Unnamed: 0
int64 0
389k
| code
stringlengths 26
79.6k
| docstring
stringlengths 1
46.9k
|
---|---|---|
11,500 | def get_field_def(
schema: GraphQLSchema, parent_type: GraphQLType, field_node: FieldNode
) -> Optional[GraphQLField]:
name = field_node.name.value
if name == "__schema" and schema.query_type is parent_type:
return SchemaMetaFieldDef
if name == "__type" and schema.query_type is parent_type:
return TypeMetaFieldDef
if name == "__typename" and is_composite_type(parent_type):
return TypeNameMetaFieldDef
if is_object_type(parent_type) or is_interface_type(parent_type):
parent_type = cast(Union[GraphQLObjectType, GraphQLInterfaceType], parent_type)
return parent_type.fields.get(name)
return None | Get field definition.
Not exactly the same as the executor's definition of `get_field_def()`, in this
statically evaluated environment we do not always have an Object type, and need
to handle Interface and Union types. |
11,501 | def update(self, feedforwardInputI, feedforwardInputE, v, recurrent=True,
envelope=False, iSpeedTuning=False, enforceDale=True):
self.instantaneousI.fill(0)
self.instantaneousEL.fill(0)
self.instantaneousER.fill(0)
self.instantaneousI += feedforwardInputI
self.instantaneousEL += feedforwardInputE
self.instantaneousER += feedforwardInputE
if enforceDale:
weightsII = np.minimum(self.weightsII, 0)
weightsIER = np.minimum(self.weightsIER, 0)
weightsIEL = np.minimum(self.weightsIEL, 0)
weightsELI = np.maximum(self.weightsELI, 0)
weightsERI = np.maximum(self.weightsERI, 0)
else:
weightsII = self.weightsII
weightsIER = self.weightsIER
weightsIEL = self.weightsIEL
weightsELI = self.weightsELI
weightsERI = self.weightsERI
if recurrent:
self.instantaneousI += (np.matmul(self.activationsEL, weightsELI) +\
np.matmul(self.activationsER, weightsERI) +\
np.matmul(self.activationsI, weightsII))
self.instantaneousEL += np.matmul(self.activationsI, weightsIEL)
self.instantaneousER += np.matmul(self.activationsI, weightsIER)
self.instantaneousEL *= max((1 - self.velocityGain*v), 0)
self.instantaneousER *= max((1 + self.velocityGain*v), 0)
if iSpeedTuning:
self.instantaneousI *= min(self.velocityGain*np.abs(v), 1)
self.instantaneousI += self.constantTonicMagnitude
self.instantaneousEL += self.constantTonicMagnitude
self.instantaneousER += self.constantTonicMagnitude
if envelope:
self.instantaneousI *= self.envelopeI
self.instantaneousER *= self.envelopeE
self.instantaneousEL *= self.envelopeE
np.maximum(self.instantaneousI, 0., self.instantaneousI)
np.maximum(self.instantaneousEL, 0., self.instantaneousEL)
np.maximum(self.instantaneousER, 0., self.instantaneousER)
self.activationsI += (self.instantaneousI - self.activationsI/self.decayConstant)*self.dt
self.activationsEL += (self.instantaneousEL - self.activationsEL/self.decayConstant)*self.dt
self.activationsER += (self.instantaneousER - self.activationsER/self.decayConstant)*self.dt
np.minimum(self.activationsI, self.clip, self.activationsI)
np.minimum(self.activationsEL, self.clip, self.activationsEL)
np.minimum(self.activationsER, self.clip, self.activationsER) | Do one update of the CAN network, of length self.dt.
:param feedforwardInputI: The feedforward input to inhibitory cells.
:param feedforwardInputR: The feedforward input to excitatory cells.
:param v: The current velocity.
:param recurrent: Whether or not recurrent connections should be used.
:param envelope: Whether or not an envelope should be applied.
:param iSpeedTuning: Whether or not inhibitory cells should also have their
activations partially depend on current movement speed. This is
necessary for periodic training, serving a role similar to that of
the envelope.
:param Whether or not Dale's law should be enforced locally. Helps with
training with recurrent weights active, but can slow down training. |
11,502 | def cat_top_keywords(self, session, cat, up=True, offset=0, offsets=[]):
print %(str(cat), str(cat.level))
print %offset
response = []
if not offsets or offset==0:
url = %(cat.parent.cid, if cat.level==2 else str(cat.cid), if up else , offset)
print url
rs = self.fetch(url)
if not rs: return response
soup = BeautifulSoup(rs.content, convertEntities=BeautifulSoup.HTML_ENTITIES, markupMassage=hexentityMassage)
response = self.parse_cat_top_keywords(soup, offset)
if offset==0:
offsets = self.get_cat_top_keywords_pages(soup, offset)
print %offsets
if offsets:
rs = []
threadPool = ThreadPool(len(offsets) if len(offsets)<=5 else 5)
for idx, page_offset in enumerate(offsets):
page_url = %(cat.parent.cid, if cat.level==2 else str(cat.cid), if up else , page_offset)
next_page = if idx == (len(offsets)-1) else
threadPool.run(self.fetch, callback=None, url=page_url, config=dict(get_next=next_page, offset=page_offset))
pages = threadPool.killAllWorkers(None)
for p in pages:
if not p: continue
soup2 = BeautifulSoup(p.content, convertEntities=BeautifulSoup.HTML_ENTITIES, markupMassage=hexentityMassage)
offset2 = int(p.config[])
response += self.parse_cat_top_keywords(soup2, offset2)
print %offset2
if p.config[] != : continue
offsets = self.get_cat_top_keywords_pages(soup2, offset2)
print offsets
if not offsets: continue
response += self.cat_top_keywords(session, cat, up, offset2, offsets)
for k in response:
new_keyword = models.Keyword(k[].decode())
new_keyword.categories.append(cat)
session.add(new_keyword)
try:
session.commit()
except IntegrityError:
session.rollback()
new_keyword = session.query(models.Keyword).filter(models.Keyword.name == k[]).first()
new_keyword.categories.append(cat)
session.commit()
print %new_keyword
return response | Get top keywords in a specific category |
11,503 | def add_namespaces(spec_dict):
for ns in spec_dict["namespaces"]:
spec_dict["namespaces"][ns]["list"] = []
spec_dict["namespaces"][ns]["list_long"] = []
spec_dict["namespaces"][ns]["list_short"] = []
spec_dict["namespaces"][ns]["to_short"] = {}
spec_dict["namespaces"][ns]["to_long"] = {}
for obj in spec_dict["namespaces"][ns]["info"]:
spec_dict["namespaces"][ns]["list"].extend([obj["name"], obj["abbreviation"]])
spec_dict["namespaces"][ns]["list_short"].append(obj["abbreviation"])
spec_dict["namespaces"][ns]["list_long"].append(obj["name"])
spec_dict["namespaces"][ns]["to_short"][obj["abbreviation"]] = obj["abbreviation"]
spec_dict["namespaces"][ns]["to_short"][obj["name"]] = obj["abbreviation"]
spec_dict["namespaces"][ns]["to_long"][obj["abbreviation"]] = obj["name"]
spec_dict["namespaces"][ns]["to_long"][obj["name"]] = obj["name"]
if "abbrev1" in obj:
spec_dict["namespaces"][ns]["to_short"][obj["abbrev1"]] = obj["abbreviation"]
spec_dict["namespaces"][ns]["to_long"][obj["abbrev1"]] = obj["name"] | Add namespace convenience keys, list, list_{short|long}, to_{short|long} |
11,504 | def parse_info_frags(info_frags):
new_scaffolds = {}
with open(info_frags, "r") as info_frags_handle:
current_new_contig = None
for line in info_frags_handle:
if line.startswith(">"):
current_new_contig = str(line[1:-1])
new_scaffolds[current_new_contig] = []
elif line.startswith("init_contig"):
pass
else:
(init_contig, id_frag, orientation, pos_start, pos_end) = str(
line[:-1]
).split("\t")
start = int(pos_start)
end = int(pos_end)
ori = int(orientation)
fragid = int(id_frag)
assert start < end
assert ori in {-1, 1}
new_scaffolds[current_new_contig].append(
[init_contig, fragid, start, end, ori]
)
return new_scaffolds | Import an info_frags.txt file and return a dictionary where each key
is a newly formed scaffold and each value is the list of bins and their
origin on the initial scaffolding. |
11,505 | def __connect(self):
self.__methods = _get_methods_by_uri(self.sqluri)
uri_connect_method = self.__methods[METHOD_CONNECT]
self.__dbapi2_conn = uri_connect_method(self.sqluri) | Connect to the database. |
11,506 | def assign(self, object_type, object_uuid, overwrite=False):
if self.is_deleted():
raise PIDInvalidAction(
"You cannot assign objects to a deleted/redirected persistent"
" identifier."
)
if not isinstance(object_uuid, uuid.UUID):
object_uuid = uuid.UUID(object_uuid)
if self.object_type or self.object_uuid:
if object_type == self.object_type and \
object_uuid == self.object_uuid:
return True
if not overwrite:
raise PIDObjectAlreadyAssigned(object_type,
object_uuid)
self.unassign()
try:
with db.session.begin_nested():
self.object_type = object_type
self.object_uuid = object_uuid
db.session.add(self)
except SQLAlchemyError:
logger.exception("Failed to assign {0}:{1}".format(
object_type, object_uuid), extra=dict(pid=self))
raise
logger.info("Assigned object {0}:{1}".format(
object_type, object_uuid), extra=dict(pid=self))
return True | Assign this persistent identifier to a given object.
Note, the persistent identifier must first have been reserved. Also,
if an existing object is already assigned to the pid, it will raise an
exception unless overwrite=True.
:param object_type: The object type is a string that identify its type.
:param object_uuid: The object UUID.
:param overwrite: Force PID overwrites in case was previously assigned.
:raises invenio_pidstore.errors.PIDInvalidAction: If the PID was
previously deleted.
:raises invenio_pidstore.errors.PIDObjectAlreadyAssigned: If the PID
was previously assigned with a different type/uuid.
