = types.FunctionType(fn_code, fn.__globals__, fn.__name__, fn.__defaults__, fn.__closure__)
new_fn.__annotations__ = fn.__annotations__
new_fn.__doc__ = fn.__doc__
new_fn.__kwdefaults__ = fn.__kwdefaults__
new_fn.__module__ = fn.__module__
return new_fn | >>> from Redy.Opt.ConstExpr import constexpr, const, optimize, macro
>>> import dis
>>> a = 1; b = ""; c = object()
>>> x = 1
>>> @optimize
>>> def f(y):
>>> val1: const[int] = a
>>> val2: const = b
>>> if constexpr[x is c]:
>>> return val1, y
>>> elif constexpr[x is 1]:
>>> return None, y
>>> else:
>>> return val2, y
>>> assert f(1) == (None, 1)
>>> dis.dis(f)
>>> @optimize
>>> def f(x):
>>> d: const = 1
>>> return x + d + constexpr[2]
#
#
>>> dis.dis(f)
>>> print('result:', f(1))
#
#
>>> @optimize
>>> def f(z):
>>> @macro
>>> def g(a):
>>> x = a + 1
#
>>> g(z)
>>> return x
#
#
>>> dis.dis(f)
>>> print('result:', f(1))
#
>>> c = 10
#
#
>>> @optimize
>>> def f(x):
>>> if constexpr[1 + c < 10]:
>>> return x + 1
>>> else:
>>> return x - 1
#
#
>>> print(dis.dis(f))
>>> print(f(5))
#
>>> @optimize
>>> def f(x):
>>> return (x + constexpr[c * 20]) if constexpr[c > 10] else constexpr[c - 2]
#
>>> dis.dis(f)
>>> print(f(20))
>>> def g(lst: list):
>>> k = 1
>>> @optimize
>>> def _():
>>> nonlocal k
>>> f: const = lst.append
>>> for i in range(1000):
>>> f(i)
>>> k += 1
>>> f(k)
>>> _()
>>> return lst
>>> # dis.dis(g)
>>> print(g([])) |
10,936 | def CreateBiddingStrategy(client):
bidding_strategy_service = client.GetService(
, version=)
shared_bidding_strategy = {
: % uuid.uuid4(),
: {
: ,
: {
:
}
}
}
operation = {
: ,
: shared_bidding_strategy
}
response = bidding_strategy_service.mutate([operation])
new_bidding_strategy = response[][0]
print (
%
(new_bidding_strategy[], new_bidding_strategy[],
new_bidding_strategy[][]))
return new_bidding_strategy | Creates a bidding strategy object.
Args:
client: AdWordsClient the client to run the example with.
Returns:
dict An object representing a bidding strategy. |
10,937 | def load(filename: str, format: str = None):
path = Path(filename).resolve()
with path.open() as file:
data = file.read()
if format is None:
loader, error_class = _load_autodetect, InvalidMofileFormat
else:
try:
loader, error_class = formats[format]
except KeyError:
raise InvalidMofileFormat(f)
try:
config = loader(data)
except error_class as e:
raise InvalidMofileFormat(f)
return Project(config, path.parent) | Load a task file and get a ``Project`` back. |
10,938 | def dump(self, output, close_after_write=True):
try:
output.write
self.stream = output
except AttributeError:
self.stream = io.open(output, "w", encoding="utf-8")
try:
self.write_table()
finally:
if close_after_write:
self.stream.close()
self.stream = sys.stdout | Write data to the output with tabular format.
Args:
output (file descriptor or str):
file descriptor or path to the output file.
close_after_write (bool, optional):
Close the output after write.
Defaults to |True|. |
10,939 | def divide(self, other, out=None):
return self.space.divide(self, other, out=out) | Return ``out = self / other``.
If ``out`` is provided, the result is written to it.
See Also
--------
LinearSpace.divide |
10,940 | def flat_images(images, grid=None, bfill=1.0, bsz=(1, 1)):
if images.ndim == 4 and images.shape[-1] == 1:
images = images.squeeze(axis=-1)
grid = grid or grid_recommend(len(images), sorted(images[0].shape[:2]))
if not isinstance(bsz, (tuple, list)):
bsz = (bsz, bsz)
imshape = list(images.shape)
imshape[0] = grid[0] * grid[1]
imshape[1] += bsz[0]
imshape[2] += bsz[1]
data = np.empty(imshape, dtype=images.dtype)
data.fill(bfill)
bslice0 = slice(0, -bsz[0]) if bsz[0] else slice(None, None)
bslice1 = slice(0, -bsz[1]) if bsz[1] else slice(None, None)
data[:len(images), bslice0, bslice1] = images
imshape = list(grid) + imshape[1:]
data = data.reshape(imshape)
if len(imshape) == 5:
data = data.transpose(0, 2, 1, 3, 4)
imshape = [imshape[0]*imshape[2], imshape[1]*imshape[3], imshape[4]]
else:
data = data.transpose(0, 2, 1, 3)
imshape = [imshape[0]*imshape[2], imshape[1]*imshape[3]]
data = data.reshape(imshape)
data = data[bslice0, bslice1]
return data | convert batch image to flat image with margin inserted
[B,h,w,c] => [H,W,c]
:param images:
:param grid: patch grid cell size of (Row, Col)
:param bfill: board filling value
:param bsz: int or (int, int) board size
:return: flatted image |
10,941 | def _get_exchange_key_ntlm_v1(negotiate_flags, session_base_key, server_challenge, lm_challenge_response, lm_hash):
if negotiate_flags & NegotiateFlags.NTLMSSP_NEGOTIATE_EXTENDED_SESSIONSECURITY:
key_exchange_key = hmac.new(session_base_key, server_challenge + lm_challenge_response[:8]).digest()
elif negotiate_flags & NegotiateFlags.NTLMSSP_NEGOTIATE_LM_KEY:
des_handler = des.DES(lm_hash[:7])
first_des = des_handler.encrypt(lm_challenge_response[:8])
des_handler = des.DES(lm_hash[7:8] + binascii.unhexlify())
