Unnamed: 0
int64
0
389k
code
stringlengths
26
79.6k
docstring
stringlengths
1
46.9k
11,100
def block_html(self, html): if self.options.get() and \ html.lower().startswith(): return if self.options.get(): return escape(html) return html
Rendering block level pure html content. :param html: text content of the html snippet.
11,101
def run_single_with_display(wf, display): S = Scheduler(error_handler=display.error_handler) W = Queue() \ >> branch(log_job_start.to(sink_map(display))) \ >> worker \ >> branch(sink_map(display)) return S.run(W, get_workflow(wf))
Adds a display to the single runner. Everything still runs in a single thread. Every time a job is pulled by the worker, a message goes to the display routine; when the job is finished the result is sent to the display routine.
11,102
def uncrop(data, crinfo, orig_shape, resize=False, outside_mode="constant", cval=0): if crinfo is None: crinfo = list(zip([0] * data.ndim, orig_shape)) elif np.asarray(crinfo).size == data.ndim: crinfo = list(zip(crinfo, np.asarray(crinfo) + data.shape)) crinfo = fix_crinfo(crinfo) data_out = np.ones(orig_shape, dtype=data.dtype) * cval if resize: data = resize_to_shape(data, crinfo[:, 1] - crinfo[:, 0]) startx = np.round(crinfo[0][0]).astype(int) starty = np.round(crinfo[1][0]).astype(int) startz = np.round(crinfo[2][0]).astype(int) data_out[ startx : startx + data.shape[0], starty : starty + data.shape[1], startz : startz + data.shape[2], ] = data if outside_mode == "nearest": for ax in range(data.ndim): start = np.round(crinfo[ax][0]).astype(int) slices = [slice(None), slice(None), slice(None)] slices[ax] = start repeated_slice = np.expand_dims(data_out[slices], ax) append_sz = start if append_sz > 0: tile0 = np.repeat(repeated_slice, append_sz, axis=ax) slices = [slice(None), slice(None), slice(None)] slices[ax] = slice(None, start) data_out[slices] = tile0 start = np.round(crinfo[ax][0]).astype(int) slices = [slice(None), slice(None), slice(None)] slices[ax] = start + data.shape[ax] - 1 repeated_slice = np.expand_dims(data_out[slices], ax) append_sz = data_out.shape[ax] - (start + data.shape[ax]) if append_sz > 0: tile0 = np.repeat(repeated_slice, append_sz, axis=ax) slices = [slice(None), slice(None), slice(None)] slices[ax] = slice(start + data.shape[ax], None) data_out[slices] = tile0 return data_out
Put some boundary to input image. :param data: input data :param crinfo: array with minimum and maximum index along each axis [[minX, maxX],[minY, maxY],[minZ, maxZ]]. If crinfo is None, the whole input image is placed into [0, 0, 0]. If crinfo is just series of three numbers, it is used as an initial point for input image placement. :param orig_shape: shape of uncropped image :param resize: True or False (default). Usefull if the data.shape does not fit to crinfo shape. :param outside_mode: 'constant', 'nearest' :return:
11,103
def create_regular_expression(self, regexp): for parameter in self.situation_context.situation_parameters: if parameter.type == : return self.add_parameter_value( , **{: parameter.href, : regexp}) raise CreateElementFailed( )
Create a regular expression for this inspection situation context. The inspection situation must be using an inspection context that supports regex. :param str regexp: regular expression string :raises CreateElementFailed: failed to modify the situation
11,104
def getfqdn(name=): name = name.strip() if not name or name == : name = gethostname() try: hostname, aliases, ipaddrs = gethostbyaddr(name) except error: pass else: aliases.insert(0, hostname) for name in aliases: if in name: break else: name = hostname return name
Get fully qualified domain name from name. An empty argument is interpreted as meaning the local host. First the hostname returned by gethostbyaddr() is checked, then possibly existing aliases. In case no FQDN is available, hostname from gethostname() is returned.
11,105
def object(self, o_type, o_name=None): o_found = self._get_object(o_type=o_type, o_name=o_name) if not o_found: return {: u, : u % o_type} return o_found
Get an object from the scheduler. The result is a serialized object which is a Json structure containing: - content: the serialized object content - __sys_python_module__: the python class of the returned object The Alignak unserialize function of the alignak.misc.serialization package allows to restore the initial object. .. code-block:: python from alignak.misc.serialization import unserialize from alignak.objects.hostgroup import Hostgroup raw_data = req.get("http://127.0.0.1:7768/object/hostgroup/allhosts") print("Got: %s / %s" % (raw_data.status_code, raw_data.content)) assert raw_data.status_code == 200 object = raw_data.json() group = unserialize(object, True) assert group.__class__ == Hostgroup assert group.get_name() == 'allhosts' As an example: { "__sys_python_module__": "alignak.objects.hostgroup.Hostgroup", "content": { "uuid": "32248642-97dd-4f39-aaa2-5120112a765d", "name": "", "hostgroup_name": "allhosts", "use": [], "tags": [], "alias": "All Hosts", "notes": "", "definition_order": 100, "register": true, "unknown_members": [], "notes_url": "", "action_url": "", "imported_from": "unknown", "conf_is_correct": true, "configuration_errors": [], "configuration_warnings": [], "realm": "", "downtimes": {}, "hostgroup_members": [], "members": [ "553d47bc-27aa-426c-a664-49c4c0c4a249", "f88093ca-e61b-43ff-a41e-613f7ad2cea2", "df1e2e13-552d-43de-ad2a-fe80ad4ba979", "d3d667dd-f583-4668-9f44-22ef3dcb53ad" ] } } :param o_type: searched object type :type o_type: str :param o_name: searched object name (or uuid) :type o_name: str :return: serialized object information :rtype: str
11,106
def add_mod(self, seq, mod): modstr = self.value(mod) if modstr == : seq.parser_tree = parsing.Complement(seq.parser_tree) elif modstr == : seq.parser_tree = parsing.LookAhead(seq.parser_tree) elif modstr == : seq.parser_tree = parsing.Neg(seq.parser_tree) elif modstr == : seq.parser_tree = parsing.Until(seq.parser_tree) return True
Create a tree.{Complement, LookAhead, Neg, Until}
11,107
def _setup_metric_group_values(self): mg_defs = self._metrics_context.metric_group_definitions metric_group_name = None resource_uri = None dt_timestamp = None object_values = None metric_group_values = list() state = 0 for mr_line in self._metrics_response_str.splitlines(): if state == 0: if object_values is not None: mgv = MetricGroupValues(metric_group_name, object_values) metric_group_values.append(mgv) object_values = None if mr_line == : pass else: metric_group_name = mr_line.strip() assert metric_group_name in mg_defs m_defs = mg_defs[metric_group_name].metric_definitions object_values = list() state = 1 elif state == 1: if mr_line == : state = 0 else: resource_uri = mr_line.strip() state = 2 elif state == 2: assert mr_line != try: dt_timestamp = datetime_from_timestamp(int(mr_line)) except ValueError: dt_timestamp = datetime.now(pytz.utc) state = 3 elif state == 3: if mr_line != : str_values = mr_line.split() metrics = dict() for m_name in m_defs: m_def = m_defs[m_name] m_type = m_def.type m_value_str = str_values[m_def.index] m_value = _metric_value(m_value_str, m_type) metrics[m_name] = m_value ov = MetricObjectValues( self._client, mg_defs[metric_group_name], resource_uri, dt_timestamp, metrics) object_values.append(ov) else: state = 1 return metric_group_values
Return the list of MetricGroupValues objects for this metrics response, by processing its metrics response string. The lines in the metrics response string are:: MetricsResponse: MetricsGroup{0,*} <emptyline> a third empty line at the end MetricsGroup: MetricsGroupName ObjectValues{0,*} <emptyline> a second empty line after each MG ObjectValues: ObjectURI Timestamp ValueRow{1,*} <emptyline> a first empty line after this blk
11,108
def project_from_files( files, func_wrapper=_astroid_wrapper, project_name="no name", black_list=("CVS",) ): astroid_manager = manager.AstroidManager() project = Project(project_name) for something in files: if not os.path.exists(something): fpath = modutils.file_from_modpath(something.split(".")) elif os.path.isdir(something): fpath = os.path.join(something, "__init__.py") else: fpath = something ast = func_wrapper(astroid_manager.ast_from_file, fpath) if ast is None: continue project.path = project.path or ast.file project.add_module(ast) base_name = ast.name if ast.package and something.find("__init__") == -1: for fpath in modutils.get_module_files( os.path.dirname(ast.file), black_list ): ast = func_wrapper(astroid_manager.ast_from_file, fpath) if ast is None or ast.name == base_name: continue project.add_module(ast) return project
return a Project from a list of files or modules
11,109
def upload_file_handle( self, bucket: str, key: str, src_file_handle: typing.BinaryIO, content_type: str=None, metadata: dict=None): raise NotImplementedError()
Saves the contents of a file handle as the contents of an object in a bucket.
11,110
def uninstall(self, package): if isinstance(package, tuple): package = .join(package) if not self.is_installed(package): self._write_to_log( % package) return try: self._execute_pip([, , package]) except subprocess.CalledProcessError as e: raise PackageRemovalException((e.returncode, e.output, package))
Uninstalls the given package (given in pip's package syntax or a tuple of ('name', 'ver')) from this virtual environment.