:returns: `True` if the PID is successfully assigned. |
11,507 | def _placement_points_generator(self, skyline, width):
skyline_r = skyline[-1].right
skyline_l = skyline[0].left
ppointsl = (s.left for s in skyline if s.left+width <= skyline_r)
ppointsr = (s.right-width for s in skyline if s.right-width >= skyline_l)
return heapq.merge(ppointsl, ppointsr) | Returns a generator for the x coordinates of all the placement
points on the skyline for a given rectangle.
WARNING: In some cases could be duplicated points, but it is faster
to compute them twice than to remove them.
Arguments:
skyline (list): Skyline HSegment list
width (int, float): Rectangle width
Returns:
generator |
11,508 | def main():
parser = __build_option_parser()
args = parser.parse_args()
analyze_ws = AnalyzeWS(args)
try:
analyze_ws.set_file(args.file_[0])
except IOError:
print
sys.exit(3)
if args.to_file or args.to_browser:
analyze_ws.to_file_mode()
if args.to_browser:
analyze_ws.to_browser_mode()
else:
analyze_ws.interactive_mode() | Main method of the script |
11,509 | def add_segy_view_widget(self, ind, widget, name=None):
if self._context is None:
self._segywidgets.append(widget)
self.initialize()
return 0
self._tab_widget.updatesEnabled = False
widget.show_toolbar(toolbar=True, layout_combo=False, colormap=True, save=True, settings=True)
self._modify_qtree(widget.settings_window.qtree, [0, 1, 2, 4])
if name is None:
name = os.path.basename(widget.slice_data_source.source_filename)
id = self._tab_widget.insertTab(ind, widget, name)
widget.context.data_changed.connect(self._local_data_changed)
self._tab_widget.updatesEnabled = True
return id | :param widget: The SegyViewWidget that will be added to the SegyTabWidget
:type widget: SegyViewWidget |
11,510 | def update(self, dict):
for field in self.sorted_fields():
if field in dict:
if dict[field] is None:
delattr(self, field)
else:
setattr(self, field, dict[field]) | Set all field values from a dictionary.
For any key in `dict` that is also a field to store tags the
method retrieves the corresponding value from `dict` and updates
the `MediaFile`. If a key has the value `None`, the
corresponding property is deleted from the `MediaFile`. |
11,511 | def expand_to_vector(x, tensor_name=None, op_name=None, validate_args=False):
with tf.name_scope(op_name or "expand_to_vector"):
x = tf.convert_to_tensor(value=x, name="x")
ndims = tensorshape_util.rank(x.shape)
if ndims is None:
if validate_args:
x = with_dependencies([
assert_util.assert_rank_at_most(
x, 1, message="Input is neither scalar nor vector.")
], x)
ndims = tf.rank(x)
expanded_shape = pick_vector(
tf.equal(ndims, 0), np.array([1], dtype=np.int32), tf.shape(input=x))
return tf.reshape(x, expanded_shape)
elif ndims == 0:
x_const = tf.get_static_value(x)
if x_const is not None:
return tf.convert_to_tensor(
value=dtype_util.as_numpy_dtype(x.dtype)([x_const]),
name=tensor_name)
else:
return tf.reshape(x, [1])
elif ndims != 1:
raise ValueError("Input is neither scalar nor vector.")
return x | Transform a 0-D or 1-D `Tensor` to be 1-D.
For user convenience, many parts of the TensorFlow Probability API accept
inputs of rank 0 or 1 -- i.e., allowing an `event_shape` of `[5]` to be passed
to the API as either `5` or `[5]`. This function can be used to transform
such an argument to always be 1-D.
NOTE: Python or NumPy values will be converted to `Tensor`s with standard type
inference/conversion. In particular, an empty list or tuple will become an
empty `Tensor` with dtype `float32`. Callers should convert values to
`Tensor`s before calling this function if different behavior is desired
(e.g. converting empty lists / other values to `Tensor`s with dtype `int32`).
Args:
x: A 0-D or 1-D `Tensor`.
tensor_name: Python `str` name for `Tensor`s created by this function.
op_name: Python `str` name for `Op`s created by this function.
validate_args: Python `bool, default `False`. When `True`, arguments may be
checked for validity at execution time, possibly degrading runtime
performance. When `False`, invalid inputs may silently render incorrect
outputs.
Returns:
vector: a 1-D `Tensor`. |
11,512 | def default_user_agent(name="python-requests"):
_implementation = platform.python_implementation()
if _implementation == :
_implementation_version = platform.python_version()
elif _implementation == :
_implementation_version = % (sys.pypy_version_info.major,
sys.pypy_version_info.minor,
sys.pypy_version_info.micro)
if sys.pypy_version_info.releaselevel != :
_implementation_version = .join([_implementation_version, sys.pypy_version_info.releaselevel])
elif _implementation == :
_implementation_version = platform.python_version()
elif _implementation == :
_implementation_version = platform.python_version()
else:
_implementation_version =
try:
p_system = platform.system()
p_release = platform.release()
except IOError:
p_system =
p_release =
return " ".join([ % (name, __version__),
% (_implementation, _implementation_version),
% (p_system, p_release)]) | Return a string representing the default user agent. |
11,513 | def _remove_none_values(dictionary):
return list(map(dictionary.pop,
[i for i in dictionary if dictionary[i] is None])) | Remove dictionary keys whose value is None |
11,514 | def clone(self, fp):
return self.__class__(fp,
self._mangle_from_,
None,
policy=self.policy) | Clone this generator with the exact same options. |
11,515 | def check_type(self, value, attr, data):
root_value = super(InstructionParameter, self).check_type(
value, attr, data)
if is_collection(value):
_ = [super(InstructionParameter, self).check_type(item, attr, data)
for item in value]
return root_value | Customize check_type for handling containers. |
11,516 | def extract_archive(archive, verbosity=0, outdir=None, program=None, interactive=True):
util.check_existing_filename(archive)
if verbosity >= 0:
util.log_info("Extracting %s ..." % archive)
return _extract_archive(archive, verbosity=verbosity, interactive=interactive, outdir=outdir, program=program) | Extract given archive. |
11,517 | def add_sibling(self, pos=None, **kwargs):
pos = self._prepare_pos_var_for_add_sibling(pos)
if len(kwargs) == 1 and in kwargs:
newobj = kwargs[]
if newobj.pk:
raise NodeAlreadySaved("Attempted to add a tree node that is "\
"already in the database")
else:
newobj = get_result_class(self.__class__)(**kwargs)
newobj.depth = self.depth
sql = None
target = self
if target.is_root():
newobj.lft = 1
newobj.rgt = 2
if pos == :
siblings = list(target.get_sorted_pos_queryset(
target.get_siblings(), newobj))
if siblings:
pos =
target = siblings[0]
else:
pos =
last_root = target.__class__.get_last_root_node()
if (
(pos == ) or
(pos == and target == last_root)
):
newobj.tree_id = last_root.tree_id + 1
else:
newpos = {: 1,
: target.tree_id,
: target.tree_id + 1}[pos]
sql, params = target.__class__._move_tree_right(newpos)
newobj.tree_id = newpos
else:
newobj.tree_id = target.tree_id
if pos == :
siblings = list(target.get_sorted_pos_queryset(
target.get_siblings(), newobj))
if siblings:
pos =
target = siblings[0]
else:
pos =
if pos in (, , ):
siblings = list(target.get_siblings())
if pos == :
if target == siblings[-1]:
pos =
else:
pos =
found = False
for node in siblings:
if found:
target = node
break
elif node == target:
found = True
if pos == :
if target == siblings[0]:
pos =
if pos == :
target = siblings[0]
move_right = self.__class__._move_right
if pos == :
newpos = target.get_parent().rgt
sql, params = move_right(target.tree_id, newpos, False, 2)
elif pos == :
newpos = target.lft
sql, params = move_right(target.tree_id, newpos - 1, False, 2)
elif pos == :
newpos = target.lft
sql, params = move_right(target.tree_id, newpos, True, 2)
newobj.lft = newpos
newobj.rgt = newpos + 1
if sql:
cursor = self._get_database_cursor()
cursor.execute(sql, params)
newobj.save()
return newobj | Adds a new node as a sibling to the current node object. |
11,518 | def _get_mean(self, sites, C, ln_y_ref, exp1, exp2, v1):
z1pt0 = sites.z1pt0
eta = epsilon = 0
ln_y = (
ln_y_ref + C[] *
np.log(np.clip(sites.vs30, -np.inf, v1) / 1130)
+ C[] * (exp1 - exp2)
* np.log((np.exp(ln_y_ref) + C[]) / C[])
+ C[]
* (1.0 - 1.0 / np.cosh(
C[] * (z1pt0 - C[]).clip(0, np.inf)))
+ C[] / np.cosh(0.15 * (z1pt0 - 15).clip(0, np.inf))
+ eta + epsilon
)
return ln_y | Add site effects to an intensity.
Implements eq. 5 |
11,519 | def create_payload(self):
payload = super(OverrideValue, self).create_payload()
if hasattr(self, ):
del payload[]
if hasattr(self, ):
del payload[]
return payload | Remove ``smart_class_parameter_id`` or ``smart_variable_id`` |
11,520 | def get_config_values(config_path, section, default=):
values = {}
if not os.path.isfile(config_path):
raise IpaUtilsException(
% config_path
)
config = configparser.ConfigParser()
try:
config.read(config_path)
except Exception:
raise IpaUtilsException(
)
try:
values.update(config.items(default))
except Exception:
pass
try:
values.update(config.items(section))
except Exception:
pass
return values | Parse ini config file and return a dict of values.