second_des = des_handler.encrypt(lm_challenge_response[:8])
key_exchange_key = first_des + second_des
elif negotiate_flags & NegotiateFlags.NTLMSSP_REQUEST_NON_NT_SESSION_KEY:
key_exchange_key = lm_hash[:8] + b * 8
else:
key_exchange_key = session_base_key
return key_exchange_key | [MS-NLMP] v28.0 2016-07-14
4.3.5.1 KXKEY
Calculates the Key Exchange Key for NTLMv1 authentication. Used for signing and sealing messages
@param negotiate_flags:
@param session_base_key: A session key calculated from the user password challenge
@param server_challenge: A random 8-byte response generated by the server in the CHALLENGE_MESSAGE
@param lm_challenge_response: The LmChallengeResponse value computed in ComputeResponse
@param lm_hash: The LMOWF computed in Compute Response
@return key_exchange_key: The Key Exchange Key (KXKEY) used to sign and seal messages and compute the ExportedSessionKey |
10,942 | def estimate_tau_exp(chains, **kwargs):
rho = np.nan * np.ones(chains.shape[1:])
for i in range(chains.shape[2]):
try:
rho[:, i] = autocorr.function(np.mean(chains[:, :, i], axis=0),
**kwargs)
except:
continue
rho_max = np.max(rho, axis=1)
x = np.arange(rho_max.size)
func = lambda tau_exp: np.exp(-x/tau_exp)
chi = lambda tau_exp: func(tau_exp[0]) - rho_max
tau_exp, ier = leastsq(chi, [chains.shape[1]/2.])
return (tau_exp, rho, func(tau_exp)) | Estimate the exponential auto-correlation time for all parameters in a chain. |
10,943 | async def setup_watchdog(self, cb, timeout):
self._watchdog_timeout = timeout
self._watchdog_cb = cb
self._watchdog_task = self.loop.create_task(self._watchdog(timeout)) | Trigger a reconnect after @timeout seconds of inactivity. |
10,944 | def unzoom_all(self,event=None,panel=None):
if panel is None: panel = self.current_panel
self.panels[panel].unzoom_all(event=event) | zoom out full data range |
10,945 | def RandomShuffle(a, seed):
if seed:
np.random.seed(seed)
r = a.copy()
np.random.shuffle(r)
return r, | Random uniform op. |
10,946 | def write(self, output_buffer, kmip_version=enums.KMIPVersion.KMIP_1_0):
local_buffer = utils.BytearrayStream()
if self._object_type:
self._object_type.write(local_buffer, kmip_version=kmip_version)
else:
raise exceptions.InvalidField(
"The DeriveKey request payload is missing the object type "
"field."
)
if self._unique_identifiers:
for unique_identifier in self._unique_identifiers:
unique_identifier.write(
local_buffer,
kmip_version=kmip_version
)
else:
raise exceptions.InvalidField(
"The DeriveKey request payload is missing the unique "
"identifiers field."
)
if self._derivation_method:
self._derivation_method.write(
local_buffer,
kmip_version=kmip_version
)
else:
raise exceptions.InvalidField(
"The DeriveKey request payload is missing the derivation "
"method field."
)
if self._derivation_parameters:
self._derivation_parameters.write(
local_buffer,
kmip_version=kmip_version
)
else:
raise exceptions.InvalidField(
"The DeriveKey request payload is missing the derivation "
"parameters field."
)
if kmip_version < enums.KMIPVersion.KMIP_2_0:
if self._template_attribute:
self._template_attribute.write(
local_buffer,
kmip_version=kmip_version
)
else:
raise exceptions.InvalidField(
"The DeriveKey request payload is missing the template "
"attribute field."
)
else:
if self._template_attribute:
attrs = objects.convert_template_attribute_to_attributes(
self._template_attribute
)
attrs.write(local_buffer, kmip_version=kmip_version)
else:
raise exceptions.InvalidField(
"The DeriveKey request payload is missing the template "
"attribute field."
)
self.length = local_buffer.length()
super(DeriveKeyRequestPayload, self).write(
output_buffer,
kmip_version=kmip_version
)
output_buffer.write(local_buffer.buffer) | Write the data encoding the DeriveKey request payload to a stream.
Args:
output_buffer (stream): A data stream in which to encode object
data, supporting a write method; usually a BytearrayStream
object.
kmip_version (KMIPVersion): An enumeration defining the KMIP
version with which the object will be encoded. Optional,
defaults to KMIP 1.0.
Raises:
ValueError: Raised if the data attribute is not defined. |
10,947 | def _report_self(self):
key = "stats:kafka-monitor:self:{m}:{u}".format(
m=socket.gethostname(),
u=self.my_uuid)
self.redis_conn.set(key, time.time())
self.redis_conn.expire(key, self.settings[]) | Reports the kafka monitor uuid to redis |
10,948 | def _filter_pb(field_or_unary):
if isinstance(field_or_unary, query_pb2.StructuredQuery.FieldFilter):
return query_pb2.StructuredQuery.Filter(field_filter=field_or_unary)
elif isinstance(field_or_unary, query_pb2.StructuredQuery.UnaryFilter):
return query_pb2.StructuredQuery.Filter(unary_filter=field_or_unary)
else:
raise ValueError("Unexpected filter type", type(field_or_unary), field_or_unary) | Convert a specific protobuf filter to the generic filter type.