11,111
def delete(args): m = TemplateManager(args.hosts) m.delete(args.name)
Delete a template by name
11,112
def _scatter_obs( adata, x=None, y=None, color=None, use_raw=None, layers=, sort_order=True, alpha=None, basis=None, groups=None, components=None, projection=, legend_loc=, legend_fontsize=None, legend_fontweight=None, color_map=None, palette=None, frameon=None, right_margin=None, left_margin=None, size=None, title=None, show=None, save=None, ax=None): sanitize_anndata(adata) from scipy.sparse import issparse if use_raw is None and adata.raw is not None: use_raw = True if layers is None: layers = if isinstance(layers, str) and (layers == or layers in adata.layers.keys()): layers = (layers, layers, layers) elif isinstance(layers, (tuple, list)) and len(layers) == 3: for layer in layers: if layer not in adata.layers.keys() and layer != : raise ValueError( X\) else: raise ValueError() if use_raw and (layers != (, , ) or layers != [, , ]): ValueError(X\) if legend_loc not in VALID_LEGENDLOCS: raise ValueError( .format(VALID_LEGENDLOCS)) if components is None: components = if in projection else if isinstance(components, str): components = components.split() components = np.array(components).astype(int) - 1 keys = [] if color is None else [color] if isinstance(color, str) else color if title is not None and isinstance(title, str): title = [title] highlights = adata.uns[] if in adata.uns else [] if basis is not None: try: if basis == : components += 1 Y = adata.obsm[ + basis][:, components] if basis == : components -= 1 except KeyError: raise KeyError( .format(basis)) elif x is not None and y is not None: x_arr = adata._get_obs_array(x, use_raw=use_raw, layer=layers[0]) y_arr = adata._get_obs_array(y, use_raw=use_raw, layer=layers[1]) x_arr = x_arr.toarray().flatten() if issparse(x_arr) else x_arr y_arr = y_arr.toarray().flatten() if issparse(y_arr) else y_arr Y = np.c_[x_arr[:, None], y_arr[:, None]] else: raise ValueError() if size is None: n = Y.shape[0] size = 120000 / n if legend_loc.startswith() and legend_fontsize is None: legend_fontsize = rcParams[] elif legend_fontsize is None: legend_fontsize = rcParams[] palette_was_none = False if palette is None: palette_was_none = True if isinstance(palette, list): if not is_color_like(palette[0]): palettes = palette else: palettes = [palette] else: palettes = [palette for i in range(len(keys))] for i, palette in enumerate(palettes): palettes[i] = utils.default_palette(palette) if basis is not None: component_name = ( if basis == else if basis == else if basis == else if basis == else basis.replace(, ).upper() if in basis else basis) else: component_name = None axis_labels = (x, y) if component_name is None else None show_ticks = True if component_name is None else False color_ids = [] categoricals = [] colorbars = [] for ikey, key in enumerate(keys): c = categorical = False colorbar = None if key in adata.obs_keys(): if is_categorical_dtype(adata.obs[key]): categorical = True else: c = adata.obs[key] elif (use_raw and adata.raw is not None and key in adata.raw.var_names): c = adata.raw[:, key].X elif key in adata.var_names: c = adata[:, key].X if layers[2] == else adata[:, key].layers[layers[2]] c = c.toarray().flatten() if issparse(c) else c elif is_color_like(key): c = key colorbar = False else: raise ValueError( {}\ .format(key, adata.obs_keys(), adata.var_names)) if colorbar is None: colorbar = not categorical colorbars.append(colorbar) if categorical: categoricals.append(ikey) color_ids.append(c) if right_margin is None and len(categoricals) > 0: if legend_loc == : right_margin = 0.5 if title is None and keys[0] is not None: title = [key.replace(, ) if not is_color_like(key) else for key in keys] axs = scatter_base(Y, title=title, alpha=alpha, component_name=component_name, axis_labels=axis_labels, component_indexnames=components + 1, projection=projection, colors=color_ids, highlights=highlights, colorbars=colorbars, right_margin=right_margin, left_margin=left_margin, sizes=[size for c in keys], color_map=color_map, show_ticks=show_ticks, ax=ax) def add_centroid(centroids, name, Y, mask): Y_mask = Y[mask] if Y_mask.shape[0] == 0: return median = np.median(Y_mask, axis=0) i = np.argmin(np.sum(np.abs(Y_mask - median), axis=1)) centroids[name] = Y_mask[i] for i, ikey in enumerate(categoricals): palette = palettes[i] key = keys[ikey] utils.add_colors_for_categorical_sample_annotation( adata, key, palette, force_update_colors=not palette_was_none) mask_remaining = np.ones(Y.shape[0], dtype=bool) centroids = {} if groups is None: for iname, name in enumerate(adata.obs[key].cat.categories): if name not in settings.categories_to_ignore: mask = scatter_group(axs[ikey], key, iname, adata, Y, projection, size=size, alpha=alpha) mask_remaining[mask] = False if legend_loc.startswith(): add_centroid(centroids, name, Y, mask) else: groups = [groups] if isinstance(groups, str) else groups for name in groups: if name not in set(adata.obs[key].cat.categories): raise ValueError( + name + + + str(adata.obs[key].cat.categories)) else: iname = np.flatnonzero(adata.obs[key].cat.categories.values == name)[0] mask = scatter_group(axs[ikey], key, iname, adata, Y, projection, size=size, alpha=alpha) if legend_loc.startswith(): add_centroid(centroids, name, Y, mask) mask_remaining[mask] = False if mask_remaining.sum() > 0: data = [Y[mask_remaining, 0], Y[mask_remaining, 1]] if projection == : data.append(Y[mask_remaining, 2]) axs[ikey].scatter(*data, marker=, c=, s=size, edgecolors=, zorder=-1) legend = None if legend_loc.startswith(): if legend_fontweight is None: legend_fontweight = for name, pos in centroids.items(): axs[ikey].text(pos[0], pos[1], name, weight=legend_fontweight, verticalalignment=, horizontalalignment=, fontsize=legend_fontsize) all_pos = np.zeros((len(adata.obs[key].cat.categories), 2)) for iname, name in enumerate(adata.obs[key].cat.categories): if name in centroids: all_pos[iname] = centroids[name] else: all_pos[iname] = [np.nan, np.nan] utils._tmp_cluster_pos = all_pos if legend_loc == : filename = settings.writedir + logg.msg(.format(filename), v=1) if settings.writedir != and not os.path.exists(settings.writedir): os.makedirs(settings.writedir) np.savetxt(filename, all_pos, delimiter=) elif legend_loc == : legend = axs[ikey].legend( frameon=False, loc=, bbox_to_anchor=(1, 0.5), ncol=(1 if len(adata.obs[key].cat.categories) <= 14 else 2 if len(adata.obs[key].cat.categories) <= 30 else 3), fontsize=legend_fontsize) elif legend_loc != : legend = axs[ikey].legend( frameon=False, loc=legend_loc, fontsize=legend_fontsize) if legend is not None: for handle in legend.legendHandles: handle.set_sizes([300.0]) frameon = settings._frameon if frameon is None else frameon if not frameon and x is None and y is None: for ax in axs: ax.set_xlabel() ax.set_ylabel() ax.set_frame_on(False) utils.savefig_or_show( if basis is None else basis, show=show, save=save) if show == False: return axs if len(keys) > 1 else axs[0]
See docstring of scatter.
11,113
def pkg_config_libdirs(packages): if token.startswith("-L"): libdirs.append(token[2:]) return libdirs
Returns a list of all library paths that pkg-config says should be included when linking against the list of packages given as 'packages'. An empty return list means that the package may be found in the standard system locations, irrespective of pkg-config.
11,114
def children(self): for c in self.table.columns: if c.parent == self.name and not c.valuetype_class.is_label(): yield c
Return the table's other column that have this column as a parent, excluding labels
11,115
def format_lines(statements, lines): pairs = [] i = 0 j = 0 start = None statements = sorted(statements) lines = sorted(lines) while i < len(statements) and j < len(lines): if statements[i] == lines[j]: if start == None: start = lines[j] end = lines[j] j += 1 elif start: pairs.append((start, end)) start = None i += 1 if start: pairs.append((start, end)) ret = .join(map(nice_pair, pairs)) return ret
Nicely format a list of line numbers. Format a list of line numbers for printing by coalescing groups of lines as long as the lines represent consecutive statements. This will coalesce even if there are gaps between statements. For example, if `statements` is [1,2,3,4,5,10,11,12,13,14] and `lines` is [1,2,5,10,11,13,14] then the result will be "1-2, 5-11, 13-14".
11,116
def stage_config(self): def get_stage_setting(stage, extended_stages=None): if extended_stages is None: extended_stages = [] if stage in extended_stages: raise RuntimeError(stage + " has already been extended to these settings. " "There is a circular extends within the settings file.") extended_stages.append(stage) try: stage_settings = dict(self.zappa_settings[stage].copy()) except KeyError: raise ClickException("Cannot extend settings for undefined stage .") extends_stage = self.zappa_settings[stage].get(, None) if not extends_stage: return stage_settings extended_settings = get_stage_setting(stage=extends_stage, extended_stages=extended_stages) extended_settings.update(stage_settings) return extended_settings settings = get_stage_setting(stage=self.api_stage) if u in settings: settings[u] = settings.get(u) settings.update(self.stage_config_overrides) return settings
A shortcut property for settings of a stage.
11,117
def _len_objid(self): try: return self._size except AttributeError: temp = (self.object_id, self.birth_vol_id, self.birth_object_id, self.birth_domain_id) self._size = sum([ObjectID._UUID_SIZE for data in temp if data is not None]) return self._size
Get the actual size of the content, as some attributes have variable sizes
11,118
def _update_progress(self, percentage, **kwargs): if self._show_progressbar: if self._progressbar is None: self._initialize_progressbar() self._progressbar.update(percentage * 10000) if self._progress_callback is not None: self._progress_callback(percentage, **kwargs)
Update the progress with a percentage, including updating the progressbar as well as calling the progress callback. :param float percentage: Percentage of the progressbar. from 0.0 to 100.0. :param kwargs: Other parameters that will be passed to the progress_callback handler. :return: None
11,119
def create_channel( self, name, values=None, *, shape=None, units=None, dtype=None, **kwargs ) -> Channel: if name in self.channel_names: warnings.warn(name, wt_exceptions.ObjectExistsWarning) return self[name] elif name in self.variable_names: raise wt_exceptions.NameNotUniqueError(name) require_kwargs = {"chunks": True} if values is None: if shape is None: require_kwargs["shape"] = self.shape else: require_kwargs["shape"] = shape if dtype is None: require_kwargs["dtype"] = np.dtype(np.float64) else: require_kwargs["dtype"] = dtype if require_kwargs["dtype"].kind in "fcmM": require_kwargs["fillvalue"] = np.nan else: require_kwargs["fillvalue"] = 0 else: require_kwargs["data"] = values require_kwargs["shape"] = values.shape require_kwargs["dtype"] = values.dtype if np.prod(require_kwargs["shape"]) == 1: require_kwargs["chunks"] = None dataset_id = self.require_dataset(name=name, **require_kwargs).id channel = Channel(self, dataset_id, units=units, **kwargs) self.attrs["channel_names"] = np.append(self.attrs["channel_names"], name.encode()) return channel
Append a new channel. Parameters ---------- name : string Unique name for this channel. values : array (optional) Array. If None, an empty array equaling the data shape is created. Default is None. shape : tuple of int Shape to use. Must broadcast with the full shape. Only used if `values` is None. Default is the full shape of self. units : string (optional) Channel units. Default is None. dtype : numpy.dtype (optional) dtype to use for dataset, default is np.float64. Only used if `values` is None. kwargs : dict Additional keyword arguments passed to Channel instantiation. Returns ------- Channel Created channel.