The provided section overrides any values in default section. |
11,521 | def from_center(self, x=None, y=None, z=None, r=None,
theta=None, h=None, reference=None):
coords_to_endpoint = None
if all([isinstance(i, numbers.Number) for i in (x, y, z)]):
coords_to_endpoint = self.from_cartesian(x, y, z)
if all([isinstance(i, numbers.Number) for i in (r, theta, h)]):
coords_to_endpoint = self.from_polar(r, theta, h)
coords_to_reference = Vector(0, 0, 0)
if reference:
coords_to_reference = self.coordinates(reference)
return coords_to_reference + coords_to_endpoint | Accepts a set of (:x:, :y:, :z:) ratios for Cartesian or
(:r:, :theta:, :h:) rations/angle for Polar and returns
:Vector: using :reference: as origin |
11,522 | def motif4struct_wei(W):
from scipy import io
import os
fname = os.path.join(os.path.dirname(__file__), motiflib)
mot = io.loadmat(fname)
m4 = mot[]
m4n = mot[]
id4 = mot[].squeeze()
n4 = mot[].squeeze()
n = len(W)
I = np.zeros((199, n))
Q = np.zeros((199, n))
F = np.zeros((199, n))
A = binarize(W, copy=True)
As = np.logical_or(A, A.T)
for u in range(n - 3):
V1 = np.append(np.zeros((u,), dtype=int), As[u, u + 1:n + 1])
for v1 in np.where(V1)[0]:
V2 = np.append(np.zeros((u,), dtype=int), As[v1, u + 1:n + 1])
V2[V1] = 0
V2 = np.logical_or(
np.append(np.zeros((v1,)), As[u, v1 + 1:n + 1]), V2)
for v2 in np.where(V2)[0]:
vz = np.max((v1, v2))
V3 = np.append(np.zeros((u,), dtype=int), As[v2, u + 1:n + 1])
V3[V2] = 0
V3 = np.logical_or(
np.append(np.zeros((v2,)), As[v1, v2 + 1:n + 1]), V3)
V3[V1] = 0
V3 = np.logical_or(
np.append(np.zeros((vz,)), As[u, vz + 1:n + 1]), V3)
for v3 in np.where(V3)[0]:
a = np.array((A[v1, u], A[v2, u], A[v3, u], A[u, v1], A[v2, v1],
A[v3, v1], A[u, v2], A[v1, v2], A[
v3, v2], A[u, v3], A[v1, v3],
A[v2, v3]))
s = np.uint64(
np.sum(np.power(10, np.arange(11, -1, -1)) * a))
ix = np.squeeze(s == m4n)
w = np.array((W[v1, u], W[v2, u], W[v3, u], W[u, v1], W[v2, v1],
W[v3, v1], W[u, v2], W[v1, v2], W[
v3, v2], W[u, v3], W[v1, v3],
W[v2, v3]))
M = w * m4[ix, :]
id = id4[ix] - 1
l = n4[ix]
x = np.sum(M, axis=1) / l
M[M == 0] = 1
i = np.prod(M, axis=1)**(1 / l)
q = i / x
I[id, u] += i
I[id, v1] += i
I[id, v2] += i
I[id, v3] += i
Q[id, u] += q
Q[id, v1] += q
Q[id, v2] += q
Q[id, v3] += q
F[id, u] += 1
F[id, v1] += 1
F[id, v2] += 1
F[id, v3] += 1
return I, Q, F | Structural motifs are patterns of local connectivity. Motif frequency
is the frequency of occurrence of motifs around a node. Motif intensity
and coherence are weighted generalizations of motif frequency.
Parameters
----------
W : NxN np.ndarray
weighted directed connection matrix (all weights between 0 and 1)
Returns
-------
I : 199xN np.ndarray
motif intensity matrix
Q : 199xN np.ndarray
motif coherence matrix
F : 199xN np.ndarray
motif frequency matrix
Notes
-----
Average intensity and coherence are given by I./F and Q./F. |
11,523 | def _select_options(self, options, keys, invert=False):
options = self._merge_options(options)
result = {}
for key in options:
if (invert and key not in keys) or (not invert and key in keys):
result[key] = options[key]
return result | Select the provided keys out of an options object.
Selects the provided keys (or everything except the provided keys) out
of an options object. |
11,524 | def assert_array(A, shape=None, uniform=None, ndim=None, size=None, dtype=None, kind=None):
r
try:
if shape is not None:
if not np.array_equal(np.shape(A), shape):
raise AssertionError(+str(shape)++str(np.shape(A)))
if uniform is not None:
shapearr = np.array(np.shape(A))
is_uniform = np.count_nonzero(shapearr-shapearr[0]) == 0
if uniform and not is_uniform:
raise AssertionError(+str(shapearr))
elif not uniform and is_uniform:
raise AssertionError(+str(shapearr))
if size is not None:
if not np.size(A) == size:
raise AssertionError(+str(size)++str(np.size(A)))
if ndim is not None:
if not ndim == np.ndim(A):
raise AssertionError(+str(ndim)++str(np.ndim(A)))
if dtype is not None:
if not isinstance(A, (np.ndarray)) and not scisp.issparse(A):
A = np.array(A)
if kind == :
if not (A.dtype.kind == or A.dtype.kind == ):
raise AssertionError(+str(A.dtype.kind))
elif not A.dtype.kind == kind:
raise AssertionError(+str(kind)
++str(A.dtype.kind))
except Exception as ex:
if isinstance(ex, AssertionError):
raise ex
else:
print(,ex)
raise AssertionError(+
+str(A)++str(type(A))) | r""" Asserts whether the given array or sparse matrix has the given properties
Parameters
----------
A : ndarray, scipy.sparse matrix or array-like
the array under investigation
shape : shape, optional, default=None
asserts if the array has the requested shape. Be careful with vectors
because this will distinguish between row vectors (1,n), column vectors
(n,1) and arrays (n,). If you want to be less specific, consider using
size
square : None | True | False
if not None, asserts whether the array dimensions are uniform (e.g.
square for a ndim=2 array) (True), or not uniform (False).
size : int, optional, default=None
asserts if the arrays has the requested number of elements
ndim : int, optional, default=None
asserts if the array has the requested dimension
dtype : type, optional, default=None
asserts if the array data has the requested data type. This check is
strong, e.g. int and int64 are not equal. If you want a weaker check,
consider the kind option
kind : string, optional, default=None
Checks if the array data is of the specified kind. Options include 'i'
for integer types, 'f' for float types Check numpy.dtype.kind for
possible options. An additional option is 'numeric' for either integer
or float.
Raises
------
AssertionError
If assertions has failed |
11,525 | def cluster(list_of_texts, num_clusters=3):
pipeline = Pipeline([
("vect", CountVectorizer()),
("tfidf", TfidfTransformer()),
("clust", KMeans(n_clusters=num_clusters))
])
try:
clusters = pipeline.fit_predict(list_of_texts)
except ValueError:
clusters = list(range(len(list_of_texts)))
return clusters | Cluster a list of texts into a predefined number of clusters.
:param list_of_texts: a list of untokenized texts
:param num_clusters: the predefined number of clusters
:return: a list with the cluster id for each text, e.g. [0,1,0,0,2,2,1] |
11,526 | def matches_query(self, key, query):
dumped = query.dump()
dumped[] = query._query_class._class_name
self._add_condition(key, , dumped)
return self | 增加查询条件,限制查询结果对象指定字段的值,与另外一个查询对象的返回结果相同。
:param key: 查询条件字段名
:param query: 查询对象
:type query: Query
:rtype: Query |
11,527 | def __extract_modules(self, loader, name, is_pkg):
mod = loader.find_module(name).load_module(name)
if hasattr(mod, ):
module_router = ModuleRouter(mod,
ignore_names=self.__serialize_module_paths()
).register_route(app=self.application, name=name)
self.__routers.extend(module_router.routers)
self.__modules.append(mod)
else:
pass | if module found load module and save all attributes in the module found |
11,528 | def get_cached_manylinux_wheel(self, package_name, package_version, disable_progress=False):
cached_wheels_dir = os.path.join(tempfile.gettempdir(), )
if not os.path.isdir(cached_wheels_dir):
os.makedirs(cached_wheels_dir)
wheel_file = .format(package_name, package_version, self.manylinux_wheel_file_suffix)
wheel_path = os.path.join(cached_wheels_dir, wheel_file)
if not os.path.exists(wheel_path) or not zipfile.is_zipfile(wheel_path):
wheel_url = self.get_manylinux_wheel_url(package_name, package_version)
if not wheel_url:
return None
print(" - {}=={}: Downloading".format(package_name, package_version))
with open(wheel_path, ) as f:
self.download_url_with_progress(wheel_url, f, disable_progress)
if not zipfile.is_zipfile(wheel_path):
return None
else:
print(" - {}=={}: Using locally cached manylinux wheel".format(package_name, package_version))
return wheel_path | Gets the locally stored version of a manylinux wheel. If one does not exist, the function downloads it. |
11,529 | def get_pose_error(target_pose, current_pose):
error = np.zeros(6)
target_pos = target_pose[:3, 3]
current_pos = current_pose[:3, 3]
pos_err = target_pos - current_pos
r1 = current_pose[:3, 0]
r2 = current_pose[:3, 1]
r3 = current_pose[:3, 2]
r1d = target_pose[:3, 0]
r2d = target_pose[:3, 1]
r3d = target_pose[:3, 2]
rot_err = 0.5 * (np.cross(r1, r1d) + np.cross(r2, r2d) + np.cross(r3, r3d))
error[:3] = pos_err
error[3:] = rot_err
return error | Computes the error corresponding to target pose - current pose as a 6-dim vector.
The first 3 components correspond to translational error while the last 3 components
correspond to the rotational error.
Args:
target_pose: a 4x4 homogenous matrix for the target pose
current_pose: a 4x4 homogenous matrix for the current pose
Returns:
A 6-dim numpy array for the pose error. |
11,530 | def scan(self, restrict):
while True:
best_pat = None
best_pat_len = 0
for p, regexp in self.patterns:
if best_pat is None:
msg = "Bad Token"
if restrict:
msg = "Trying to find one of " + ", ".join(restrict)
raise SyntaxError(self.pos, msg)
if not self.tokens or token != self.tokens[-1]:
self.tokens.append(token)
self.restrictions.append(restrict)
return 1
break
return 0 | Should scan another token and add it to the list, self.tokens,
and add the restriction to self.restrictions |
11,531 | def delete(cls, bucket_id):
bucket = cls.get(bucket_id)
if not bucket or bucket.deleted:
return False
bucket.deleted = True
return True | Delete a bucket.