Args:
field_or_unary (Union[google.cloud.proto.firestore.v1beta1.\
query_pb2.StructuredQuery.FieldFilter, google.cloud.proto.\
firestore.v1beta1.query_pb2.StructuredQuery.FieldFilter]): A
field or unary filter to convert to a generic filter.
Returns:
google.cloud.firestore_v1beta1.types.\
StructuredQuery.Filter: A "generic" filter.
Raises:
ValueError: If ``field_or_unary`` is not a field or unary filter. |
10,949 | def charge_balance(self):
rNa+Cl-water
return sum([zi*ci for zi, ci in zip(self.zs, self.charges)]) | r'''Charge imbalance of the mixture, in units of [faraday].
Mixtures meeting the electroneutrality condition will have an imbalance
of 0.
Examples
--------
>>> Mixture(['Na+', 'Cl-', 'water'], zs=[.01, .01, .98]).charge_balance
0.0 |
10,950 | def read_message_from_pipe(pipe_handle):
data = yield From(read_message_bytes_from_pipe(pipe_handle))
assert isinstance(data, bytes)
raise Return(data.decode(, )) | (coroutine)
Read message from this pipe. Return text. |
10,951 | def set_content_type(self):
if self.object_name and not self.content_type:
self.content_type, encoding = mimetypes.guess_type(
self.object_name, strict=False) | Set the content type based on the file extension used in the object
name. |
10,952 | def hide_busy(self):
self.progress_bar.hide()
self.parent.pbnNext.setEnabled(True)
self.parent.pbnBack.setEnabled(True)
self.parent.pbnCancel.setEnabled(True)
self.parent.repaint()
disable_busy_cursor() | Unlock buttons A helper function to indicate processing is done. |
10,953 | def execute_on_key_owner(self, key, task):
check_not_none(key, "key can't be None")
key_data = self._to_data(key)
partition_id = self._client.partition_service.get_partition_id(key_data)
uuid = self._get_uuid()
return self._encode_invoke_on_partition(executor_service_submit_to_partition_codec, partition_id,
uuid=uuid, callable=self._to_data(task),
partition_id=partition_id) | Executes a task on the owner of the specified key.
:param key: (object), the specified key.
:param task: (Task), a task executed on the owner of the specified key.
:return: (:class:`~hazelcast.future.Future`), future representing pending completion of the task. |
10,954 | def truncate(sequence):
if len(sequence) > LIST_SLICE:
return ", ".join(sequence[:LIST_SLICE] + ["..."])
else:
return ", ".join(sequence) | Create a potentially shortened text display of a list.
Parameters
----------
sequence : list
An indexable sequence of elements.
Returns
-------
str
The list as a formatted string. |
10,955 | def run_server(self, port):
try:
self.server = MultiThreadedHTTPServer((, port), Handler)
except socket.error, e:
logger.error(str(e))
sys.exit(1)
logger.info("HTTP serve at http://0.0.0.0:%d (ctrl-c to stop) ..."
% port)
try:
self.server.serve_forever()
except KeyboardInterrupt:
logger.info("^C received, shutting down server")
self.shutdown_server() | run a server binding to port |
10,956 | def filter_taxa(fasta_path: ,
taxids: ,
unclassified: = False,
discard: = False,
warnings: = False):
configure_warnings(warnings)
records = SeqIO.parse(fasta_path, )
filtered_records = tictax.filter_taxa(records,
map(int, taxids.split()),
unclassified,
discard)
SeqIO.write(filtered_records, sys.stdout, ) | Customisable filtering of tictax flavoured fasta files |
10,957 | def register_id(self, id, module):
assert isinstance(id, basestring)
assert isinstance(module, basestring)
self.id2module[id] = module | Associate the given id with the given project module. |
10,958 | def delete(self, key):
path = self.object_path(key)
if os.path.exists(path):
os.remove(path) | Removes the object named by `key`.
Args:
key: Key naming the object to remove. |
10,959 | def clear(self, *args):
for field in self.fields_to_clear + list(args):
setattr(self, field, None) | Set default values to **self.fields_to_clear**. In addition, it is possible to pass extra fields to clear.
:param args: extra fields to clear. |
10,960 | def exists(self, symbol):
if isinstance(symbol, str):
sym = symbol
elif isinstance(symbol, Symbol):
sym = symbol.name
syms = self.ses.query(Symbol).filter(Symbol.name == sym).all()
if len(syms) == 0:
return False
else:
return True | Checks to if a symbol exists, by name.
Parameters
----------
symbol : str or Symbol
Returns
-------
bool |
10,961 | def ParseFileObject(self, parser_mediator, file_object):
file_object.seek(0, os.SEEK_SET)
header = file_object.read(2)
if not self.BENCODE_RE.match(header):
raise errors.UnableToParseFile()
file_object.seek(0, os.SEEK_SET)
try:
data_object = bencode.bdecode(file_object.read())
except (IOError, bencode.BTFailure) as exception:
raise errors.UnableToParseFile(
.format(
self.NAME, parser_mediator.GetDisplayName(), exception))
if not data_object:
raise errors.UnableToParseFile(
.format(
self.NAME, parser_mediator.GetDisplayName()))
for plugin in self._plugins:
try:
plugin.UpdateChainAndProcess(parser_mediator, data=data_object)
except errors.WrongBencodePlugin as exception:
logger.debug(.format(
self.NAME, exception)) | Parses a bencoded file-like object.