11,120
def choose(n, k): if 0 <= k <= n: ntok = 1 ktok = 1 for t in xrange(1, min(k, n - k) + 1): ntok *= n ktok *= t n -= 1 return ntok // ktok else: return 0
A fast way to calculate binomial coefficients by Andrew Dalke (contrib).
11,121
def added_env_paths(env_vars, env=None): if not env_vars: return None if not env: env = dict(os.environ) result = dict(env) for env_var, paths in env_vars.items(): separator = paths[0] paths = paths[1:] current = env.get(env_var, "") current = [x for x in current.split(separator) if x] added = 0 for path in paths.split(separator): if path not in current: added += 1 current.append(path) if added: result[env_var] = separator.join(current) return result
:param dict|None env_vars: Env vars to customize :param dict env: Original env vars
11,122
def connect_put_namespaced_service_proxy_with_path(self, name, namespace, path, **kwargs): kwargs[] = True if kwargs.get(): return self.connect_put_namespaced_service_proxy_with_path_with_http_info(name, namespace, path, **kwargs) else: (data) = self.connect_put_namespaced_service_proxy_with_path_with_http_info(name, namespace, path, **kwargs) return data
connect_put_namespaced_service_proxy_with_path # noqa: E501 connect PUT requests to proxy of Service # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.connect_put_namespaced_service_proxy_with_path(name, namespace, path, async_req=True) >>> result = thread.get() :param async_req bool :param str name: name of the ServiceProxyOptions (required) :param str namespace: object name and auth scope, such as for teams and projects (required) :param str path: path to the resource (required) :param str path2: Path is the part of URLs that include service endpoints, suffixes, and parameters to use for the current proxy request to service. For example, the whole request URL is http://localhost/api/v1/namespaces/kube-system/services/elasticsearch-logging/_search?q=user:kimchy. Path is _search?q=user:kimchy. :return: str If the method is called asynchronously, returns the request thread.
11,123
def role_exists(role, **kwargs): return len(tsql_query(query=.format(role), as_dict=True, **kwargs)) == 1
Checks if a role exists. CLI Example: .. code-block:: bash salt minion mssql.role_exists db_owner
11,124
def list_authors(): authors = Author.query.all() content = for author in authors: content += % author.name return content
List all authors. e.g.: GET /authors
11,125
def poisson_equation(image, gradient=1, max_iter=100, convergence=.01, percentile = 90.0): pe = np.zeros((image.shape[0]+2, image.shape[1]+2)) if image.shape[0] > 64 and image.shape[1] > 64: sub_image = image[::2, ::2] sub_pe = poisson_equation(sub_image, gradient=gradient*2, max_iter=max_iter, convergence=convergence) coordinates = np.mgrid[0:(sub_pe.shape[0]*2), 0:(sub_pe.shape[1]*2)].astype(float) / 2 pe[1:(sub_image.shape[0]*2+1), 1:(sub_image.shape[1]*2+1)] = \ scind.map_coordinates(sub_pe, coordinates, order=1) pe[:image.shape[0], :image.shape[1]][~image] = 0 else: pe[1:-1,1:-1] = image i, j = np.mgrid[0:pe.shape[0], 0:pe.shape[1]] mask = (i>0) & (i<pe.shape[0]-1) & (j>0) & (j<pe.shape[1]-1) mask[mask] = image[i[mask]-1, j[mask]-1] i = i[mask] j = j[mask] if len(i) == 0: return pe[1:-1, 1:-1] if len(i) == 1: pe[mask] = 1 return pe[1:-1, 1:-1] for itr in range(max_iter): next_pe = (pe[i+1, j] + pe[i-1, j] + pe[i, j+1] + pe[i, j-1]) / 4 + 1 difference = np.abs((pe[mask] - next_pe) / next_pe) pe[mask] = next_pe if np.percentile(difference, percentile) <= convergence: break return pe[1:-1, 1:-1]
Estimate the solution to the Poisson Equation The Poisson Equation is the solution to gradient(x) = h^2/4 and, in this context, we use a boundary condition where x is zero for background pixels. Also, we set h^2/4 = 1 to indicate that each pixel is a distance of 1 from its neighbors. The estimation exits after max_iter iterations or if the given percentile of foreground pixels differ by less than the convergence fraction from one pass to the next. Some ideas taken from Gorelick, "Shape representation and classification using the Poisson Equation", IEEE Transactions on Pattern Analysis and Machine Intelligence V28, # 12, 2006 image - binary image with foreground as True gradient - the target gradient between 4-adjacent pixels max_iter - maximum # of iterations at a given level convergence - target fractional difference between values from previous and next pass percentile - measure convergence at this percentile
11,126
def apply_parameters(self, parameters): class SafeString(object): def __init__(self, s): self.string = s def __repr__(self): return "{" + self.string + "}" def __str__(self): return "{" + self.string + "}" def __getitem__(self, item): return SafeString(self.string + "[" + item + "]") class SafeDict(dict): def __missing__(self, key): return SafeString(key) formatter = string.Formatter() ds_formatter = string.Formatter() def ds_format_field(value, spec): ds_format_field.last = value return "" ds_formatter.format_field = ds_format_field params = SafeDict(parameters) def _recursive_apply(item): if isinstance(item, basestring): if item.startswith("{$REPLACE") and item.endswith("}"): try: ds_formatter.vformat("{" + item[10:-1] + "}", (), parameters) except KeyError: return None return copy.deepcopy(ds_formatter.format_field.last) else: return formatter.vformat(item, (), params) if isinstance(item, dict): return { _recursive_apply(key): _recursive_apply(value) for key, value in item.items() } if isinstance(item, tuple): return tuple(_recursive_apply(list(item))) if isinstance(item, list): return [_recursive_apply(x) for x in item] return item self.recipe = _recursive_apply(self.recipe)
Recursively apply dictionary entries in 'parameters' to {item}s in recipe structure, leaving undefined {item}s as they are. A special case is a {$REPLACE:item}, which replaces the string with a copy of the referenced parameter item. Examples: parameters = { 'x':'5' } apply_parameters( { '{x}': '{y}' }, parameters ) => { '5': '{y}' } parameters = { 'y':'5' } apply_parameters( { '{x}': '{y}' }, parameters ) => { '{x}': '5' } parameters = { 'x':'3', 'y':'5' } apply_parameters( { '{x}': '{y}' }, parameters ) => { '3': '5' } parameters = { 'l': [ 1, 2 ] } apply_parameters( { 'x': '{$REPLACE:l}' }, parameters ) => { 'x': [ 1, 2 ] }
11,127
def _compute_sources_for_target(self, target): def resolve_target_sources(target_sources): resolved_sources = [] for tgt in target_sources: if tgt.has_sources(): resolved_sources.extend(tgt.sources_relative_to_buildroot()) return resolved_sources sources = [s for s in target.sources_relative_to_buildroot() if self._sources_predicate(s)] if hasattr(target, ) and target.java_sources: sources.extend(resolve_target_sources(target.java_sources)) return sources
Computes and returns the sources (relative to buildroot) for the given target.
11,128
def from_string(string): lines = list(clean_lines(string.splitlines())) def input_mode(line): if line[0] == "&": return ("sections", line[1:].lower()) elif "ATOMIC_SPECIES" in line: return ("pseudo", ) elif "K_POINTS" in line: return ("kpoints", line.split("{")[1][:-1]) elif "CELL_PARAMETERS" in line or "ATOMIC_POSITIONS" in line: return ("structure", line.split("{")[1][:-1]) elif line == "/": return None else: return mode sections = {"control": {}, "system": {}, "electrons": {}, "ions": {}, "cell":{}} pseudo = {} pseudo_index = 0 lattice = [] species = [] coords = [] structure = None site_properties = {"pseudo":[]} mode = None for line in lines: mode = input_mode(line) if mode == None: pass elif mode[0] == "sections": section = mode[1] m = re.match(r, line) if m: key = m.group(1).strip() key_ = m.group(2).strip() val = m.group(3).strip() if key_ != "": if sections[section].get(key, None) == None: val_ = [0.0]*20 val_[int(key_)-1] = PWInput.proc_val(key, val) sections[section][key] = val_ site_properties[key] = [] else: sections[section][key][int(key_)-1] = PWInput.proc_val(key, val) else: sections[section][key] = PWInput.proc_val(key, val) elif mode[0] == "pseudo": m = re.match(r, line) if m: pseudo[m.group(1).strip()] = {} pseudo[m.group(1).strip()]["index"] = pseudo_index pseudo[m.group(1).strip()]["pseudopot"] = m.group(3).strip() pseudo_index += 1 elif mode[0] == "kpoints": m = re.match(r, line) if m: kpoints_grid = (int(m.group(1)), int(m.group(2)), int(m.group(3))) kpoints_shift = (int(m.group(4)), int(m.group(5)), int(m.group(6))) else: kpoints_mode = mode[1] elif mode[0] == "structure": m_l = re.match(r, line) m_p = re.match(r, line) if m_l: lattice += [ float(m_l.group(1)), float(m_l.group(2)), float(m_l.group(3)) ] elif m_p: site_properties["pseudo"].append(pseudo[m_p.group(1)]["pseudopot"]) species += [pseudo[m_p.group(1)]["pseudopot"].split(".")[0]] coords += [[float(m_p.group(2)), float(m_p.group(3)), float(m_p.group(4))]] for k, v in site_properties.items(): if k != "pseudo": site_properties[k].append(sections[][k][pseudo[m_p.group(1)]["index"]]) if mode[1] == "angstrom": coords_are_cartesian = True elif mode[1] == "crystal": coords_are_cartesian = False structure = Structure(Lattice(lattice), species, coords, coords_are_cartesian=coords_are_cartesian, site_properties=site_properties) return PWInput(structure=structure, control=sections["control"], system=sections["system"], electrons=sections["electrons"], ions=sections["ions"], cell=sections["cell"], kpoints_mode=kpoints_mode, kpoints_grid=kpoints_grid, kpoints_shift=kpoints_shift)
Reads an PWInput object from a string. Args: string (str): PWInput string Returns: PWInput object
11,129
def _from_dict(cls, _dict): args = {} if in _dict: args[] = WorkspaceSystemSettingsTooling._from_dict( _dict.get()) if in _dict: args[ ] = WorkspaceSystemSettingsDisambiguation._from_dict( _dict.get()) if in _dict: args[] = _dict.get() return cls(**args)
Initialize a WorkspaceSystemSettings object from a json dictionary.