Does not actually delete the Bucket, just marks it as deleted. |
11,532 | def default_package(self):
packages = [pk for pk in self.packages()
if pk.get() == ]
if packages:
return packages[0]
else:
return None | ::
GET /:login/packages
:Returns: the default package for this datacenter
:rtype: :py:class:`dict` or ``None``
Requests all the packages in this datacenter, filters for the default,
and returns the corresponding dict, if a default has been defined. |
11,533 | def count_above_mean(x):
m = np.mean(x)
return np.where(x > m)[0].size | Returns the number of values in x that are higher than the mean of x
:param x: the time series to calculate the feature of
:type x: numpy.ndarray
:return: the value of this feature
:return type: float |
11,534 | def _set_config_path(self):
self._path = os.getenv("CLOEEPY_CONFIG_PATH")
if self._path is None:
msg = "CLOEEPY_CONFIG_PATH is not set. Exiting..."
sys.exit(msg) | Reads config path from environment variable CLOEEPY_CONFIG_PATH
and sets as instance attr |
11,535 | def bbin(obj: Union[str, Element]) -> str:
return obj.name if isinstance(obj, Element ) else f if obj in builtin_names else obj | Boldify built in types
@param obj: object name or id
@return: |
11,536 | def add_menu(self, menu):
self._menus.append(menu)
self._menus = sorted(list(set(self._menus)), key=lambda x: x.title())
for action in menu.actions():
action.setShortcutContext(QtCore.Qt.WidgetShortcut)
self.addActions(menu.actions()) | Adds a sub-menu to the editor context menu.
Menu are put at the bottom of the context menu.
.. note:: to add a menu in the middle of the context menu, you can
always add its menuAction().
:param menu: menu to add |
11,537 | def prepare(args):
p = OptionParser(prepare.__doc__ + FastqNamings)
p.add_option("-K", default=51, type="int", help="K-mer size")
p.set_cpus(cpus=32)
opts, args = p.parse_args(args)
if len(args) < 2:
sys.exit(not p.print_help())
genomesize = float(args[0]) / 1000
fnames = args[1:]
for x in fnames:
assert op.exists(x), "File `{0}` not found.".format(x)
s = comment_banner("Meraculous params file") + "\n"
s += comment_banner("Basic parameters") + "\n"
s += "
s += "
libs = get_libs(fnames)
lib_seqs = []
rank = 0
for lib, fs in libs:
size = lib.size
if size == 0:
continue
rank += 1
library_name = lib.library_name
name = library_name.replace("-", "")
wildcard = "{0}*.1.*,{0}*.2.*".format(library_name)
rl = max(readlen([x]) for x in fs)
lib_seq = lib.get_lib_seq(wildcard, name, rl, rank)
lib_seqs.append(lib_seq)
s += "\n" + "\n".join(load_csv(None, lib_seqs, sep=" ")) + "\n"
params = [("genome_size", genomesize),
("is_diploid", 0),
("mer_size", opts.K),
("num_prefix_blocks", 1),
("no_read_validation", 0),
("local_num_procs", opts.cpus)]
s += "\n" + "\n".join(load_csv(None, params, sep=" ")) + "\n"
cfgfile = "meraculous.config"
write_file(cfgfile, s, tee=True)
s = "~/export/meraculous/bin/run_meraculous.sh -c {0}"\
.format(cfgfile)
runsh = "run.sh"
write_file(runsh, s) | %prog prepare genomesize *.fastq
Prepare MERACULOUS configuation file. Genome size should be entered in Mb. |
11,538 | def remove(self, module=True, force=False, configuration=True, dry_run=False):
if not (module or configuration):
raise ValueError("Need to specify to delete at least the module, or the configuration")
nc = 0
for csm in self.children():
nc += 1
csm.remove(module, force, configuration, dry_run)
del(csm)
if configuration and not dry_run and nc > 0:
self.module().index.commit("Removed at least one of child-modules of " % self.name)
if module and self.module_exists():
mod = self.module()
git_dir = mod.git_dir
if force:
mp = self.abspath
method = None
if osp.islink(mp):
method = os.remove
elif osp.isdir(mp):
method = rmtree
elif osp.exists(mp):
raise AssertionError("Cannot forcibly delete repository as it was neither a link, nor a directory")
if not dry_run:
assert method
method(mp)
else:
if mod.is_dirty(index=True, working_tree=True, untracked_files=True):
raise InvalidGitRepositoryError(
"Cannot delete module at %s with any modifications, unless force is specified"
% mod.working_tree_dir)
if len(rrefs):
del(rref)
del(rrefs)
del(remote)
if not dry_run:
self._clear_cache()
wtd = mod.working_tree_dir
del(mod)
import gc
gc.collect()
try:
rmtree(wtd)
except Exception as ex:
if HIDE_WINDOWS_KNOWN_ERRORS:
raise SkipTest("FIXME: fails with: PermissionError\n %s", ex)
else:
raise
if not dry_run and osp.isdir(git_dir):
self._clear_cache()
try:
rmtree(git_dir)
except Exception as ex:
if HIDE_WINDOWS_KNOWN_ERRORS:
raise SkipTest("FIXME: fails with: PermissionError\n %s", ex)
else:
raise
if not dry_run:
self._clear_cache()
if configuration and not dry_run:
parent_index = self.repo.index
try:
del(parent_index.entries[parent_index.entry_key(self.path, 0)])
except KeyError:
pass
parent_index.write()
with self.repo.config_writer() as writer:
writer.remove_section(sm_section(self.name))
with self.config_writer() as writer:
writer.remove_section()
return self | Remove this submodule from the repository. This will remove our entry
from the .gitmodules file and the entry in the .git/config file.
:param module: If True, the module checkout we point to will be deleted
as well. If the module is currently on a commit which is not part
of any branch in the remote, if the currently checked out branch
working tree, or untracked files,
is ahead of its tracking branch, if you have modifications in the
In case the removal of the repository fails for these reasons, the
submodule status will not have been altered.
If this submodule has child-modules on its own, these will be deleted
prior to touching the own module.
:param force: Enforces the deletion of the module even though it contains
modifications. This basically enforces a brute-force file system based
deletion.
:param configuration: if True, the submodule is deleted from the configuration,
otherwise it isn't. Although this should be enabled most of the times,
this flag enables you to safely delete the repository of your submodule.
:param dry_run: if True, we will not actually do anything, but throw the errors
we would usually throw
:return: self
:note: doesn't work in bare repositories
:note: doesn't work atomically, as failure to remove any part of the submodule will leave
an inconsistent state
:raise InvalidGitRepositoryError: thrown if the repository cannot be deleted
:raise OSError: if directories or files could not be removed |
11,539 | def _isdst(dt):
if type(dt) == datetime.date:
dt = datetime.datetime.combine(dt, datetime.datetime.min.time())
dtc = dt.replace(year=datetime.datetime.now().year)
if time.localtime(dtc.timestamp()).tm_isdst == 1:
return True
return False | Check if date is in dst. |
11,540 | def _connect(self):
def tryConnect():
self.connector = d = maybeDeferred(connect)
d.addCallback(cbConnect)
d.addErrback(ebConnect)
def connect():
endpoint = self._endpointFactory(self._reactor, self.host, self.port)
log.debug(, self, endpoint)
return endpoint.connect(self)
def cbConnect(proto):
log.debug(, self, proto.transport.getPeer())
self._failures = 0
self.connector = None
self.proto = proto
if self._dDown:
proto.transport.loseConnection()
else:
self._sendQueued()
def ebConnect(fail):
if self._dDown:
log.debug(, self, fail)
return fail
self._failures += 1
delay = self._retryPolicy(self._failures)
log.debug(,
self, self._failures, fail.value, delay)
self.connector = d = deferLater(self._reactor, delay, lambda: None)
d.addCallback(cbDelayed)
def cbDelayed(result):
tryConnect()
self._failures = 0
tryConnect() | Connect to the Kafka Broker
This routine will repeatedly try to connect to the broker (with backoff
according to the retry policy) until it succeeds. |
11,541 | def send(self, pkt):
iff = pkt.route()[0]
if iff is None:
iff = conf.iface
if self.assigned_interface != iff:
try:
fcntl.ioctl(self.outs, BIOCSETIF, struct.pack("16s16x", iff.encode()))
except IOError:
raise Scapy_Exception("BIOCSETIF failed on %s" % iff)
self.assigned_interface = iff
frame = raw(self.guessed_cls() / pkt)
pkt.sent_time = time.time()
L2bpfSocket.send(self, frame) | Send a packet |
11,542 | def _claim(cls, cdata: Any) -> "Tileset":
self = object.__new__(cls)
if cdata == ffi.NULL:
raise RuntimeError("Tileset initialized with nullptr.")
self._tileset_p = ffi.gc(cdata, lib.TCOD_tileset_delete)
return self | Return a new Tileset that owns the provided TCOD_Tileset* object. |
11,543 | def _parse_triggered_hits(self, file_obj):
for _ in range(self.n_triggered_hits):
dom_id, pmt_id = unpack(, file_obj.read(5))
tdc_time = unpack(, file_obj.read(4))[0]
tot = unpack(, file_obj.read(1))[0]
trigger_mask = unpack(, file_obj.read(8))
self.triggered_hits.append(
(dom_id, pmt_id, tdc_time, tot, trigger_mask)
) | Parse and store triggered hits. |
11,544 | def __fetch(self, url, payload):
r = requests.get(url, params=payload, auth=self.auth, verify=self.verify)
try:
r.raise_for_status()
except requests.exceptions.HTTPError as e:
raise e
return r | Fetch requests from groupsio API |
11,545 | def getMaxStmIdForStm(stm):
maxId = 0
if isinstance(stm, Assignment):
return stm._instId
elif isinstance(stm, WaitStm):
return maxId
else:
for _stm in stm._iter_stms():
maxId = max(maxId, getMaxStmIdForStm(_stm))
return maxId | Get maximum _instId from all assigments in statement |
11,546 | def connect_paragraph(self, paragraph, paragraphs):
if paragraph.depth > 0:
n = range(len(paragraphs))
n.reverse()
for i in n:
if paragraphs[i].depth == paragraph.depth-1:
paragraph.parent = paragraphs[i]
paragraphs[i].children.append(paragraph)
break
return paragraph | Create parent/child links to other paragraphs.
The paragraphs parameters is a list of all the paragraphs
parsed up till now.
The parent is the previous paragraph whose depth is less.
The parent's children include this paragraph.