Args:
parser_mediator (ParserMediator): mediates interactions between parsers
and other components, such as storage and dfvfs.
file_object (dfvfs.FileIO): a file-like object.
Raises:
UnableToParseFile: when the file cannot be parsed. |
10,962 | def LDREX(cpu, dest, src, offset=None):
cpu._LDR(dest, src, 32, False, offset) | LDREX loads data from memory.
* If the physical address has the shared TLB attribute, LDREX
tags the physical address as exclusive access for the current
processor, and clears any exclusive access tag for this
processor for any other physical address.
* Otherwise, it tags the fact that the executing processor has
an outstanding tagged physical address.
:param Armv7Operand dest: the destination register; register
:param Armv7Operand src: the source operand: register |
10,963 | def _create_field_vectors(self):
field_vectors = {}
term_idf_cache = {}
for field_ref, term_frequencies in self.field_term_frequencies.items():
_field_ref = FieldRef.from_string(field_ref)
field_name = _field_ref.field_name
field_length = self.field_lengths[field_ref]
field_vector = Vector()
field_boost = self._fields[field_name].boost
doc_boost = self._documents[_field_ref.doc_ref].get("boost", 1)
for term, tf in term_frequencies.items():
term_index = self.inverted_index[term]["_index"]
if term not in term_idf_cache:
idf = Idf(self.inverted_index[term], self.document_count)
term_idf_cache[term] = idf
else:
idf = term_idf_cache[term]
score = (
idf
* ((self._k1 + 1) * tf)
/ (
self._k1
* (
1
- self._b
+ self._b
* (field_length / self.average_field_length[field_name])
)
+ tf
)
)
score *= field_boost
score *= doc_boost
score_with_precision = round(score, 3)
field_vector.insert(term_index, score_with_precision)
field_vectors[field_ref] = field_vector
self.field_vectors = field_vectors | Builds a vector space model of every document using lunr.Vector. |
10,964 | def p_systemcall_signed(self, p):
p[0] = SystemCall(p[2], p[4], lineno=p.lineno(1))
p.set_lineno(0, p.lineno(1)) | systemcall : DOLLER SIGNED LPAREN sysargs RPAREN |
10,965 | def setup_conf(conf_globals):
project_path = abspath(join(dirname(conf_globals["__file__"]), ".."))
chdir(project_path)
sys.path.insert(0, project_path)
authors_file = "AUTHORS"
version = None
author = None
setup = "setup.py"
setup_path = join(project_path, setup)
ignore = (setup,)
if exists(setup_path):
try:
import setuptools
except ImportError:
pass
else:
version = get_setup_attribute("version", setup_path)
if version == "0.0.0":
version = None
author = get_setup_attribute("author", setup_path)
if author == "UNKNOWN":
author = None
for name in listdir(project_path):
path = join(project_path, name)
if name.upper() == authors_file:
with open(path, "r") as f:
for line in f.readlines():
line = line.strip("*- \n\r\t")
if line:
author = decode_utf8(line)
break
elif name not in ignore and (isdir(path) or splitext(name)[1] == ".py"):
try:
module = __import__(name)
except (ImportError, ValueError):
continue
if not version:
version = get_version(module)
if version and not author:
try:
author = decode_utf8(getattr(module, "__author__"))
except AttributeError:
pass
settings = {
"version": version,
"release": version,
"project": project_path.rstrip(sep).split(sep)[-1],
"master_doc": "index",
"copyright": "%s, %s" % (datetime.now().year, author),
}
pad = max([len(k) for k in settings.keys()]) + 3
print()
print("sphinx-me using the following values:")
print()
print("\n".join([(k + ":").ljust(pad) + v for k, v in settings.items()]))
print()
conf_globals.update(settings) | Setup function that is called from within the project's
docs/conf.py module that takes the conf module's globals() and
assigns the values that can be automatically determined from the
current project, such as project name, package name, version and
author. |
10,966 | def lookup_rdap(self, hr=True, show_name=False, colorize=True, **kwargs):
ret = self.obj.lookup_rdap(**kwargs)
if script_args.json:
output = json.dumps(ret)
else:
output = self.generate_output_header(query_type=)
output += self.generate_output_asn(
json_data=ret, hr=hr, show_name=show_name, colorize=colorize
)
output += self.generate_output_newline(colorize=colorize)
output += self.generate_output_entities(
json_data=ret, hr=hr, show_name=show_name, colorize=colorize
)
output += self.generate_output_newline(colorize=colorize)
output += self.generate_output_network(
json_data=ret, hr=hr, show_name=show_name, colorize=colorize
)
output += self.generate_output_newline(colorize=colorize)
output += self.generate_output_objects(
json_data=ret, hr=hr, show_name=show_name, colorize=colorize
)
output += self.generate_output_newline(colorize=colorize)
if in ret:
output += self.generate_output_nir(
json_data=ret, hr=hr, show_name=show_name,
colorize=colorize
)
output += self.generate_output_newline(colorize=colorize)
return output | The function for wrapping IPWhois.lookup_rdap() and generating
formatted CLI output.
Args:
hr (:obj:`bool`): Enable human readable key translations. Defaults
to True.
show_name (:obj:`bool`): Show human readable name (default is to
only show short). Defaults to False.
colorize (:obj:`bool`): Colorize the console output with ANSI
colors. Defaults to True.
kwargs: Arguments to pass to IPWhois.lookup_rdap().