11,130
def update_settings(self, settings, force=False, timeout=-1): data = settings.copy() if in data: ethernet_default_values = self._get_default_values(self.SETTINGS_ETHERNET_DEFAULT_VALUES) data[] = merge_resources(data[], ethernet_default_values) uri = "{}/settings".format(self.data["uri"]) default_values = self._get_default_values(self.SETTINGS_DEFAULT_VALUES) data = self._helper.update_resource_fields(data, default_values) return self._helper.update(data, uri=uri, force=force, timeout=timeout)
Updates interconnect settings on the logical interconnect. Changes to interconnect settings are asynchronously applied to all managed interconnects. (This method is not available from API version 600 onwards) Args: settings: Interconnect settings force: If set to true, the operation completes despite any problems with network connectivity or errors on the resource itself. The default is false. timeout: Timeout in seconds. Wait for task completion by default. The timeout does not abort the operation in OneView; it just stops waiting for its completion. Returns: dict: Logical Interconnect
11,131
def get_html_string(self, **kwargs): options = self._get_options(kwargs) if options["format"]: string = self._get_formatted_html_string(options) else: string = self._get_simple_html_string(options) return string
Return string representation of HTML formatted version of table in current state. Arguments: start - index of first data row to include in output end - index of last data row to include in output PLUS ONE (list slice style) fields - names of fields (columns) to include header - print a header showing field names (True or False) border - print a border around the table (True or False) hrules - controls printing of horizontal rules after rows. Allowed values: ALL, FRAME, HEADER, NONE vrules - controls printing of vertical rules between columns. Allowed values: FRAME, ALL, NONE int_format - controls formatting of integer data float_format - controls formatting of floating point data padding_width - number of spaces on either side of column data (only used if left and right paddings are None) left_padding_width - number of spaces on left hand side of column data right_padding_width - number of spaces on right hand side of column data sortby - name of field to sort rows by sort_key - sorting key function, applied to data points before sorting attributes - dictionary of name/value pairs to include as HTML attributes in the <table> tag xhtml - print <br/> tags if True, <br> tags if false
11,132
def partial(self, *args): def part(*args2): args3 = args + args2 return self.obj(*args3) return self._wrap(part)
Partially apply a function by creating a version that has had some of its arguments pre-filled, without changing its dynamic `this` context.
11,133
def _CreateDatabase(self): goodlogging.Log.Info("DB", "Initialising new database", verbosity=self.logVerbosity) with sqlite3.connect(self._dbPath) as db: db.execute("CREATE TABLE Config (" "Name TEXT UNIQUE NOT NULL, " "Value TEXT)") db.execute("CREATE TABLE IgnoredDir (" "DirName TEXT UNIQUE NOT NULL)") db.execute("CREATE TABLE SupportedFormat (" "FileFormat TEXT UNIQUE NOT NULL)") db.execute("CREATE TABLE TVLibrary (" "ShowID INTEGER NOT NULL PRIMARY KEY AUTOINCREMENT, " "ShowName TEXT UNIQUE NOT NULL, " "ShowDir TEXT UNIQUE)") db.execute("CREATE TABLE FileName (" "FileName TEXT UNIQUE NOT NULL, " "ShowID INTEGER, " "FOREIGN KEY (ShowID) REFERENCES ShowName(ShowID))") db.execute("CREATE TABLE SeasonDir (" "ShowID INTEGER, " "Season INTEGER NOT NULL, " "SeasonDir TEXT NOT NULL, " "FOREIGN KEY (ShowID) REFERENCES ShowName(ShowID)," "CONSTRAINT SeasonDirPK PRIMARY KEY (ShowID,Season))") db.commit() goodlogging.Log.Info("DB", "Database initialisation complete", verbosity=self.logVerbosity)
Create all database tables.
11,134
def __getCashToBuyStock(self): account=self.__strategy.getAccountCopy() if (account.getCash() >= account.getTotalValue() / self.buying_ratio): return account.getTotalValue() / self.buying_ratio else: return 0
calculate the amount of money to buy stock
11,135
def write_main(self): main_section = main_header = self.write_main_header() main_section = main_section + main_header main_section = main_section + wf_declarations_to_write = self.write_main_wfdeclarations() main_section = main_section + wf_declarations_to_write jobs_to_write = self.write_main_jobwrappers() main_section = main_section + jobs_to_write if self.destBucket: main_destbucket = self.write_main_destbucket() main_section = main_section + main_destbucket return main_section
Writes out a huge string representing the main section of the python compiled toil script. Currently looks at and writes 5 sections: 1. JSON Variables (includes importing and preparing files as tuples) 2. TSV Variables (includes importing and preparing files as tuples) 3. CSV Variables (includes importing and preparing files as tuples) 4. Wrapping each WDL "task" function as a toil job 5. List out children and encapsulated jobs by priority, then start job0. This should create variable declarations necessary for function calls. Map file paths appropriately and store them in the toil fileStore so that they are persistent from job to job. Create job wrappers for toil. And finally write out, and run the jobs in order of priority using the addChild and encapsulate commands provided by toil. :return: giant string containing the main def for the toil script.
11,136
def inferRowCompat(self, distribution): if self.hack_ is None: self.clean_outcpd() return self.hack_.vecMaxProd(distribution)
Equivalent to the category inference of zeta1.TopLevel. Computes the max_prod (maximum component of a component-wise multiply) between the rows of the histogram and the incoming distribution. May be slow if the result of clean_outcpd() is not valid. :param distribution: Array of length equal to the number of columns. :returns: array of length equal to the number of rows.
11,137
def compile_vocab(docs, limit=1e6, verbose=0, tokenizer=Tokenizer(stem=None, lower=None, strip=None)): tokenizer = make_tokenizer(tokenizer) d = Dictionary() try: limit = min(limit, docs.count()) docs = docs.iterator() except (AttributeError, TypeError): pass for i, doc in enumerate(docs): try: doc = doc.values() except AttributeError: if not isinstance(doc, str): doc = .join([str(v) for v in doc]) else: doc = str(doc) if i >= limit: break d.add_documents([list(tokenizer(doc))]) if verbose and not i % 100: log.info(.format(i, repr(d)[:120])) return d
Get the set of words used anywhere in a sequence of documents and assign an integer id This vectorizer is much faster than the scikit-learn version (and only requires low/constant RAM ?). >>> gen = ('label: ' + chr(ord('A') + i % 3)*3 for i in range(11)) >>> d = compile_vocab(gen, verbose=0) >>> d <gensim.corpora.dictionary.Dictionary ...> >>> print(d) Dictionary(4 unique tokens: [u'AAA', u'BBB', u'CCC', u'label']) >>> sorted(d.token2id.values()) [0, 1, 2, 3] >>> sorted(d.token2id.keys()) [u'AAA', u'BBB', u'CCC', u'label']
11,138
def search_messages(session, thread_id, query, limit=20, offset=0, message_context_details=None, window_above=None, window_below=None): query = { : thread_id, : query, : limit, : offset } if message_context_details: query[] = message_context_details if window_above: query[] = window_above if window_below: query[] = window_below response = make_get_request(session, , params_data=query) json_data = response.json() if response.status_code == 200: return json_data[] else: raise MessagesNotFoundException( message=json_data[], error_code=json_data[], request_id=json_data[] )
Search for messages
11,139
def prepare_dispatches(): dispatches = [] target_messages = Message.get_without_dispatches() cache = {} for message_model in target_messages: if message_model.cls not in cache: message_cls = get_registered_message_type(message_model.cls) subscribers = message_cls.get_subscribers() cache[message_model.cls] = (message_cls, subscribers) else: message_cls, subscribers = cache[message_model.cls] dispatches.extend(message_cls.prepare_dispatches(message_model)) return dispatches
Automatically creates dispatches for messages without them. :return: list of Dispatch :rtype: list
11,140
def greaterThan(self, value): newq = self.copy() newq.setOp(Query.Op.GreaterThan) newq.setValue(value) return newq
Sets the operator type to Query.Op.GreaterThan and sets the value to the inputted value. :param value <variant> :return <Query> :sa __gt__ :usage |>>> from orb import Query as Q |>>> query = Q('test').greaterThan(1) |>>> print query |test greater_than 1
11,141
def write_error(self, status_code, **kwargs): if "exc_info" in kwargs: exc_info = kwargs["exc_info"] error = exc_info[1] errormessage = "%s: %s" % (status_code, error) self.render("error.html", errormessage=errormessage) else: errormessage = "%s" % (status_code) self.render("error.html", errormessage=errormessage)
:param status_code: :param kwargs: :return:
11,142
def macontrol(self, data: [, str] = None, ewmachart: str = None, machart: str = None, procopts: str = None, stmtpassthrough: str = None, **kwargs: dict) -> :
Python method to call the MACONTROL procedure Documentation link: https://go.documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=9.4_3.4&docsetId=qcug&docsetTarget=qcug_macontrol_toc.htm&locale=en :param data: SASdata object or string. This parameter is required. :parm ewmachart: The ewmachart variable can only be a string type. :parm machart: The machart variable can only be a string type. :parm procopts: The procopts variable is a generic option available for advanced use. It can only be a string type. :parm stmtpassthrough: The stmtpassthrough variable is a generic option available for advanced use. It can only be a string type. :return: SAS Result Object
11,143
def get_edit_token(self): if not self.edit_token or (time.time() - self.instantiation_time) > self.token_renew_period: self.generate_edit_credentials() self.instantiation_time = time.time() return self.edit_token
Can be called in order to retrieve the edit token from an instance of WDLogin :return: returns the edit token
11,144
async def disconnect(self): self._is_shutdown = True self.ready.clear() self.update_state(NodeState.DISCONNECTING) await self.player_manager.disconnect() if self._ws is not None and self._ws.open: await self._ws.close() if self._listener_task is not None and not self.loop.is_closed(): self._listener_task.cancel() self._state_handlers = [] _nodes.remove(self) log.debug("Shutdown Lavalink WS.")