Called from parse_paragraphs() method. |
11,547 | def _fetch_cached_output(self, items, result):
if not appsettings.FLUENT_CONTENTS_CACHE_OUTPUT or not self.use_cached_output:
result.add_remaining_list(items)
return
for contentitem in items:
result.add_ordering(contentitem)
output = None
try:
plugin = contentitem.plugin
except PluginNotFound as ex:
result.store_exception(contentitem, ex)
logger.debug("- item
continue
if self.can_use_cached_output(contentitem):
result.add_plugin_timeout(plugin)
output = plugin.get_cached_output(result.placeholder_name, contentitem)
if output is not None and not isinstance(output, ContentItemOutput):
output = None
logger.debug("Flushed cached output of {0}
plugin.type_name,
contentitem.pk,
get_placeholder_name(contentitem.placeholder)
))
if output and settings.DEBUG:
cachekey = get_rendering_cache_key(result.placeholder_name, contentitem)
if is_template_updated(self.request, contentitem, cachekey):
output = None
if output:
result.store_output(contentitem, output)
else:
result.add_remaining(contentitem) | First try to fetch all items from the cache.
The items are 'non-polymorphic', so only point to their base class.
If these are found, there is no need to query the derived data from the database. |
11,548 | async def get_config(self):
config_facade = client.ModelConfigFacade.from_connection(
self.connection()
)
result = await config_facade.ModelGet()
config = result.config
for key, value in config.items():
config[key] = ConfigValue.from_json(value)
return config | Return the configuration settings for this model.
:returns: A ``dict`` mapping keys to `ConfigValue` instances,
which have `source` and `value` attributes. |
11,549 | def _get_reciprocal(self):
orign = self.portal[]
destn = self.portal[]
if (
destn in self.board.arrow and
orign in self.board.arrow[destn]
):
return self.board.arrow[destn][orign]
else:
return None | Return the :class:`Arrow` that connects my origin and destination
in the opposite direction, if it exists. |
11,550 | def smt_dataset(directory=,
train=False,
dev=False,
test=False,
train_filename=,
dev_filename=,
test_filename=,
extracted_name=,
check_files=[],
url=,
fine_grained=False,
subtrees=False):
download_file_maybe_extract(url=url, directory=directory, check_files=check_files)
ret = []
splits = [(train, train_filename), (dev, dev_filename), (test, test_filename)]
splits = [f for (requested, f) in splits if requested]
for filename in splits:
full_path = os.path.join(directory, extracted_name, filename)
examples = []
with io.open(full_path, encoding=) as f:
for line in f:
line = line.strip()
if subtrees:
examples.extend(parse_tree(line, subtrees=subtrees, fine_grained=fine_grained))
else:
examples.append(parse_tree(line, subtrees=subtrees, fine_grained=fine_grained))
ret.append(Dataset(examples))
if len(ret) == 1:
return ret[0]
else:
return tuple(ret) | Load the Stanford Sentiment Treebank dataset.
Semantic word spaces have been very useful but cannot express the meaning of longer phrases in
a principled way. Further progress towards understanding compositionality in tasks such as
sentiment detection requires richer supervised training and evaluation resources and more
powerful models of composition. To remedy this, we introduce a Sentiment Treebank. It includes
fine grained sentiment labels for 215,154 phrases in the parse trees of 11,855 sentences and
presents new challenges for sentiment compositionality.
**Reference**:
https://nlp.stanford.edu/sentiment/index.html
**Citation:**
Richard Socher, Alex Perelygin, Jean Y. Wu, Jason Chuang, Christopher D. Manning,
Andrew Y. Ng and Christopher Potts. Recursive Deep Models for Semantic Compositionality Over a
Sentiment Treebank
Args:
directory (str, optional): Directory to cache the dataset.
train (bool, optional): If to load the training split of the dataset.
dev (bool, optional): If to load the development split of the dataset.
test (bool, optional): If to load the test split of the dataset.
train_filename (str, optional): The filename of the training split.
dev_filename (str, optional): The filename of the development split.
test_filename (str, optional): The filename of the test split.
extracted_name (str, optional): Name of the extracted dataset directory.
check_files (str, optional): Check if these files exist, then this download was successful.
url (str, optional): URL of the dataset `tar.gz` file.
subtrees (bool, optional): Whether to include sentiment-tagged subphrases in addition to
complete examples.
fine_grained (bool, optional): Whether to use 5-class instead of 3-class labeling.
Returns:
:class:`tuple` of :class:`torchnlp.datasets.Dataset`: Tuple with the training tokens, dev
tokens and test tokens in order if their respective boolean argument is true.
Example:
>>> from torchnlp.datasets import smt_dataset # doctest: +SKIP
>>> train = smt_dataset(train=True) # doctest: +SKIP
>>> train[5] # doctest: +SKIP
{
'text': "Whether or not you 're enlightened by any of Derrida 's lectures on ...",
'label': 'positive'
} |
11,551 | def fake_keypress(self, key, repeat=1):
for _ in range(repeat):
self.mediator.fake_keypress(key) | Fake a keypress
Usage: C{keyboard.fake_keypress(key, repeat=1)}
Uses XTest to 'fake' a keypress. This is useful to send keypresses to some
applications which won't respond to keyboard.send_key()
@param key: they key to be sent (e.g. "s" or "<enter>")
@param repeat: number of times to repeat the key event |
11,552 | def format_python2_stmts(python_stmts, show_tokens=False, showast=False,
showgrammar=False, compile_mode=):
parser_debug = {: False, : False,
: showgrammar,
: True, : True, : True }
parsed = parse_python2(python_stmts, show_tokens=show_tokens,
parser_debug=parser_debug)
assert parsed == ,
formatter = Python2Formatter()
if showast:
print(parsed)
python2_formatted_str = formatter.traverse(parsed)
return python2_formatted_str | formats python2 statements |
11,553 | def from_resolver(cls, spec_resolver):
spec_validators = cls._get_spec_validators(spec_resolver)
return validators.extend(Draft4Validator, spec_validators) | Creates a customized Draft4ExtendedValidator.
:param spec_resolver: resolver for the spec
:type resolver: :class:`jsonschema.RefResolver` |
11,554 | def matrix2map(data_matrix, map_shape):
r
map_shape = np.array(map_shape)
image_shape = np.sqrt(data_matrix.shape[0]).astype(int)
layout = np.array(map_shape // np.repeat(image_shape, 2), dtype=)
data_map = np.zeros(map_shape)
temp = data_matrix.reshape(image_shape, image_shape, data_matrix.shape[1])
for i in range(data_matrix.shape[1]):
lower = (image_shape * (i // layout[1]),
image_shape * (i % layout[1]))
upper = (image_shape * (i // layout[1] + 1),
image_shape * (i % layout[1] + 1))
data_map[lower[0]:upper[0], lower[1]:upper[1]] = temp[:, :, i]
return data_map.astype(int) | r"""Matrix to Map
This method transforms a 2D matrix to a 2D map
Parameters
----------
data_matrix : np.ndarray
Input data matrix, 2D array
map_shape : tuple
2D shape of the output map
Returns
-------
np.ndarray 2D map
Raises
------
ValueError
For invalid layout
Examples
--------
>>> from modopt.base.transform import matrix2map
>>> a = np.array([[0, 4, 8, 12], [1, 5, 9, 13], [2, 6, 10, 14],
[3, 7, 11, 15]])
>>> matrix2map(a, (2, 2))
array([[ 0, 1, 4, 5],
[ 2, 3, 6, 7],
[ 8, 9, 12, 13],
[10, 11, 14, 15]]) |
11,555 | def derationalize_denom(expr):
r_pos = -1
p_pos = -1
numerator = S.Zero
denom_sq = S.One
post_factors = []
if isinstance(expr, Mul):
for pos, factor in enumerate(expr.args):
if isinstance(factor, Rational) and r_pos < 0:
r_pos = pos
numerator, denom_sq = factor.p, factor.q
elif isinstance(factor, Pow) and r_pos >= 0:
if factor == sqrt(denom_sq):
p_pos = pos
else:
post_factors.append(factor)
else:
post_factors.append(factor)
if r_pos >= 0 and p_pos >= 0:
return numerator, denom_sq, Mul(*post_factors)
else:
raise ValueError("Cannot derationalize")
else:
raise ValueError("expr is not a Mul instance") | Try to de-rationalize the denominator of the given expression.
The purpose is to allow to reconstruct e.g. ``1/sqrt(2)`` from
``sqrt(2)/2``.
Specifically, this matches `expr` against the following pattern::
Mul(..., Rational(n, d), Pow(d, Rational(1, 2)), ...)
and returns a tuple ``(numerator, denom_sq, post_factor)``, where
``numerator`` and ``denom_sq`` are ``n`` and ``d`` in the above pattern (of
type `int`), respectively, and ``post_factor`` is the product of the
remaining factors (``...`` in `expr`). The result will fulfill the
following identity::
(numerator / sqrt(denom_sq)) * post_factor == expr
If `expr` does not follow the appropriate pattern, a :exc:`ValueError` is
raised. |
11,556 | def kill(self, signal=None):
return self.client.api.kill(self.id, signal=signal) | Kill or send a signal to the container.
Args:
signal (str or int): The signal to send. Defaults to ``SIGKILL``
Raises:
:py:class:`docker.errors.APIError`
If the server returns an error. |
11,557 | def updateRules( self ):
terms = sorted(self._rules.keys())
for child in self.lineWidgets():
child.setTerms(terms) | Updates the query line items to match the latest rule options. |
11,558 | def main(argv=None):
parser = argparse.ArgumentParser(description=__doc__)
parser.add_argument(, type=argparse.FileType(),
help=
)
parser.add_argument(, , action=,
help=)
parser.add_argument(, , type=argparse.FileType(),
help=)
parser.add_argument(, , type=argparse.FileType(),
help=)
args = parser.parse_args(argv)
if args.input and args.output == sys.stdout:
raise ValueError()
from cnxepub.collation import reconstitute
binder = reconstitute(args.collated_html)
if args.dump_tree:
print(pformat(cnxepub.model_to_tree(binder)),
file=sys.stdout)
if args.output:
cnxepub.adapters.make_epub(binder, args.output)
if args.input:
args.output.seek(0)
zout = ZipFile(args.output, , ZIP_DEFLATED)
zin = ZipFile(args.input, )
for res in zin.namelist():
if res.startswith():
zres = zin.open(res)
zi = zin.getinfo(res)
zout.writestr(zi, zres.read(), ZIP_DEFLATED)
zout.close()
return 0 | Parse passed in cooked single HTML. |
11,559 | def temperature_effectiveness_TEMA_H(R1, NTU1, Ntp, optimal=True):
r
if Ntp == 1:
A = 1./(1 + R1/2.)*(1. - exp(-NTU1*(1. + R1/2.)/2.))