Returns:
str: The generated output. |
10,967 | def update(self):
stats = self.get_init_value()
if self.input_method == :
stats[] = platform.system()
stats[] = platform.node()
stats[] = platform.architecture()[0]
if stats[] == "Linux":
try:
linux_distro = platform.linux_distribution()
except AttributeError:
stats[] = _linux_os_release()
else:
if linux_distro[0] == :
stats[] = _linux_os_release()
else:
stats[] = .join(linux_distro[:2])
stats[] = platform.release()
elif (stats[].endswith() or
stats[] == ):
stats[] = platform.release()
elif stats[] == "Darwin":
stats[] = platform.mac_ver()[0]
elif stats[] == "Windows":
os_version = platform.win32_ver()
stats[] = .join(os_version[::2])
if stats[] == and in os.environ:
stats[] =
else:
stats[] = ""
if stats[] == "Linux":
stats[] = stats[]
else:
stats[] = .format(
stats[], stats[])
stats[] += .format(stats[])
elif self.input_method == :
try:
stats = self.get_stats_snmp(
snmp_oid=snmp_oid[self.short_system_name])
except KeyError:
stats = self.get_stats_snmp(snmp_oid=snmp_oid[])
stats[] = stats[]
if self.short_system_name == :
for r, v in iteritems(snmp_to_human[]):
if re.search(r, stats[]):
stats[] = v
break
stats[] = stats[]
self.stats = stats
return self.stats | Update the host/system info using the input method.
Return the stats (dict) |
10,968 | def to_bytesize(value, default_unit=None, base=DEFAULT_BASE):
if isinstance(value, (int, float)):
return unitized(value, default_unit, base)
if value is None:
return None
try:
if value[-1].lower() == "b":
value = value[:-1]
unit = value[-1:].lower()
if unit.isdigit():
unit = default_unit
else:
value = value[:-1]
return unitized(to_number(float, value), unit, base)
except (IndexError, TypeError, ValueError):
return None | Convert `value` to bytes, accepts notations such as "4k" to mean 4096 bytes
Args:
value (str | unicode | int | None): Number of bytes optionally suffixed by a char from UNITS
default_unit (str | unicode | None): Default unit to use for unqualified values
base (int): Base to use (usually 1024)
Returns:
(int | None): Deduced bytesize value, if possible |
10,969 | def _to_dict(self):
_dict = {}
if hasattr(self, ) and self.available is not None:
_dict[] = self.available
if hasattr(self, ) and self.processing is not None:
_dict[] = self.processing
if hasattr(self, ) and self.failed is not None:
_dict[] = self.failed
if hasattr(self, ) and self.pending is not None:
_dict[] = self.pending
return _dict | Return a json dictionary representing this model. |
10,970 | def dist_eudex(src, tar, weights=, max_length=8):
return Eudex().dist(src, tar, weights, max_length) | Return normalized Hamming distance between Eudex hashes of two terms.
This is a wrapper for :py:meth:`Eudex.dist`.
Parameters
----------
src : str
Source string for comparison
tar : str
Target string for comparison
weights : str, iterable, or generator function
The weights or weights generator function
max_length : int
The number of characters to encode as a eudex hash
Returns
-------
int
The normalized Eudex Hamming distance
Examples
--------
>>> round(dist_eudex('cat', 'hat'), 12)
0.062745098039
>>> round(dist_eudex('Niall', 'Neil'), 12)
0.000980392157
>>> round(dist_eudex('Colin', 'Cuilen'), 12)
0.004901960784
>>> round(dist_eudex('ATCG', 'TAGC'), 12)
0.197549019608 |
10,971 | def loadfile(args):
mestate.console.write("Loading %s...\n" % args)
t0 = time.time()
mlog = mavutil.mavlink_connection(args, notimestamps=False,
zero_time_base=False,
progress_callback=progress_bar)
mestate.filename = args
mestate.mlog = mlog
mestate.status.msgs = mlog.messages
t1 = time.time()
mestate.console.write("\ndone (%u messages in %.1fs)\n" % (mestate.mlog._count, t1-t0))
global flightmodes
flightmodes = mlog.flightmode_list()
load_graphs()
setup_menus() | load a log file (path given by arg) |
10,972 | def fastcc_consistent_subset(model, epsilon, solver):
reaction_set = set(model.reactions)
return reaction_set.difference(fastcc(model, epsilon, solver)) | Return consistent subset of model.
The largest consistent subset is returned as
a set of reaction names.
Args:
model: :class:`MetabolicModel` to solve.
epsilon: Flux threshold value.
solver: LP solver instance to use.
Returns:
Set of reaction IDs in the consistent reaction subset. |
10,973 | def update(self):
con = self.subpars.pars.control
self(con.tt+con.dttm) | Update |TTM| based on :math:`TTM = TT+DTTM`.
>>> from hydpy.models.hland import *
>>> parameterstep('1d')
>>> nmbzones(1)
>>> zonetype(FIELD)
>>> tt(1.0)
>>> dttm(-2.0)
>>> derived.ttm.update()
>>> derived.ttm
ttm(-1.0) |
10,974 | def sync(self):
self.log.info()
def log_success(result):
self.log.info()
return result
def log_failure(failure):
self.log.failure(, failure, LogLevel.error)
return failure
return (self.marathon_client.get_apps()
.addCallback(self._apps_acme_domains)
.addCallback(self._filter_new_domains)
.addCallback(self._issue_certs)
.addCallbacks(log_success, log_failure)) | Fetch the list of apps from Marathon, find the domains that require
certificates, and issue certificates for any domains that don't already
have a certificate. |
10,975 | def _from_any_pb(pb_type, any_pb):
msg = pb_type()
if not any_pb.Unpack(msg):
raise TypeError(
"Could not convert {} to {}".format(
any_pb.__class__.__name__, pb_type.__name__
)
)
return msg | Converts an Any protobuf to the specified message type
Args:
pb_type (type): the type of the message that any_pb stores an instance
of.
any_pb (google.protobuf.any_pb2.Any): the object to be converted.