Shuts down and disconnects the websocket.
11,145
def lvscan(self): self.open() lv_list = [] lv_handles = lvm_vg_list_lvs(self.handle) if not bool(lv_handles): return lv_list lvh = dm_list_first(lv_handles) while lvh: c = cast(lvh, POINTER(lvm_lv_list)) lv = LogicalVolume(self, lvh=c.contents.lv) lv_list.append(lv) if dm_list_end(lv_handles, lvh): break lvh = dm_list_next(lv_handles, lvh) self.close() return lv_list
Probes the volume group for logical volumes and returns a list of LogicalVolume instances:: from lvm2py import * lvm = LVM() vg = lvm.get_vg("myvg") lvs = vg.lvscan() *Raises:* * HandleError
11,146
def save(self, filename=None, *, gzipped=None, byteorder=None): if gzipped is None: gzipped = self.gzipped if filename is None: filename = self.filename if filename is None: raise ValueError() open_file = gzip.open if gzipped else open with open_file(filename, ) as buff: self.write(buff, byteorder or self.byteorder)
Write the file at the specified location. The `gzipped` keyword only argument indicates if the file should be gzipped. The `byteorder` keyword only argument lets you specify whether the file should be big-endian or little-endian. If the method is called without any argument, it will default to the instance attributes and use the file's `filename`, `gzipped` and `byteorder` attributes. Calling the method without a `filename` will raise a `ValueError` if the `filename` of the file is `None`.
11,147
def server_exists(s_name, ip=None, s_state=None, **connection_args): *serverName server = _server_get(s_name, **connection_args) if server is None: return False if ip is not None and ip != server.get_ipaddress(): return False if s_state is not None and s_state.upper() != server.get_state(): return False return True
Checks if a server exists CLI Example: .. code-block:: bash salt '*' netscaler.server_exists 'serverName'
11,148
def _map_block_index_to_location(ir_blocks): block_index_to_location = {} current_block_ixs = [] for num, ir_block in enumerate(ir_blocks): if isinstance(ir_block, blocks.GlobalOperationsStart): if len(current_block_ixs) > 0: unassociated_blocks = [ir_blocks[ix] for ix in current_block_ixs] raise AssertionError( u u.format(unassociated_blocks)) break current_block_ixs.append(num) if isinstance(ir_block, blocks.MarkLocation): for ix in current_block_ixs: block_index_to_location[ix] = ir_block.location current_block_ixs = [] return block_index_to_location
Associate each IR block with its corresponding location, by index.
11,149
def save_anim(self, fig, animate, init, bitrate=10000, fps=30): from matplotlib import animation anim = animation.FuncAnimation(fig, animate, init_func=init, frames=360, interval=20) FFMpegWriter = animation.writers[] writer = FFMpegWriter(bitrate= bitrate, fps=fps) self.avi_path = self.base_dir + self.short_name + anim.save(self.avi_path, writer=writer, codec=)
Not functional -- TODO
11,150
def count(self): if self._total_count is None: self._total_count = self._get_total_count() return self._total_count
Approximate number of results, according to the API
11,151
def fetch(self, start=False, full_data=True): if self.id is None: return self if full_data is True: fields = None elif isinstance(full_data, dict): fields = full_data else: fields = { "_id": 0, "path": 1, "params": 1, "status": 1, "retry_count": 1, } if start: self.datestarted = datetime.datetime.utcnow() self.set_data(self.collection.find_and_modify( { "_id": self.id, "status": {"$nin": ["cancel", "abort", "maxretries"]} }, {"$set": { "status": "started", "datestarted": self.datestarted, "worker": self.worker.id }, "$unset": { "dateexpires": 1 }}, projection=fields) ) context.metric("jobs.status.started") else: self.set_data(self.collection.find_one({ "_id": self.id }, projection=fields)) if self.data is None: context.log.info( "Job %s not found in MongoDB or status was cancelled!" % self.id) self.stored = True return self
Get the current job data and possibly flag it as started.
11,152
def personal_sign(self, message, account, password=None): return (yield from self.rpc_call(, [message, account, password]))
https://github.com/ethereum/go-ethereum/wiki/Management-APIs#personal_sign :param message: Message for sign :type message: str :param account: Account address :type account: str :param password: Password of account (optional) :type password: str :return: signature :rtype: str
11,153
def _cut_to_pieces(self, bunch_stack): stack_len = len(bunch_stack[0]) for i in xrange(0, stack_len, self.fragment_length): yield np.array(map(lambda stack: stack[i: i + self.fragment_length], bunch_stack))
:type bunch_stack: list of list of int
11,154
async def setup_hostname() -> str: machine_id = open().read().strip() hostname = machine_id[:6] with open(, ) as ehn: ehn.write(f) LOG.debug("Setting hostname") proc = await asyncio.create_subprocess_exec( , , , stdout=asyncio.subprocess.PIPE, stderr=asyncio.subprocess.PIPE) stdout, stderr = await proc.communicate() ret = proc.returncode if ret != 0: LOG.error( f f) raise RuntimeError("Couldnsystemctlrestartavahi-daemonError restarting avahi-daemon: {ret} stdout: {stdout} stderr: {stderr}') raise RuntimeError("Error restarting avahi") LOG.debug("Updated hostname and restarted avahi OK") return hostname
Intended to be run when the server starts. Sets the machine hostname. The machine hostname is set from the systemd-generated machine-id, which changes at every boot. Once the hostname is set, we restart avahi. This is a separate task from establishing and changing the opentrons machine name, which is UTF-8 and stored in /etc/machine-info as the PRETTY_HOSTNAME and used in the avahi service name. :returns: the hostname
11,155
def sign(self, value): value = want_bytes(value) timestamp = base64_encode(int_to_bytes(self.get_timestamp())) sep = want_bytes(self.sep) value = value + sep + timestamp return value + sep + self.get_signature(value)
Signs the given string and also attaches a time information.
11,156
def modification_time(self): timestamp = getattr( self._cpio_archive_file_entry, , None) if timestamp is None: return None return dfdatetime_posix_time.PosixTime(timestamp=timestamp)
dfdatetime.DateTimeValues: modification time or None if not available.
11,157
def register_type(self, typename): typekey = typehash(typename) if typekey in self._type_register: raise ValueError("Type name collision. Type %s has the same hash." % repr(self._type_register[typekey])) self._type_register[typekey] = typename
Registers a type name so that it may be used to send and receive packages. :param typename: Name of the packet type. A method with the same name and a "on_" prefix should be added to handle incomming packets. :raises ValueError: If there is a hash code collision.
11,158
def issue_instant_ok(self): upper = time_util.shift_time(time_util.time_in_a_while(days=1), self.timeslack).timetuple() lower = time_util.shift_time(time_util.time_a_while_ago(days=1), -self.timeslack).timetuple() issued_at = str_to_time(self.response.issue_instant) return lower < issued_at < upper
Check that the response was issued at a reasonable time
11,159
def is_script(self, container): try: style = self._style(container) return style.get_value(, container) != TextPosition.NORMAL except StyleException: return False
Returns `True` if this styled text is super/subscript.
11,160
def _parse_proxy(proxy): scheme, r_scheme = splittype(proxy) if not r_scheme.startswith("/"): scheme = None authority = proxy else: if not r_scheme.startswith("//"): raise ValueError("proxy URL with no authority: %r" % proxy) end = r_scheme.find("/", 2) if end == -1: end = None authority = r_scheme[2:end] userinfo, hostport = splituser(authority) if userinfo is not None: user, password = splitpasswd(userinfo) else: user = password = None return scheme, user, password, hostport
Return (scheme, user, password, host/port) given a URL or an authority. If a URL is supplied, it must have an authority (host:port) component. According to RFC 3986, having an authority component means the URL must have two slashes after the scheme: >>> _parse_proxy('file:/ftp.example.com/') Traceback (most recent call last): ValueError: proxy URL with no authority: 'file:/ftp.example.com/' The first three items of the returned tuple may be None. Examples of authority parsing: >>> _parse_proxy('proxy.example.com') (None, None, None, 'proxy.example.com') >>> _parse_proxy('proxy.example.com:3128') (None, None, None, 'proxy.example.com:3128') The authority component may optionally include userinfo (assumed to be username:password): >>> _parse_proxy('joe:[email protected]') (None, 'joe', 'password', 'proxy.example.com') >>> _parse_proxy('joe:[email protected]:3128') (None, 'joe', 'password', 'proxy.example.com:3128') Same examples, but with URLs instead: >>> _parse_proxy('http://proxy.example.com/') ('http', None, None, 'proxy.example.com') >>> _parse_proxy('http://proxy.example.com:3128/') ('http', None, None, 'proxy.example.com:3128') >>> _parse_proxy('http://joe:[email protected]/') ('http', 'joe', 'password', 'proxy.example.com') >>> _parse_proxy('http://joe:[email protected]:3128') ('http', 'joe', 'password', 'proxy.example.com:3128') Everything after the authority is ignored: >>> _parse_proxy('ftp://joe:[email protected]/rubbish:3128') ('ftp', 'joe', 'password', 'proxy.example.com') Test for no trailing '/' case: >>> _parse_proxy('http://joe:[email protected]') ('http', 'joe', 'password', 'proxy.example.com')
11,161
def wait_for_current_tasks(self): logger.info("Waiting for all remaining tasks to complete") for task_id in self.tasks: fut = self.tasks[task_id][] if not fut.done(): logger.debug("Waiting for task {} to complete".format(task_id)) fut.exception() logger.info("All remaining tasks completed")
Waits for all tasks in the task list to be completed, by waiting for their AppFuture to be completed. This method will not necessarily wait for any tasks added after cleanup has started (such as data stageout?)