D = exp(-NTU1*(1. - R1/2.)/2.)
if R1 != 2:
B = (1. - D)/(1. - R1*D/2.)
else:
B = NTU1/(2. + NTU1)
E = (A + B - A*B*R1/2.)/2.
P1 = E*(1. + (1. - B*R1/2.)*(1. - A*R1/2. + A*B*R1)) - A*B*(1. - B*R1/2.)
elif Ntp == 2 and optimal:
alpha = NTU1*(4. + R1)/8.
beta = NTU1*(4. - R1)/8.
D = (1. - exp(-alpha))/(4./R1 + 1)
if R1 != 4:
E = (1. - exp(-beta))/(4./R1 - 1.)
H = (1. - exp(-2.*beta))/(4./R1 - 1.)
else:
E = NTU1/2.
H = NTU1
G = (1-D)**2*(D**2 + E**2) + D**2*(1+E)**2
B = (1. + H)*(1. + E)**2
P1 = 1./R1*(1. - (1. - D)**4/(B - 4.*G/R1))
elif Ntp == 2 and not optimal:
R1_orig = R1
NTU1 = NTU1*R1_orig
R1 = 1./R1_orig
beta = NTU1*(4.*R1 + 1)/8.
alpha = NTU1/8.*(4.*R1 - 1.)
H = (exp(-2.*beta) - 1.)/(4.*R1 + 1.)
E = (exp(-beta) - 1.)/(4.*R1 + 1.)
B = (1. + H)*(1. + E)**2
if R1 != 0.25:
D = (1. - exp(-alpha))/(1. - 4.*R1)
G = (1. - D)**2*(D**2 + E**2) + D**2*(1. + E)**2
P1 = (1. - (B + 4.*G*R1)/(1. - D)**4)
else:
D = -NTU1/8.
G = (1. - D)**2*(D**2 + E**2) + D**2*(1. + E)**2
P1 = (1. - (B + 4.*G*R1)/(1. - D)**4)
P1 = P1/R1_orig
else:
raise Exception()
return P1 | r'''Returns temperature effectiveness `P1` of a TEMA H type heat exchanger
with a specified heat capacity ratio, number of transfer units `NTU1`,
and of number of tube passes `Ntp`. For the two tube pass case, there are
two possible orientations, one inefficient and one efficient controlled
by the `optimal` option. The supported cases are as follows:
* One tube pass (tube fluid split into two streams individually mixed,
shell fluid mixed)
* Two tube passes (shell fluid mixed, tube pass mixed between passes)
* Two tube passes (shell fluid mixed, tube pass mixed between passes, inlet
tube side next to inlet shell-side)
1-1 TEMA H, tube fluid split into two streams individually mixed, shell
fluid mixed:
.. math::
P_1 = E[1 + (1 - BR_1/2)(1 - A R_1/2 + ABR_1)] - AB(1 - BR_1/2)
A = \frac{1}{1 + R_1/2}\{1 - \exp[-NTU_1(1 + R_1/2)/2]\}
B = \frac{1-D}{1-R_1 D/2}
D = \exp[-NTU_1(1-R_1/2)/2]
E = (A + B - ABR_1/2)/2
1-2 TEMA H, shell and tube fluids mixed in each pass at the cross section:
.. math::
P_1 = \frac{1}{R_1}\left[1 - \frac{(1-D)^4}{B - 4G/R_1}\right]
B = (1+H)(1+E)^2
G = (1-D)^2(D^2 + E^2) + D^2(1 + E)^2
H = [1 - \exp(-2\beta)]/(4/R_1 -1)
E = [1 - \exp(-\beta)]/(4/R_1 - 1)
D = [1 - \exp(-\alpha)]/(4/R_1 + 1)
\alpha = NTU_1(4 + R_1)/8
\beta = NTU_1(4-R_1)/8
1-2 TEMA H, shell and tube fluids mixed in each pass at the cross section
but with the inlet tube stream coming in next to the shell fluid inlet
in an inefficient way (this is only shown in [2]_, and the stream 1/2
convention in it is different but converted here; P1 is still returned):
.. math::
P_2 = \left[1 - \frac{B + 4GR_2}{(1-D)^4}\right]
B = (1 + H)(1 + E)^2
G = (1-D)^2(D^2 + E^2) + D^2(1 + E)^2
D = \frac{1 - \exp(-\alpha)}{1 - 4R_2}
E = \frac{\exp(-\beta) - 1}{4R_2 +1}
H = \frac{\exp(-2\beta) - 1}{4R_2 +1}
\alpha = \frac{NTU_2}{8}(4R_2 -1)
\beta = \frac{NTU_2}{8}(4R_2 +1)
Parameters
----------
R1 : float
Heat capacity ratio of the heat exchanger in the P-NTU method,
calculated with respect to stream 1 (shell side = 1, tube side = 2) [-]
NTU1 : float
Thermal number of transfer units of the heat exchanger in the P-NTU
method, calculated with respect to stream 1 (shell side = 1, tube side
= 2) [-]
Ntp : int
Number of tube passes, 1, or 2, [-]
optimal : bool, optional
Whether or not the arrangement is configured to give more of a
countercurrent and efficient (True) case or an inefficient parallel
case, [-]
Returns
-------
P1 : float
Thermal effectiveness of the heat exchanger in the P-NTU method,
calculated with respect to stream 1 [-]
Notes
-----
For numbers of tube passes greater than 1 or 2, an exception is raised.
The convention for the formulas in [1]_ and [3]_ are with the shell side
as side 1, and the tube side as side 2. [2]_ has formulas with the
opposite convention.
Examples
--------
>>> temperature_effectiveness_TEMA_H(R1=1/3., NTU1=1., Ntp=1)
0.5730728284905833
References
----------
.. [1] Shah, Ramesh K., and Dusan P. Sekulic. Fundamentals of Heat
Exchanger Design. 1st edition. Hoboken, NJ: Wiley, 2002.
.. [2] Thulukkanam, Kuppan. Heat Exchanger Design Handbook, Second Edition.
CRC Press, 2013.
.. [3] Rohsenow, Warren and James Hartnett and Young Cho. Handbook of Heat
Transfer, 3E. New York: McGraw-Hill, 1998. |
11,560 | def YiqToRgb(y, i, q):
(%g, %g, %g)(1, 0.5, 5.442e-07)
r = y + (i * 0.9562) + (q * 0.6210)
g = y - (i * 0.2717) - (q * 0.6485)
b = y - (i * 1.1053) + (q * 1.7020)
return (r, g, b) | Convert the color from YIQ coordinates to RGB.
Parameters:
:y:
Tte Y component value [0...1]
:i:
The I component value [0...1]
:q:
The Q component value [0...1]
Returns:
The color as an (r, g, b) tuple in the range:
r[0...1],
g[0...1],
b[0...1]
>>> '(%g, %g, %g)' % Color.YiqToRgb(0.592263, 0.458874, -0.0499818)
'(1, 0.5, 5.442e-07)' |
11,561 | def _iterdump(self, file_name, headers=None):
if headers is None:
headers = ["Discharge_Capacity", "Charge_Capacity"]
step_txt = self.headers_normal[]
point_txt = self.headers_normal[]
cycle_txt = self.headers_normal[]
self.logger.debug("iterating through file: %s" % file_name)
if not os.path.isfile(file_name):
print("Missing file_\n %s" % file_name)
filesize = os.path.getsize(file_name)
hfilesize = humanize_bytes(filesize)
txt = "Filesize: %i (%s)" % (filesize, hfilesize)
self.logger.info(txt)
table_name_global = TABLE_NAMES["global"]
table_name_stats = TABLE_NAMES["statistic"]
table_name_normal = TABLE_NAMES["normal"]
temp_dir = tempfile.gettempdir()
temp_filename = os.path.join(temp_dir, os.path.basename(file_name))
shutil.copy2(file_name, temp_dir)
constr = self.__get_res_connector(temp_filename)
if use_ado:
conn = dbloader.connect(constr)
else:
conn = dbloader.connect(constr, autocommit=True)
self.logger.debug("tmp file: %s" % temp_filename)
self.logger.debug("constr str: %s" % constr)
self.logger.debug("reading global data table")
sql = "select * from %s" % table_name_global
global_data_df = pd.read_sql_query(sql, conn)
self.logger.debug("sql statement: %s" % sql)
tests = global_data_df[self.headers_normal[]]
number_of_sets = len(tests)
self.logger.debug("number of datasets: %i" % number_of_sets)
self.logger.debug("only selecting first test")
test_no = 0
self.logger.debug("setting data for test number %i" % test_no)
loaded_from = file_name
start_datetime = global_data_df[self.headers_global[]][test_no]
test_ID = int(global_data_df[self.headers_normal[]][test_no])
test_name = global_data_df[self.headers_global[]][test_no]
self.logger.debug("reading raw-data")
columns = ["Data_Point", "Step_Index", "Cycle_Index"]
columns.extend(headers)
columns_txt = ", ".join(["%s"] * len(columns)) % tuple(columns)
sql_1 = "select %s " % columns_txt
sql_2 = "from %s " % table_name_normal
sql_3 = "where %s=%s " % (self.headers_normal[], test_ID)
sql_5 = "order by %s" % self.headers_normal[]
import time
info_list = []
info_header = ["cycle", "row_count", "start_point", "end_point"]
info_header.extend(headers)
self.logger.info(" ".join(info_header))
self.logger.info("-------------------------------------------------")
for cycle_number in range(1, 2000):
t1 = time.time()
self.logger.debug("picking cycle %i" % cycle_number)
sql_4 = "AND %s=%i " % (cycle_txt, cycle_number)
sql = sql_1 + sql_2 + sql_3 + sql_4 + sql_5
self.logger.debug("sql statement: %s" % sql)
normal_df = pd.read_sql_query(sql, conn)
t2 = time.time()
dt = t2 - t1
self.logger.debug("time: %f" % dt)
if normal_df.empty:
self.logger.debug("reached the end")
break
row_count, _ = normal_df.shape
start_point = normal_df[point_txt].min()
end_point = normal_df[point_txt].max()
last = normal_df.iloc[-1, :]
step_list = [cycle_number, row_count, start_point, end_point]
step_list.extend([last[x] for x in headers])
info_list.append(step_list)
self._clean_up_loadres(None, conn, temp_filename)
info_dict = pd.DataFrame(info_list, columns=info_header)
return info_dict | Function for dumping values from a file.