Returns:
pb_type: An instance of the pb_type message.
Raises:
TypeError: if the message could not be converted. |
10,976 | def replace_all(expression: Expression, rules: Iterable[ReplacementRule], max_count: int=math.inf) \
-> Union[Expression, Sequence[Expression]]:
rules = [ReplacementRule(pattern, replacement) for pattern, replacement in rules]
expression = expression
replaced = True
replace_count = 0
while replaced and replace_count < max_count:
replaced = False
for subexpr, pos in preorder_iter_with_position(expression):
for pattern, replacement in rules:
try:
subst = next(match(subexpr, pattern))
result = replacement(**subst)
expression = replace(expression, pos, result)
replaced = True
break
except StopIteration:
pass
if replaced:
break
replace_count += 1
return expression | Replace all occurrences of the patterns according to the replacement rules.
A replacement rule consists of a *pattern*, that is matched against any subexpression
of the expression. If a match is found, the *replacement* callback of the rule is called with
the variables from the match substitution. Whatever the callback returns is used as a replacement for the
matched subexpression. This can either be a single expression or a sequence of expressions, which is then
integrated into the surrounding operation in place of the subexpression.
Note that the pattern can therefore not be a single sequence variable/wildcard, because only single expressions
will be matched.
Args:
expression:
The expression to which the replacement rules are applied.
rules:
A collection of replacement rules that are applied to the expression.
max_count:
If given, at most *max_count* applications of the rules are performed. Otherwise, the rules
are applied until there is no more match. If the set of replacement rules is not confluent,
the replacement might not terminate without a *max_count* set.
Returns:
The resulting expression after the application of the replacement rules. This can also be a sequence of
expressions, if the root expression is replaced with a sequence of expressions by a rule. |
10,977 | def _get_py_dictionary(self, var, names=None, used___dict__=False):
filter_private = False
filter_special = True
filter_function = True
filter_builtin = True
if not names:
names, used___dict__ = self.get_names(var)
d = {}
if filter_builtin or filter_function:
for name in names:
try:
name_as_str = name
if name_as_str.__class__ != str:
name_as_str = % (name_as_str,)
if filter_special:
if name_as_str.startswith() and name_as_str.endswith():
continue
if filter_private:
if name_as_str.startswith() or name_as_str.endswith():
continue
if not used___dict__:
attr = getattr(var, name)
else:
attr = var.__dict__[name]
if filter_builtin:
if inspect.isbuiltin(attr):
continue
if filter_function:
if inspect.isroutine(attr) or isinstance(attr, MethodWrapperType):
continue
except:
strIO = StringIO.StringIO()
traceback.print_exc(file=strIO)
attr = strIO.getvalue()
d[name_as_str] = attr
return d, used___dict__ | :return tuple(names, used___dict__), where used___dict__ means we have to access
using obj.__dict__[name] instead of getattr(obj, name) |
10,978 | def batch_to_ids(batch: List[List[str]]) -> torch.Tensor:
instances = []
indexer = ELMoTokenCharactersIndexer()
for sentence in batch:
tokens = [Token(token) for token in sentence]
field = TextField(tokens,
{: indexer})
instance = Instance({"elmo": field})
instances.append(instance)
dataset = Batch(instances)
vocab = Vocabulary()
dataset.index_instances(vocab)
return dataset.as_tensor_dict()[][] | Converts a batch of tokenized sentences to a tensor representing the sentences with encoded characters
(len(batch), max sentence length, max word length).
Parameters
----------
batch : ``List[List[str]]``, required
A list of tokenized sentences.
Returns
-------
A tensor of padded character ids. |
10,979 | def show_tree(model=None):
if model is None:
model = mx.cur_model()
view = get_modeltree(model)
app = QApplication.instance()
if not app:
raise RuntimeError("QApplication does not exist.")
view.show()
app.exec_() | Display the model tree window.
Args:
model: :class:`Model <modelx.core.model.Model>` object.
Defaults to the current model.
Warnings:
For this function to work with Spyder, *Graphics backend* option
of Spyder must be set to *inline*. |
10,980 | def parse_phones(self):
phones = []
for i in self.phone_intervals:
start = float(i[i.index()+7:
i.index()+12].strip().strip())
end = float(i[i.index()+7:
i.index()+12].strip().strip())
phone = i[i.index()+1:i.index("$")]
phones.append(Phone(phone, start, end))
return phones | Parse TextGrid phone intervals.
This method parses the phone intervals in a TextGrid to extract each
phone and each phone's start and end times in the audio recording. For
each phone, it instantiates the class Phone(), with the phone and its
start and end times as attributes of that class instance. |
10,981 | def resize(self, width: int, height: int):
self.width = width // self.widget.devicePixelRatio()
self.height = height // self.widget.devicePixelRatio()
self.buffer_width = width
self.buffer_height = height
if self.ctx:
self.set_default_viewport()
super().resize(self.buffer_width, self.buffer_height) | Replacement for Qt's resizeGL method. |
10,982 | def get_url(access_token, endpoint=ams_rest_endpoint, flag=True):
return do_ams_get_url(endpoint, access_token, flag) | Get Media Services Final Endpoint URL.
Args:
access_token (str): A valid Azure authentication token.
endpoint (str): Azure Media Services Initial Endpoint.
flag (bol): flag.