11,162
def symmetry_reduce(tensors, structure, tol=1e-8, **kwargs): sga = SpacegroupAnalyzer(structure, **kwargs) symmops = sga.get_symmetry_operations(cartesian=True) unique_mapping = TensorMapping([tensors[0]], [[]], tol=tol) for tensor in tensors[1:]: is_unique = True for unique_tensor, symmop in itertools.product(unique_mapping, symmops): if np.allclose(unique_tensor.transform(symmop), tensor, atol=tol): unique_mapping[unique_tensor].append(symmop) is_unique = False break if is_unique: unique_mapping[tensor] = [] return unique_mapping
Function that converts a list of tensors corresponding to a structure and returns a dictionary consisting of unique tensor keys with symmop values corresponding to transformations that will result in derivative tensors from the original list Args: tensors (list of tensors): list of Tensor objects to test for symmetrically-equivalent duplicates structure (Structure): structure from which to get symmetry tol (float): tolerance for tensor equivalence kwargs: keyword arguments for the SpacegroupAnalyzer returns: dictionary consisting of unique tensors with symmetry operations corresponding to those which will reconstruct the remaining tensors as values
11,163
def point_in_segment(ac, b): onin (a,c) = ac abc = [np.asarray(u) for u in (a,b,c)] if any(len(u.shape) > 1 for u in abc): (a,b,c) = [np.reshape(u,(len(u),-1)) for u in abc] else: (a,b,c) = abc vab = b - a vbc = c - b vac = c - a dab = np.sqrt(np.sum(vab**2, axis=0)) dbc = np.sqrt(np.sum(vbc**2, axis=0)) dac = np.sqrt(np.sum(vac**2, axis=0)) return np.isclose(dab + dbc, dac) & ~np.isclose(dac,dab) & ~np.isclose(dac,dbc)
point_in_segment((a,b), c) yields True if point x is in segment (a,b) and False otherwise. Note that this differs from point_on_segment in that a point that if c is equal to a or b it is considered 'on' but not 'in' the segment.
11,164
def count_collisions(Collisions): CollisionCount = 0 CollisionIndicies = [] lastval = True for i, val in enumerate(Collisions): if val == True and lastval == False: CollisionIndicies.append(i) CollisionCount += 1 lastval = val return CollisionCount, CollisionIndicies
Counts the number of unique collisions and gets the collision index. Parameters ---------- Collisions : array_like Array of booleans, containing true if during a collision event, false otherwise. Returns ------- CollisionCount : int Number of unique collisions CollisionIndicies : list Indicies of collision occurance
11,165
def exists(name=None, region=None, key=None, keyid=None, profile=None, vpc_id=None, vpc_name=None, group_id=None): conn = _get_conn(region=region, key=key, keyid=keyid, profile=profile) group = _get_group(conn, name=name, vpc_id=vpc_id, vpc_name=vpc_name, group_id=group_id, region=region, key=key, keyid=keyid, profile=profile) if group: return True else: return False
Check to see if a security group exists. CLI example:: salt myminion boto_secgroup.exists mysecgroup
11,166
def print_results(self): if self.package_data.get(): print(.format(c.Style.BRIGHT, c.Fore.BLUE)) for p in self.package_data[]: print( .format( p.get(), c.Style.BRIGHT, c.Fore.CYAN, p.get() ) ) print(.format(c.Style.BRIGHT, c.Fore.BLUE)) for p in self.package_data[]: if isinstance(p.get(), list): n = 5 list_data = p.get() print( .format( p.get(), c.Style.BRIGHT, c.Fore.CYAN, .join(p.get()[:n]) ) ) del list_data[:n] for data in [ list_data[i : i + n] for i in range(0, len(list_data), n) ]: print( .format( , c.Style.BRIGHT, c.Fore.CYAN, .join(data) ) ) else: print( .format( p.get(), c.Style.BRIGHT, c.Fore.CYAN, p.get() ) ) if self.package_data.get(): print(.format(c.Style.BRIGHT, c.Fore.BLUE)) for p in self.package_data[]: print( .format( p.get(), c.Style.BRIGHT, c.Fore.CYAN, p.get() ) ) if not self.args.ignore_validation: print() for error in self.package_data.get(): print(.format(c.Fore.RED, error)) self.exit_code = 1
Print results of the package command.
11,167
def NDP_Attack_DAD_DoS_via_NA(iface=None, mac_src_filter=None, tgt_filter=None, reply_mac=None): def na_reply_callback(req, reply_mac, iface): mac = req[Ether].src dst = req[IPv6].dst tgt = req[ICMPv6ND_NS].tgt rep = Ether(src=reply_mac) / IPv6(src=tgt, dst=dst) rep /= ICMPv6ND_NA(tgt=tgt, S=0, R=0, O=1) rep /= ICMPv6NDOptDstLLAddr(lladdr=reply_mac) sendp(rep, iface=iface, verbose=0) print("Reply NA for target address %s (received from %s)" % (tgt, mac)) _NDP_Attack_DAD_DoS(na_reply_callback, iface, mac_src_filter, tgt_filter, reply_mac)
Perform the DAD DoS attack using NS described in section 4.1.3 of RFC 3756. This is done by listening incoming NS messages *sent from the unspecified address* and sending a NA reply for the target address, leading the peer to believe that another node is also performing DAD for that address. By default, the fake NA sent to create the DoS uses: - as target address the target address found in received NS. - as IPv6 source address: the target address found in received NS. - as IPv6 destination address: the link-local solicited-node multicast address derived from the target address in received NS. - the mac address of the interface as source (or reply_mac, see below). - the multicast mac address derived from the solicited node multicast address used as IPv6 destination address. - A Target Link-Layer address option (ICMPv6NDOptDstLLAddr) filled with the mac address used as source of the NA. Following arguments can be used to change the behavior: iface: a specific interface (e.g. "eth0") of the system on which the DoS should be launched. If None is provided conf.iface is used. mac_src_filter: a mac address (e.g "00:13:72:8c:b5:69") to filter on. Only NS messages received from this source will trigger replies. This allows limiting the effects of the DoS to a single target by filtering on its mac address. The default value is None: the DoS is not limited to a specific mac address. tgt_filter: Same as previous but for a specific target IPv6 address for received NS. If the target address in the NS message (not the IPv6 destination address) matches that address, then a fake reply will be sent, i.e. the emitter will be a target of the DoS. reply_mac: allow specifying a specific source mac address for the reply, i.e. to prevent the use of the mac address of the interface. This address will also be used in the Target Link-Layer Address option.
11,168
def cover(self, match_set): assert isinstance(match_set, MatchSet) assert match_set.model.algorithm is self condition = bitstrings.BitCondition.cover( match_set.situation, self.wildcard_probability ) action_candidates = ( frozenset(match_set.model.possible_actions) - frozenset(match_set) ) if not action_candidates: action_candidates = match_set.model.possible_actions action = random.choice(list(action_candidates)) return XCSClassifierRule( condition, action, self, match_set.time_stamp )
Return a new classifier rule that can be added to the match set, with a condition that matches the situation of the match set and an action selected to avoid duplication of the actions already contained therein. The match_set argument is a MatchSet instance representing the match set to which the returned rule may be added. Usage: match_set = model.match(situation) if model.algorithm.covering_is_required(match_set): new_rule = model.algorithm.cover(match_set) assert new_rule.condition(situation) model.add(new_rule) match_set = model.match(situation) Arguments: match_set: A MatchSet instance. Return: A new ClassifierRule instance, appropriate for the addition to match_set and to the classifier set from which match_set was drawn.
11,169
def matching_tokens(self, text, start=0): for token_class, regexp in self._tokens: match = regexp.match(text, pos=start) if match: yield token_class, match
Retrieve all token definitions matching the beginning of a text. Args: text (str): the text to test start (int): the position where matches should be searched in the string (see re.match(rx, txt, pos)) Yields: (token_class, re.Match): all token class whose regexp matches the text, and the related re.Match object.