Should only be used by developers.
Args:
file_name: name of the file
headers: list of headers to pick
default:
["Discharge_Capacity", "Charge_Capacity"]
Returns: pandas.DataFrame |
11,562 | def parse(self, scope):
assert (len(self.tokens) == 3)
expr = self.process(self.tokens, scope)
A, O, B = [
e[0] if isinstance(e, tuple) else e for e in expr
if str(e).strip()
]
try:
a, ua = utility.analyze_number(A, )
b, ub = utility.analyze_number(B, )
except SyntaxError:
return .join([str(A), str(O), str(B)])
if (a is False or b is False):
return .join([str(A), str(O), str(B)])
if ua == or ub == :
return color.Color().process((A, O, B))
if a == 0 and O == :
return .join([str(A), str(O), str(B), ])
out = self.operate(a, b, O)
if isinstance(out, bool):
return out
return self.with_units(out, ua, ub) | Parse Node
args:
scope (Scope): Scope object
raises:
SyntaxError
returns:
str |
11,563 | def cli(obj, purge):
client = obj[]
if obj[] == :
r = client.http.get()
click.echo(json.dumps(r[], sort_keys=True, indent=4, ensure_ascii=False))
else:
timezone = obj[]
headers = {
: , : , : , : , : ,
: , : , : , : , : , : ,
: , : , : , : ,
: , :
}
blackouts = client.get_blackouts()
click.echo(tabulate([b.tabular(timezone) for b in blackouts], headers=headers, tablefmt=obj[]))
expired = [b for b in blackouts if b.status == ]
if purge:
with click.progressbar(expired, label=.format(len(expired))) as bar:
for b in bar:
client.delete_blackout(b.id) | List alert suppressions. |
11,564 | def get_swagger_view(title=None, url=None, patterns=None, urlconf=None):
class SwaggerSchemaView(APIView):
_ignore_model_permissions = True
exclude_from_schema = True
permission_classes = [AllowAny]
renderer_classes = [
CoreJSONRenderer,
renderers.OpenAPIRenderer,
renderers.SwaggerUIRenderer
]
def get(self, request):
generator = SchemaGenerator(
title=title,
url=url,
patterns=patterns,
urlconf=urlconf
)
schema = generator.get_schema(request=request)
if not schema:
raise exceptions.ValidationError(
)
return Response(schema)
return SwaggerSchemaView.as_view() | Returns schema view which renders Swagger/OpenAPI. |
11,565 | def get_base_route(cls):
base_route = cls.__name__.lower()
if cls.base_route is not None:
base_route = cls.base_route
base_rule = parse_rule(base_route)
cls.base_args = [r[2] for r in base_rule]
return base_route.strip("/") | Returns the route base to use for the current class. |
11,566 | def _trace_dispatch(frame, event, arg):
code = frame.f_code
key = id(code)
n = sampling_counters.get(key, 0)
if n is None:
return
if event == :
sampling_counters[key] = n + 1
if n not in sampling_sequence:
if n > LAST_SAMPLE:
sampling_counters[key] = None
sampling_counters[key] = None
else:
function_key = FunctionKey(filename, code.co_firstlineno, func_name)
if event == :
arg_info = inspect.getargvalues(frame)
resolved_types = prep_args(arg_info)
_task_queue.put(KeyAndTypes(function_key, resolved_types))
elif event == :
last_opcode = code.co_code[frame.f_lasti]
if last_opcode == RETURN_VALUE_OPCODE:
if code.co_flags & CO_GENERATOR:
t = resolve_type(FakeIterator([]))
else:
t = resolve_type(arg)
elif last_opcode == YIELD_VALUE_OPCODE:
t = resolve_type(FakeIterator([arg]))
else:
t = NoReturnType
_task_queue.put(KeyAndReturn(function_key, t))
else:
sampling_counters[key] = None | This is the main hook passed to setprofile().
It implement python profiler interface.
Arguments are described in https://docs.python.org/2/library/sys.html#sys.settrace |
11,567 | def wait(self, time):
self._wait = Event()
return not self._wait.wait(time) | Pauses the thread for a specified time.
Returns False if interrupted by another thread and True if the
time runs out normally. |
11,568 | def get_collection(self, url):
url = self.BASE_API2 + url
while url is not None:
response = self.get_data(url)
for value in response[]:
yield value
url = response.get(, None) | Pages through an object collection from the bitbucket API.
Returns an iterator that lazily goes through all the 'values'
of all the pages in the collection. |
11,569 | def postprocess_segments(self):
for iseg, seg in enumerate(self.segs):
mask = np.zeros(self._adata.shape[0], dtype=bool)
mask[seg] = True
self.segs[iseg] = mask
self.segs = np.array(self.segs)
self.segs_tips = np.array(self.segs_tips) | Convert the format of the segment class members. |
11,570 | def solve(self, scenario, solver):
clusters = set(self.clustering.busmap.values)
n = len(clusters)
self.stats = {: pd.DataFrame(
index=sorted(clusters),
columns=["decompose", "spread", "transfer"])}
profile = cProfile.Profile()
for i, cluster in enumerate(sorted(clusters)):
print()
print( % (cluster, i+1, n))
profile.enable()
t = time.time()
partial_network, externals = self.construct_partial_network(
cluster,
scenario)
profile.disable()
self.stats[].loc[cluster, ] = time.time() - t
print(,
self.stats[].loc[cluster, ])
t = time.time()
profile.enable()
self.solve_partial_network(cluster, partial_network, scenario,
solver)
profile.disable()
self.stats[].loc[cluster, ] = time.time() - t
print(,
self.stats[].loc[cluster, ])
profile.enable()
t = time.time()
self.transfer_results(partial_network, externals)
profile.disable()
self.stats[].loc[cluster, ] = time.time() - t
print(,
self.stats[].loc[cluster, ])
profile.enable()
t = time.time()
print()
fs = (mc("sum"), mc("sum"))
for bt, ts in (
(, {: fs, : fs}),
(, {: fs, : fs, : fs})):
print("Attribute sums, {}, clustered - disaggregated:" .format(bt))
cnb = getattr(self.clustered_network, bt)
onb = getattr(self.original_network, bt)
print("{:>{}}: {}".format(, 4 + len(),
reduce(lambda x, f: f(x), fs[:-1], cnb[])
-
reduce(lambda x, f: f(x), fs[:-1], onb[])))
print("Series sums, {}, clustered - disaggregated:" .format(bt))
cnb = getattr(self.clustered_network, bt + )
onb = getattr(self.original_network, bt + )
for s in ts:
print("{:>{}}: {}".format(s, 4 + len(),
reduce(lambda x, f: f(x), ts[s], cnb[s])
-
reduce(lambda x, f: f(x), ts[s], onb[s])))
profile.disable()
self.stats[] = time.time() - t
print(, self.stats[]) | Decompose each cluster into separate units and try to optimize them
separately
:param scenario:
:param solver: Solver that may be used to optimize partial networks |
11,571 | def stop(self):
if self.is_run:
self._service.shutdown()
self._service.server_close() | Stop the server.
Do nothing if server is already not running. |
11,572 | def regressOut(Y, X, return_b=False):
Xd = la.pinv(X)
b = Xd.dot(Y)
Y_out = Y-X.dot(b)
if return_b:
return Y_out, b
else:
return Y_out | regresses out X from Y |
11,573 | def Transformer(source_vocab_size,
target_vocab_size,
mode=,
num_layers=6,
feature_depth=512,
feedforward_depth=2048,
num_heads=8,
dropout=0.1,
shared_embedding=True,
max_len=200,
return_evals=False):
inject_position = layers.Serial(
layers.Dropout(dropout, mode=mode),
layers.PositionalEncoding(feature_depth, max_len=max_len)
)
if shared_embedding:
assert source_vocab_size == target_vocab_size
embedding = layers.Share(layers.Embedding(feature_depth, source_vocab_size))
source_embedding_layer = layers.Serial(embedding, inject_position)
target_embedding_layer = source_embedding_layer
else:
source_embedding = layers.Embedding(feature_depth, source_vocab_size)
target_embedding = layers.Embedding(feature_depth, target_vocab_size)
source_embedding_layer = layers.Serial(source_embedding, inject_position)
target_embedding_layer = layers.Serial(target_embedding, inject_position)
multi_attention = layers.MultiHeadedAttention(
feature_depth, num_heads=num_heads, dropout=dropout, mode=mode)
@layers.Lambda
def Encoder(source, source_mask):
encoder_layer = layers.Serial(
layers.Residual(layers.LayerNorm(),
layers.Branch(size=4),
layers.Parallel(layers.Identity(),
layers.Identity(),
layers.Identity(),
source_mask),
multi_attention,
layers.Dropout(dropout, mode=mode)),
ResidualFeedForward(
feature_depth, feedforward_depth, dropout, mode=mode),
)
return layers.Serial(
source,
source_embedding_layer,
layers.repeat(encoder_layer, num_layers),
layers.LayerNorm(),
)
@layers.Lambda
def Decoder(memory, target, target_mask, memory_mask):
decoder_layer = layers.Serial(
layers.Residual(layers.LayerNorm(),
layers.Branch(size=4),
layers.Parallel(layers.Identity(),
layers.Identity(),
layers.Identity(),
target_mask),
multi_attention,
layers.Dropout(dropout, mode=mode)),
layers.Residual(layers.LayerNorm(),
layers.Branch(size=4),
layers.Parallel(layers.Identity(),
memory,
memory,
memory_mask),
multi_attention,
layers.Dropout(dropout, mode=mode)),
ResidualFeedForward(
feature_depth, feedforward_depth, dropout, mode=mode)
)
return layers.Serial(
target,
target_embedding_layer,
layers.repeat(decoder_layer, num_layers),
layers.LayerNorm(),
)
@layers.Lambda
def transformer(source, target, source_mask, target_mask, memory_mask):
encoded_source = Encoder(source, source_mask)
return Decoder(encoded_source, target, target_mask, memory_mask)
@layers.Lambda
def Generator(encoded_target):
return layers.Serial(
encoded_target,
layers.Dense(target_vocab_size),
layers.LogSoftmax
)
| Transformer model.