Returns:
HTTP response. JSON body. |
10,983 | def CA_code_header(fname_out, Nca):
dir_path = os.path.dirname(os.path.realpath(__file__))
ca = loadtxt(dir_path + , dtype=int16, usecols=(Nca - 1,), unpack=True)
M = 1023
N = 23
Sca = + str(Nca)
f = open(fname_out, )
f.write()
f.write()
f.write()
f.write( % M)
f.write()
f.write();
f.write( \
% Nca);
f.write( % Nca)
kk = 0;
for k in range(M):
if (kk < N - 1) and (k < M - 1):
f.write( % ca[k])
kk += 1
elif (kk == N - 1) & (k < M - 1):
f.write( % ca[k])
if k < M:
if Nca < 10:
f.write()
else:
f.write()
kk = 0
else:
f.write( % ca[k])
f.write()
f.write()
f.close() | Write 1023 bit CA (Gold) Code Header Files
Mark Wickert February 2015 |
10,984 | def environment_as(**kwargs):
new_environment = kwargs
old_environment = {}
def setenv(key, val):
if val is not None:
os.environ[key] = val if PY3 else _os_encode(val)
else:
if key in os.environ:
del os.environ[key]
for key, val in new_environment.items():
old_environment[key] = os.environ.get(key)
setenv(key, val)
try:
yield
finally:
for key, val in old_environment.items():
setenv(key, val) | Update the environment to the supplied values, for example:
with environment_as(PYTHONPATH='foo:bar:baz',
PYTHON='/usr/bin/python2.7'):
subprocess.Popen(foo).wait() |
10,985 | def shout(self, group, msg_p):
return lib.zyre_shout(self._as_parameter_, group, byref(czmq.zmsg_p.from_param(msg_p))) | Send message to a named group
Destroys message after sending |
10,986 | def action(callback=None, name=None, path=None, methods=Method.GET, resource=None, tags=None,
summary=None, middleware=None):
path = path or
if name:
path += name
def inner(c):
return Operation(c, path, methods, resource, tags, summary, middleware)
return inner(callback) if callback else inner | Decorator to apply an action to a resource. An action is applied to a `detail` operation. |
10,987 | def fully_correlated_conditional(Kmn, Kmm, Knn, f, *, full_cov=False, full_output_cov=False, q_sqrt=None, white=False):
m, v = fully_correlated_conditional_repeat(Kmn, Kmm, Knn, f, full_cov=full_cov,
full_output_cov=full_output_cov, q_sqrt=q_sqrt, white=white)
return m[0, ...], v[0, ...] | This function handles conditioning of multi-output GPs in the case where the conditioning
points are all fully correlated, in both the prior and posterior.
:param Kmn: LM x N x P
:param Kmm: LM x LM
:param Knn: N x P or N x P x N x P
:param f: data matrix, LM x 1
:param q_sqrt: 1 x LM x LM or 1 x ML
:param full_cov: calculate covariance between inputs
:param full_output_cov: calculate covariance between outputs
:param white: use whitened representation
:return:
- mean: N x P
- variance: N x P, N x P x P, P x N x N, N x P x N x P |
10,988 | def encode_basestring(s):
if isinstance(s, str) and HAS_UTF8.search(s) is not None:
s = s.decode()
def replace(match):
return ESCAPE_DCT[match.group(0)]
return u + ESCAPE.sub(replace, s) + u | Return a JSON representation of a Python string |
10,989 | def _construct_axes_dict(self, axes=None, **kwargs):
d = {a: self._get_axis(a) for a in (axes or self._AXIS_ORDERS)}
d.update(kwargs)
return d | Return an axes dictionary for myself. |
10,990 | def recipe_weinreb17(adata, log=True, mean_threshold=0.01, cv_threshold=2,
n_pcs=50, svd_solver=, random_state=0,
copy=False):
from scipy.sparse import issparse
if issparse(adata.X):
raise ValueError()
if copy: adata = adata.copy()
if log: pp.log1p(adata)
adata.X = pp.normalize_per_cell_weinreb16_deprecated(adata.X,
max_fraction=0.05,
mult_with_mean=True)
gene_subset = filter_genes_cv_deprecated(adata.X, mean_threshold, cv_threshold)
adata._inplace_subset_var(gene_subset)
X_pca = pp.pca(pp.zscore_deprecated(adata.X),
n_comps=n_pcs, svd_solver=svd_solver, random_state=random_state)
adata.obsm[] = X_pca
return adata if copy else None | Normalization and filtering as of [Weinreb17]_.
Expects non-logarithmized data. If using logarithmized data, pass `log=False`.
Parameters
----------
adata : :class:`~anndata.AnnData`
Annotated data matrix.
copy : bool (default: False)
Return a copy if true. |
10,991 | def create_mssql_pymssql(username, password, host, port, database, **kwargs):
return create_engine(
_create_mssql_pymssql(username, password, host, port, database),
**kwargs
) | create an engine connected to a mssql database using pymssql. |
10,992 | def _init_read_gz(self):
self.cmp = self.zlib.decompressobj(-self.zlib.MAX_WBITS)
self.dbuf = b""
if self.__read(2) != b"\037\213":
raise ReadError("not a gzip file")
if self.__read(1) != b"\010":
raise CompressionError("unsupported compression method")
flag = ord(self.__read(1))
self.__read(6)
if flag & 4:
xlen = ord(self.__read(1)) + 256 * ord(self.__read(1))
self.read(xlen)
if flag & 8:
while True:
s = self.__read(1)
if not s or s == NUL:
break
if flag & 16:
while True:
s = self.__read(1)
if not s or s == NUL:
break
if flag & 2:
self.__read(2) | Initialize for reading a gzip compressed fileobj. |
10,993 | def save_parameters(path, params=None):
_, ext = os.path.splitext(path)
params = get_parameters(grad_only=False) if params is None else params
if ext == :
import warnings
warnings.simplefilter(, category=FutureWarning)
import h5py
with h5py.File(path, ) as hd:
for i, (k, v) in enumerate(iteritems(params)):
hd[k] = v.d
hd[k].attrs[] = v.need_grad
hd[k].attrs[] = i
elif ext == :
proto = nnabla_pb2.NNablaProtoBuf()
for variable_name, variable in params.items():
parameter = proto.parameter.add()
parameter.variable_name = variable_name
parameter.shape.dim.extend(variable.shape)
parameter.data.extend(numpy.array(variable.d).flatten().tolist())
parameter.need_grad = variable.need_grad
with open(path, "wb") as f:
f.write(proto.SerializeToString())
else:
logger.critical()
assert False
logger.info("Parameter save ({}): {}".format(ext, path)) | Save all parameters into a file with the specified format.