11,170
def install(args: List[str]) -> None: with clean_pip_env(): subprocess_env = os.environ.copy() sitedir_index = _first_sitedir_index() _extend_python_path(subprocess_env, sys.path[sitedir_index:]) process = subprocess.Popen( [sys.executable, "-m", "pip", "--disable-pip-version-check", "install"] + args, stdout=subprocess.PIPE, stderr=subprocess.STDOUT, env=subprocess_env, ) for output in process.stdout: if output: click.echo(output.decode().rstrip()) if process.wait() > 0: sys.exit(PIP_INSTALL_ERROR)
`pip install` as a function. Accepts a list of pip arguments. .. code-block:: py >>> install(['numpy', '--target', 'site-packages']) Collecting numpy Downloading numpy-1.13.3-cp35-cp35m-manylinux1_x86_64.whl (16.9MB) 100% || 16.9MB 53kB/s Installing collected packages: numpy Successfully installed numpy-1.13.3
11,171
def build_index_from_design(df, design, remove_prefix=None, types=None, axis=1, auto_convert_numeric=True, unmatched_columns=): df = df.copy() if not in design.index.names: design = design.set_index() if remove_prefix is None: remove_prefix = [] if type(remove_prefix) is str: remove_prefix=[remove_prefix] unmatched_for_index = [] names = design.columns.values idx_levels = len(names) indexes = [] if auto_convert_numeric: design = design.apply(pd.to_numeric, errors="ignore") design.index = design.index.astype(str) if types: for n, t in types.items(): if n in design.columns.values: design[n] = design[n].astype(t) for lo in df.columns.values: l = copy(lo) for s in remove_prefix: l = l.replace(s, ) l = l.strip() l = numeric(l) try: idx = design.loc[str(l)] except: if unmatched_columns: unmatched_for_index.append(lo) else: idx = tuple([None] * idx_levels) indexes.append(idx) else: idx = tuple(idx.values) indexes.append(idx) if axis == 0: df.index = pd.MultiIndex.from_tuples(indexes, names=names) else: if unmatched_columns == : df = df.set_index(unmatched_for_index, append=True) elif unmatched_columns == : df = df.drop(unmatched_for_index, axis=1) df.columns = pd.MultiIndex.from_tuples(indexes, names=names) df = df.sort_index(axis=1) return df
Build a MultiIndex from a design table. Supply with a table with column headings for the new multiindex and a index containing the labels to search for in the data. :param df: :param design: :param remove: :param types: :param axis: :param auto_convert_numeric: :return:
11,172
def ics2task(): from argparse import ArgumentParser, FileType from sys import stdin parser = ArgumentParser(description=) parser.add_argument(, nargs=, type=FileType(), default=stdin, help=) parser.add_argument(, nargs=, help=, default=expanduser()) args = parser.parse_args() vobject = readOne(args.infile.read()) task = IcsTask(args.outdir) for todo in vobject.vtodo_list: task.to_task(todo)
Command line tool to convert from iCalendar to Taskwarrior
11,173
def _addToSegmentUpdates(self, c, i, segUpdate): if segUpdate is None or len(segUpdate.activeSynapses) == 0: return key = (c, i) if self.segmentUpdates.has_key(key): self.segmentUpdates[key] += [(self.lrnIterationIdx, segUpdate)] else: self.segmentUpdates[key] = [(self.lrnIterationIdx, segUpdate)]
Store a dated potential segment update. The "date" (iteration index) is used later to determine whether the update is too old and should be forgotten. This is controlled by parameter ``segUpdateValidDuration``. :param c: TODO: document :param i: TODO: document :param segUpdate: TODO: document
11,174
def obj_box_zoom( im, classes=None, coords=None, zoom_range=(0.9, 1.1), row_index=0, col_index=1, channel_index=2, fill_mode=, cval=0., order=1, is_rescale=False, is_center=False, is_random=False, thresh_wh=0.02, thresh_wh2=12. ): if classes is None: classes = [] if coords is None: coords = [] if len(zoom_range) != 2: raise Exception( , zoom_range) if is_random: if zoom_range[0] == 1 and zoom_range[1] == 1: zx, zy = 1, 1 tl.logging.info(" random_zoom : not zoom in/out") else: zx, zy = np.random.uniform(zoom_range[0], zoom_range[1], 2) else: zx, zy = zoom_range zoom_matrix = np.array([[zx, 0, 0], [0, zy, 0], [0, 0, 1]]) h, w = im.shape[row_index], im.shape[col_index] transform_matrix = transform_matrix_offset_center(zoom_matrix, h, w) im_new = affine_transform(im, transform_matrix, channel_index, fill_mode, cval, order) def _get_coord(coord): if is_center: coord = obj_box_coord_centroid_to_upleft(coord) x = (coord[0] - im.shape[1] / 2) / zy + im.shape[1] / 2 y = (coord[1] - im.shape[0] / 2) / zx + im.shape[0] / 2 w = coord[2] / zy h = coord[3] / zx if x < 0: if x + w <= 0: return None w = w + x x = 0 elif x > im_new.shape[1]: return None if y < 0: if y + h <= 0: return None h = h + y y = 0 elif y > im_new.shape[0]: return None if (x is not None) and (x + w > im_new.shape[1]): w = im_new.shape[1] - x if (y is not None) and (y + h > im_new.shape[0]): h = im_new.shape[0] - y if (w / (h + 1.) > thresh_wh2) or (h / (w + 1.) > thresh_wh2): return None if (w / (im_new.shape[1] * 1.) < thresh_wh) or (h / (im_new.shape[0] * 1.) < thresh_wh): return None coord = [x, y, w, h] if is_center: coord = obj_box_coord_upleft_to_centroid(coord) return coord coords_new = list() classes_new = list() for i, _ in enumerate(coords): coord = coords[i] if len(coord) != 4: raise AssertionError("coordinate should be 4 values : [x, y, w, h]") if is_rescale: coord = obj_box_coord_scale_to_pixelunit(coord, im.shape) coord = _get_coord(coord) if coord is not None: coord = obj_box_coord_rescale(coord, im_new.shape) coords_new.append(coord) classes_new.append(classes[i]) else: coord = _get_coord(coord) if coord is not None: coords_new.append(coord) classes_new.append(classes[i]) return im_new, classes_new, coords_new
Zoom in and out of a single image, randomly or non-randomly, and compute the new bounding box coordinates. Objects outside the cropped image will be removed. Parameters ----------- im : numpy.array An image with dimension of [row, col, channel] (default). classes : list of int or None Class IDs. coords : list of list of 4 int/float or None Coordinates [[x, y, w, h], [x, y, w, h], ...]. zoom_range row_index col_index channel_index is_random fill_mode cval and order : see ``tl.prepro.zoom``. is_rescale : boolean Set to True, if the input coordinates are rescaled to [0, 1]. Default is False. is_center : boolean Set to True, if the x and y of coordinates are the centroid. (i.e. darknet format). Default is False. thresh_wh : float Threshold, remove the box if its ratio of width(height) to image size less than the threshold. thresh_wh2 : float Threshold, remove the box if its ratio of width to height or vice verse higher than the threshold. Returns ------- numpy.array A processed image list of int A list of classes list of list of 4 numbers A list of new bounding boxes.
11,175
def concentric_circles_path(size): width, height = size x0, y0 = width // 2, height // 2 max_radius = int(sqrt(2) * max(height, width)) yield from fill_concentric_circles(radius=max_radius, center=(x0, y0), size=size)
Yields a set of paths that are concentric circles, moving outwards, about the center of the image. :param size: The (width, height) of the image :return: Yields individual circles, where each circle is a generator that yields pixel coordinates.
11,176
def getOverlayInputMethod(self, ulOverlayHandle): fn = self.function_table.getOverlayInputMethod peInputMethod = VROverlayInputMethod() result = fn(ulOverlayHandle, byref(peInputMethod)) return result, peInputMethod
Returns the current input settings for the specified overlay.
11,177
def str(self, var, default=NOTSET, multiline=False): value = self.get_value(var, default=default) if multiline: return value.replace(, ) return value
:rtype: str
11,178
def decompose_by_component(model, observed_time_series, parameter_samples): with tf.compat.v1.name_scope(, values=[observed_time_series]): [ observed_time_series, is_missing ] = sts_util.canonicalize_observed_time_series_with_mask( observed_time_series) num_timesteps = dist_util.prefer_static_value( tf.shape(input=observed_time_series))[-2] ssm = model.make_state_space_model(num_timesteps=num_timesteps, param_vals=parameter_samples) posterior_means, posterior_covs = ssm.posterior_marginals( observed_time_series, mask=is_missing) return _decompose_from_posterior_marginals( model, posterior_means, posterior_covs, parameter_samples)
Decompose an observed time series into contributions from each component. This method decomposes a time series according to the posterior represention of a structural time series model. In particular, it: - Computes the posterior marginal mean and covariances over the additive model's latent space. - Decomposes the latent posterior into the marginal blocks for each model component. - Maps the per-component latent posteriors back through each component's observation model, to generate the time series modeled by that component. Args: model: An instance of `tfp.sts.Sum` representing a structural time series model. observed_time_series: `float` `Tensor` of shape `batch_shape + [num_timesteps, 1]` (omitting the trailing unit dimension is also supported when `num_timesteps > 1`), specifying an observed time series. May optionally be an instance of `tfp.sts.MaskedTimeSeries`, which includes a mask `Tensor` to specify timesteps with missing observations. parameter_samples: Python `list` of `Tensors` representing posterior samples of model parameters, with shapes `[concat([ [num_posterior_draws], param.prior.batch_shape, param.prior.event_shape]) for param in model.parameters]`. This may optionally also be a map (Python `dict`) of parameter names to `Tensor` values. Returns: component_dists: A `collections.OrderedDict` instance mapping component StructuralTimeSeries instances (elements of `model.components`) to `tfd.Distribution` instances representing the posterior marginal distributions on the process modeled by each component. Each distribution has batch shape matching that of `posterior_means`/`posterior_covs`, and event shape of `[num_timesteps]`. #### Examples Suppose we've built a model and fit it to data: ```python day_of_week = tfp.sts.Seasonal( num_seasons=7, observed_time_series=observed_time_series, name='day_of_week') local_linear_trend = tfp.sts.LocalLinearTrend( observed_time_series=observed_time_series, name='local_linear_trend') model = tfp.sts.Sum(components=[day_of_week, local_linear_trend], observed_time_series=observed_time_series) num_steps_forecast = 50 samples, kernel_results = tfp.sts.fit_with_hmc(model, observed_time_series) ``` To extract the contributions of individual components, pass the time series and sampled parameters into `decompose_by_component`: ```python component_dists = decompose_by_component( model, observed_time_series=observed_time_series, parameter_samples=samples) # Component mean and stddev have shape `[len(observed_time_series)]`. day_of_week_effect_mean = component_dists[day_of_week].mean() day_of_week_effect_stddev = component_dists[day_of_week].stddev() ``` Using the component distributions, we can visualize the uncertainty for each component: ``` from matplotlib import pylab as plt num_components = len(component_dists) xs = np.arange(len(observed_time_series)) fig = plt.figure(figsize=(12, 3 * num_components)) for i, (component, component_dist) in enumerate(component_dists.items()): # If in graph mode, replace `.numpy()` with `.eval()` or `sess.run()`. component_mean = component_dist.mean().numpy() component_stddev = component_dist.stddev().numpy() ax = fig.add_subplot(num_components, 1, 1 + i) ax.plot(xs, component_mean, lw=2) ax.fill_between(xs, component_mean - 2 * component_stddev, component_mean + 2 * component_stddev, alpha=0.5) ax.set_title(component.name) ```
11,179
def img2img_transformer2d_n31(): hparams = img2img_transformer2d_base() hparams.batch_size = 1 hparams.num_encoder_layers = 6 hparams.num_decoder_layers = 12 hparams.num_heads = 8 hparams.query_shape = (16, 32) hparams.memory_flange = (16, 32) return hparams
Set of hyperparameters.
11,180
def parse_media_range(range): (type, subtype, params) = parse_mime_type(range) if not in params or not params[] or \ float(params[]) > 1 or float(params[]) < 0: params[] = return (type, subtype, params)
Carves up a media range and returns a tuple of the (type, subtype, params) where 'params' is a dictionary of all the parameters for the media range. For example, the media range 'application/*;q=0.5' would get parsed into: ('application', '*', {'q', '0.5'}) In addition this function also guarantees that there is a value for 'q' in the params dictionary, filling it in with a proper default if necessary.
11,181
def add_node(self, info): if not info.initialized: return graph = self._request_graph(info.ui.control) if graph is None: return IDs = [v.ID for v in graph.nodes] node = Node(ID=make_unique_name("node", IDs)) graph.nodes.append(node) retval = node.edit_traits(parent=info.ui.control, kind="livemodal") if not retval.result: graph.nodes.remove(node)
Handles adding a Node to the graph.
11,182
def check(self, completed, failed=None): if len(self) == 0: return True against = set() if self.success: against = completed if failed is not None and self.failure: against = against.union(failed) if self.all: return self.issubset(against) else: return not self.isdisjoint(against)
check whether our dependencies have been met.
11,183
def init(): cwd = _getcwd() res = _glfw.glfwInit() os.chdir(cwd) return res
Initializes the GLFW library. Wrapper for: int glfwInit(void);
11,184
def _get_struct_dropshadowfilter(self): obj = _make_object("DropShadowFilter") obj.DropShadowColor = self._get_struct_rgba() obj.BlurX = unpack_fixed16(self._src) obj.BlurY = unpack_fixed16(self._src) obj.Angle = unpack_fixed16(self._src) obj.Distance = unpack_fixed16(self._src) obj.Strength = unpack_fixed8(self._src) bc = BitConsumer(self._src) obj.InnerShadow = bc.u_get(1) obj.Knockout = bc.u_get(1) obj.CompositeSource = bc.u_get(1) obj.Passes = bc.u_get(5) return obj
Get the values for the DROPSHADOWFILTER record.
11,185
def setattr(self, name, val): nodes = self._do_query(multiple=False) try: return self.poco.agent.hierarchy.setAttr(nodes, name, val) except UnableToSetAttributeException as e: raise InvalidOperationException(.format(str(e), self))
Change the attribute value of the UI element. Not all attributes can be casted to text. If changing the immutable attributes or attributes which do not exist, the InvalidOperationException exception is raised. Args: name: attribute name val: new attribute value to cast Raises: InvalidOperationException: when it fails to set the attribute on UI element
11,186
def _set_lldp(self, v, load=False): if hasattr(v, "_utype"): v = v._utype(v) try: t = YANGDynClass(v,base=lldp.lldp, is_container=, presence=True, yang_name="lldp", rest_name="lldp", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u: {u: u, u: u, u: u, u: None, u: None, u: None, u: u}}, namespace=, defining_module=, yang_type=, is_config=True) except (TypeError, ValueError): raise ValueError({ : , : "container", : , }) self.__lldp = t if hasattr(self, ): self._set()
Setter method for lldp, mapped from YANG variable /protocol/lldp (container) If this variable is read-only (config: false) in the source YANG file, then _set_lldp is considered as a private method. Backends looking to populate this variable should do so via calling thisObj._set_lldp() directly.
11,187
def list_overlay_names(self): overlay_names = [] for fname in _ls(self._overlays_abspath): name, ext = os.path.splitext(fname) overlay_names.append(name) return overlay_names
Return list of overlay names.
11,188
def read_client_secrets(): client_secrets = _default_client_secrets() secrets = get_secrets_file() if secrets is not None: client_secrets = read_json(secrets) else: from sregistry.defaults import SREGISTRY_CLIENT_SECRETS write_json(client_secrets, SREGISTRY_CLIENT_SECRETS) return client_secrets
for private or protected registries, a client secrets file is required to be located at .sregistry. If no secrets are found, we use default of Singularity Hub, and return a dummy secrets.
11,189
def infos(self, type=None, failed=False): nodes = self.nodes(failed="all") infos = [] for n in nodes: infos.extend(n.infos(type=type, failed=failed)) return infos
Get all infos created by the participants nodes. Return a list of infos produced by nodes associated with the participant. If specified, ``type`` filters by class. By default, failed infos are excluded, to include only failed nodes use ``failed=True``, for all nodes use ``failed=all``. Note that failed filters the infos, not the nodes - infos from all nodes (whether failed or not) can be returned.
11,190
def build_message(self, checker): solution = % checker.solution if self.with_solutions else return .format(checker.code, checker.msg, solution)
Builds the checker's error message to report
11,191
def filter_composite_from_subgroups(s): dims = [] for letter, sg in zip(, s[2:]): dims.append(.format(letter)) if dims: return .join(dims)
Given a sorted list of subgroups, return a string appropriate to provide as the a composite track's `filterComposite` argument >>> import trackhub >>> trackhub.helpers.filter_composite_from_subgroups(['cell', 'ab', 'lab', 'knockdown']) 'dimA dimB' Parameters ---------- s : list A list representing the ordered subgroups, ideally the same list provided to `dimensions_from_subgroups`. The values are not actually used, just the number of items.
11,192
def status_counter(self): counter = collections.Counter() for task in self: counter[str(task.status)] += 1 return counter
Returns a `Counter` object that counts the number of task with given status (use the string representation of the status as key).
11,193
def get_reference_line_numeration_marker_patterns(prefix=u): title = u"" if type(prefix) in (str, unicode): title = prefix g_name = u g_close = u space = r patterns = [ space + title + g_name + r + g_close, space + title + g_name + r + g_close, space + title + g_name + r + g_close, space + title + g_name + r + g_close, space + title + g_name + r + g_close, space + title + g_name + r + g_close, space + title + g_name + r + g_close, space + title + g_name + r + g_close, space + title + g_name + r + g_close, space + title + g_name + r + g_close, space + title + g_name + r + g_close, space + title + g_name + r + g_close, space + title + g_name + r + g_close, space + title + g_name + r + g_close, ] return [re.compile(p, re.I | re.UNICODE) for p in patterns]
Return a list of compiled regex patterns used to search for the marker. Marker of a reference line in a full-text document. :param prefix: (string) the possible prefix to a reference line :return: (list) of compiled regex patterns.
11,194
def gather_dilated_memory_blocks(x, num_memory_blocks, gap_size, query_block_size, memory_block_size, gather_indices, direction="left"): gathered_blocks = [] for block_id in range(num_memory_blocks): block_end_index = -(query_block_size + gap_size * (block_id + 1) + memory_block_size * block_id) block_start_index = ( (memory_block_size + gap_size) * (num_memory_blocks - (block_id + 1))) if direction != "left": [block_end_index, block_start_index] = [-block_start_index, -block_end_index] if block_end_index == 0: x_block = x[block_start_index:] else: x_block = x[block_start_index:block_end_index] def gather_dilated_1d_blocks(x, gather_indices): x_new = tf.gather(x, gather_indices) return tf.transpose(x_new, [2, 3, 0, 1, 4]) gathered_blocks.append(gather_dilated_1d_blocks(x_block, gather_indices)) return tf.concat(gathered_blocks, 3)
Gathers blocks with gaps in between. Args: x: Tensor of shape [length, batch, heads, depth] num_memory_blocks: how many memory blocks to look in "direction". Each will be separated by gap_size. gap_size: an integer indicating the gap size query_block_size: an integer indicating size of query block memory_block_size: an integer indicating the size of a memory block. gather_indices: The indices to gather from. direction: left or right Returns: Tensor of shape [batch, heads, blocks, block_length, depth]
11,195
def Nu_cylinder_Zukauskas(Re, Pr, Prw=None): r if Re <= 40: c, m = 0.75, 0.4 elif Re < 1E3: c, m = 0.51, 0.5 elif Re < 2E5: c, m = 0.26, 0.6 else: c, m = 0.076, 0.7 if Pr <= 10: n = 0.37 else: n = 0.36 Nu = c*Re**m*Pr**n if Prw: Nu = Nu*(Pr/Prw)**0.25 return Nu
r'''Calculates Nusselt number for crossflow across a single tube at a specified Re. Method from [1]_, also shown without modification in [2]_. .. math:: Nu_{D}=CRe^{m}Pr^{n}\left(\frac{Pr}{Pr_s}\right)^{1/4} Parameters ---------- Re : float Reynolds number with respect to cylinder diameter, [-] Pr : float Prandtl number at free stream temperature [-] Prw : float, optional Prandtl number at wall temperature, [-] Returns ------- Nu : float Nusselt number with respect to cylinder diameter, [-] Notes ----- If Prandtl number at wall are not provided, the Prandtl number correction is not used and left to an outside function. n is 0.37 if Pr <= 10; otherwise n is 0.36. C and m are from the following table. If Re is outside of the ranges shown, the nearest range is used blindly. +---------+-------+-----+ | Re | C | m | +=========+=======+=====+ | 1-40 | 0.75 | 0.4 | +---------+-------+-----+ | 40-1E3 | 0.51 | 0.5 | +---------+-------+-----+ | 1E3-2E5 | 0.26 | 0.6 | +---------+-------+-----+ | 2E5-1E6 | 0.076 | 0.7 | +---------+-------+-----+ Examples -------- Example 7.3 in [2]_, matches. >>> Nu_cylinder_Zukauskas(7992, 0.707, 0.69) 50.523612661934386 References ---------- .. [1] Zukauskas, A. Heat transfer from tubes in crossflow. In T.F. Irvine, Jr. and J. P. Hartnett, editors, Advances in Heat Transfer, volume 8, pages 93-160. Academic Press, Inc., New York, 1972. .. [2] Bergman, Theodore L., Adrienne S. Lavine, Frank P. Incropera, and David P. DeWitt. Introduction to Heat Transfer. 6E. Hoboken, NJ: Wiley, 2011.
11,196
def sources(self): try: return self._sources except AttributeError: self._sources = find_sources(self) return self._sources
Returns a dictionary of source methods found on this object, keyed on method name. Source methods are identified by (self, context) arguments on this object. For example: .. code-block:: python def f(self, context): ... is a source method, but .. code-block:: python def f(self, ctx): ... is not.
11,197
def variations(iterable, optional=lambda x: False): iterable = tuple(iterable) o = [optional(x) for x in iterable] a = set() for p in product([False, True], repeat=sum(o)): p = list(p) v = [b and (b and p.pop(0)) for b in o] v = tuple(iterable[i] for i in xrange(len(v)) if not v[i]) a.add(v) return sorted(a, cmp=lambda x, y: len(y) - len(x))
Returns all possible variations of a sequence with optional items.
11,198
def update_Broyden_J(self): CLOG.debug() delta_vals = self.param_vals - self._last_vals delta_residuals = self.calc_residuals() - self._last_residuals nrm = np.sqrt(np.dot(delta_vals, delta_vals)) direction = delta_vals / nrm vals = delta_residuals / nrm self._rank_1_J_update(direction, vals) self.JTJ = np.dot(self.J, self.J.T)
Execute a Broyden update of J
11,199
def start(self): version = self.request("get", "/version") if version != 2: raise GanetiApiError("Cans calm down, this is totally reasonable. Certain features = [] else: raise logging.info("RAPI features: %r" % (features,)) self.features = features
Confirm that we may access the target cluster.