Currently hdf5 and protobuf formats are supported.
Args:
path : path or file object
params (dict, optional): Parameters to be saved. Dictionary is of a parameter name (:obj:`str`) to :obj:`~nnabla.Variable`. |
10,994 | def approxSimilarityJoin(self, datasetA, datasetB, threshold, distCol="distCol"):
threshold = TypeConverters.toFloat(threshold)
return self._call_java("approxSimilarityJoin", datasetA, datasetB, threshold, distCol) | Join two datasets to approximately find all pairs of rows whose distance are smaller than
the threshold. If the :py:attr:`outputCol` is missing, the method will transform the data;
if the :py:attr:`outputCol` exists, it will use that. This allows caching of the
transformed data when necessary.
:param datasetA: One of the datasets to join.
:param datasetB: Another dataset to join.
:param threshold: The threshold for the distance of row pairs.
:param distCol: Output column for storing the distance between each pair of rows. Use
"distCol" as default value if it's not specified.
:return: A joined dataset containing pairs of rows. The original rows are in columns
"datasetA" and "datasetB", and a column "distCol" is added to show the distance
between each pair. |
10,995 | def reboot(name, **kwargs):
*
conn = __get_conn(**kwargs)
ret = _get_domain(conn, name).reboot(libvirt.VIR_DOMAIN_REBOOT_DEFAULT) == 0
conn.close()
return ret | Reboot a domain via ACPI request
:param vm_: domain name
:param connection: libvirt connection URI, overriding defaults
.. versionadded:: 2019.2.0
:param username: username to connect with, overriding defaults
.. versionadded:: 2019.2.0
:param password: password to connect with, overriding defaults
.. versionadded:: 2019.2.0
CLI Example:
.. code-block:: bash
salt '*' virt.reboot <domain> |
10,996 | def setup(name, path=, enable_debug=False):
path_tmpl = os.path.join(path, )
info = path_tmpl.format(name=name, level=)
warn = path_tmpl.format(name=name, level=)
err = path_tmpl.format(name=name, level=)
crit = path_tmpl.format(name=name, level=)
setup = [
NullHandler(),
TimedRotatingFileHandler(info, level=, encoding=,
date_format=),
TimedRotatingFileHandler(warn, level=, encoding=,
date_format=),
TimedRotatingFileHandler(err, level=, encoding=,
date_format=),
TimedRotatingFileHandler(crit, level=, encoding=,
date_format=),
]
if enable_debug:
debug = path_tmpl.format(name=name, level=)
setup.insert(1, TimedRotatingFileHandler(debug, level=,
encoding=, date_format=))
if src_server is not None and smtp_server is not None \
and smtp_port != 0 and len(dest_mails) != 0:
mail_tmpl =
from_mail = mail_tmpl.format(name=name, src=src_server)
subject = .format(name)
setup.append(MailHandler(from_mail, dest_mails, subject,
level=, bubble=True,
server_addr=(smtp_server, smtp_port)))
return NestedSetup(setup) | Prepare a NestedSetup.
:param name: the channel name
:param path: the path where the logs will be written
:param enable_debug: do we want to save the message at the DEBUG level
:return a nested Setup |
10,997 | def get(self, request, bot_id, id, format=None):
return super(KikBotDetail, self).get(request, bot_id, id, format) | Get KikBot by id
---
serializer: KikBotSerializer
responseMessages:
- code: 401
message: Not authenticated |
10,998 | def extract_python_dict_from_x509(x509):
result = {
"subject": (
(("commonName", x509.get_subject().commonName),),
)
}
for ext_idx in range(x509.get_extension_count()):
ext = x509.get_extension(ext_idx)
sn = ext.get_short_name()
if sn != b"subjectAltName":
continue
data = pyasn1.codec.der.decoder.decode(
ext.get_data(),
asn1Spec=pyasn1_modules.rfc2459.SubjectAltName())[0]
for name in data:
dNSName = name.getComponentByPosition(2)
if dNSName is None:
continue
if hasattr(dNSName, "isValue") and not dNSName.isValue:
continue
result.setdefault("subjectAltName", []).append(
("DNS", str(dNSName))
)
return result | Extract a python dictionary similar to the return value of
:meth:`ssl.SSLSocket.getpeercert` from the given
:class:`OpenSSL.crypto.X509` `x509` object.
Note that by far not all attributes are included; only those required to
use :func:`ssl.match_hostname` are extracted and put in the result.
In the future, more attributes may be added. |
10,999 | def ax(self):
if not hasattr(self, "_ax") or self._ax is None:
self._ax = plt.gca()
return self._ax | The matplotlib axes that the visualizer draws upon (can also be a grid
of multiple axes objects). The visualizer automatically creates an
axes for the user if one has not been specified. |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.