Args:
source_vocab_size: int: source vocab size
target_vocab_size: int: target vocab size
mode: str: 'train' or 'eval'
num_layers: int: number of encoder/decoder layers
feature_depth: int: depth of embedding
feedforward_depth: int: depth of feed-forward layer
num_heads: int: number of attention heads
dropout: float: dropout rate (how much to drop out)
shared_embedding: bool: specify whether source/target embeddings are tied.
max_len: int: maximum symbol length for positional encoding
return_evals: bool: whether to generate decode-time evaluation functions
Returns:
A namedtuple containing model 'init' and 'apply' functions for training and
the 'evals' functions that itself returns a namedtuple containing evaluation
functions for the trained encoder, decoder, and generator substax. |
11,574 | def _default_hparams():
return hparam.HParams(
loss_multiplier=1.0,
batch_size_multiplier=1,
stop_at_eos=False,
modality={},
vocab_size={},
input_space_id=SpaceID.GENERIC,
target_space_id=SpaceID.GENERIC) | A set of basic model hyperparameters. |
11,575 | def generate_dict_schema(size, valid):
schema = {}
generator_items = []
for i in range(0, size):
while True:
key_schema, key_generator = generate_random_schema(valid)
if key_schema not in schema:
break
value_schema, value_generator = generate_random_schema(valid)
schema[key_schema] = value_schema
generator_items.append((key_generator, value_generator))
generator = ({next(k_gen): next(v_gen) for k_gen, v_gen in generator_items} for i in itertools.count())
return schema, generator | Generate a schema dict of size `size` using library `lib`.
In addition, it returns samples generator
:param size: Schema size
:type size: int
:param samples: The number of samples to generate
:type samples: int
:param valid: Generate valid samples?
:type valid: bool
:returns |
11,576 | def before(point):
if not point:
return True
if isinstance(point, six.string_types):
point = str_to_time(point)
elif isinstance(point, int):
point = time.gmtime(point)
return time.gmtime() <= point | True if point datetime specification is before now.
NOTE: If point is specified it is supposed to be in local time.
Not UTC/GMT !! This is because that is what gmtime() expects. |
11,577 | def reminder_validator(input_str):
match = re.match(REMINDER_REGEX, input_str)
if match or input_str == :
return input_str
else:
raise ValidationError(
) | Allows a string that matches utils.REMINDER_REGEX.
Raises ValidationError otherwise. |
11,578 | def crypto_config_from_table_info(materials_provider, attribute_actions, table_info):
ec_kwargs = table_info.encryption_context_values
if table_info.primary_index is not None:
ec_kwargs.update(
{"partition_key_name": table_info.primary_index.partition, "sort_key_name": table_info.primary_index.sort}
)
return CryptoConfig(
materials_provider=materials_provider,
encryption_context=EncryptionContext(**ec_kwargs),
attribute_actions=attribute_actions,
) | Build a crypto config from the provided values and table info.
:returns: crypto config and updated kwargs
:rtype: tuple(CryptoConfig, dict) |
11,579 | def trim_snapshots(self, hourly_backups = 8, daily_backups = 7,
weekly_backups = 4):
now = datetime.utcnow()
last_hour = datetime(now.year, now.month, now.day, now.hour)
last_midnight = datetime(now.year, now.month, now.day)
last_sunday = datetime(now.year, now.month, now.day) - timedelta(days = (now.weekday() + 1) % 7)
start_of_month = datetime(now.year, now.month, 1)
target_backup_times = []
oldest_snapshot_date = datetime(2007, 1, 1)
for hour in range(0, hourly_backups):
target_backup_times.append(last_hour - timedelta(hours = hour))
for day in range(0, daily_backups):
target_backup_times.append(last_midnight - timedelta(days = day))
for week in range(0, weekly_backups):
target_backup_times.append(last_sunday - timedelta(weeks = week))
one_day = timedelta(days = 1)
while start_of_month > oldest_snapshot_date:
target_backup_times.append(start_of_month)
target_backup_times.sort()
all_snapshots = self.get_all_snapshots(owner = )
all_snapshots.sort(cmp = lambda x, y: cmp(x.start_time, y.start_time))
snaps_for_each_volume = {}
for snap in all_snapshots:
volume_name = snap.tags.get()
if volume_name:
snaps_for_volume = snaps_for_each_volume.get(volume_name)
if not snaps_for_volume:
snaps_for_volume = []
snaps_for_each_volume[volume_name] = snaps_for_volume
snaps_for_volume.append(snap)
for volume_name in snaps_for_each_volume:
snaps = snaps_for_each_volume[volume_name]
snaps = snaps[:-1]
time_period_number = 0
snap_found_for_this_time_period = False
for snap in snaps:
check_this_snap = True
while check_this_snap and time_period_number < target_backup_times.__len__():
snap_date = datetime.strptime(snap.start_time,
)
if snap_date < target_backup_times[time_period_number]:
if snap_found_for_this_time_period == True:
if not snap.tags.get():
else:
snap_found_for_this_time_period = True
check_this_snap = False
else:
time_period_number += 1
snap_found_for_this_time_period = False | Trim excess snapshots, based on when they were taken. More current
snapshots are retained, with the number retained decreasing as you
move back in time.
If ebs volumes have a 'Name' tag with a value, their snapshots
will be assigned the same tag when they are created. The values
of the 'Name' tags for snapshots are used by this function to
group snapshots taken from the same volume (or from a series
of like-named volumes over time) for trimming.
For every group of like-named snapshots, this function retains
the newest and oldest snapshots, as well as, by default, the
first snapshots taken in each of the last eight hours, the first
snapshots taken in each of the last seven days, the first snapshots
taken in the last 4 weeks (counting Midnight Sunday morning as
the start of the week), and the first snapshot from the first
Sunday of each month forever.
:type hourly_backups: int
:param hourly_backups: How many recent hourly backups should be saved.
:type daily_backups: int
:param daily_backups: How many recent daily backups should be saved.
:type weekly_backups: int
:param weekly_backups: How many recent weekly backups should be saved. |
11,580 | def extract_pool_attr(cls, req):
attr = {}
if in req:
attr[] = int(req[])
if in req:
attr[] = req[]
if in req:
attr[] = req[]
if in req:
attr[] = req[]
if in req:
attr[] = int(req[])
if in req:
attr[] = int(req[])
return attr | Extract pool attributes from arbitary dict. |
11,581 | def delete_report(report):
for path in glob.glob(os.path.join(_get_reports_path(), report)):
shutil.rmtree(path) | Delete report(s), supports globbing. |
11,582 | def cnvlGauss2D(idxPrc, aryBoxCar, aryMdlParamsChnk, tplPngSize, varNumVol,
queOut):
varChnkSze = np.size(aryMdlParamsChnk, axis=0)
varNumMtnDrtn = aryBoxCar.shape[2]
aryOut = np.zeros([varChnkSze, varNumMtnDrtn, varNumVol])
for idxMtn in range(0, varNumMtnDrtn):
for idxMdl in range(0, varChnkSze):
varTmpX = aryMdlParamsChnk[idxMdl, 1]
varTmpY = aryMdlParamsChnk[idxMdl, 2]
varTmpSd = aryMdlParamsChnk[idxMdl, 3]
aryGauss = crtGauss2D(tplPngSize[0],
tplPngSize[1],
varTmpX,
varTmpY,
varTmpSd)
aryPrfTcTmp = np.multiply(aryBoxCar[:, :, idxMtn, :],
aryGauss[:, :, None])
aryPrfTcTmp = np.sum(aryPrfTcTmp, axis=(0, 1))
aryOut[idxMdl, idxMtn, :] = aryPrfTcTmp
lstOut = [idxPrc,
aryOut]
queOut.put(lstOut) | Spatially convolve boxcar functions with 2D Gaussian.
Parameters
----------
idxPrc : 2d numpy array, shape [n_samples, n_measurements]
Description of input 1.
aryBoxCar : float, positive
Description of input 2.
aryMdlParamsChnk : 2d numpy array, shape [n_samples, n_measurements]
Description of input 1.
tplPngSize : float, positive
Description of input 2.
varNumVol : 2d numpy array, shape [n_samples, n_measurements]
Description of input 1.
queOut : float, positive
Description of input 2.
Returns
-------
data : 2d numpy array, shape [n_samples, n_measurements]
Closed data.
Reference
---------
[1] |
11,583 | def list_metrics():
for name, operator in ALL_OPERATORS.items():
print(f"{name} operator:")
if len(operator.cls.metrics) > 0:
print(
tabulate.tabulate(
headers=("Name", "Description", "Type"),
tabular_data=operator.cls.metrics,
tablefmt=DEFAULT_GRID_STYLE,
)
) | List metrics available. |
11,584 | def search_variants(
self, variant_set_id, start=None, end=None, reference_name=None,
call_set_ids=None):
request = protocol.SearchVariantsRequest()
request.reference_name = pb.string(reference_name)
request.start = pb.int(start)
request.end = pb.int(end)
request.variant_set_id = variant_set_id
request.call_set_ids.extend(pb.string(call_set_ids))
request.page_size = pb.int(self._page_size)
return self._run_search_request(
request, "variants", protocol.SearchVariantsResponse) | Returns an iterator over the Variants fulfilling the specified
conditions from the specified VariantSet.
:param str variant_set_id: The ID of the
:class:`ga4gh.protocol.VariantSet` of interest.
:param int start: Required. The beginning of the window (0-based,
inclusive) for which overlapping variants should be returned.
Genomic positions are non-negative integers less than reference
length. Requests spanning the join of circular genomes are
represented as two requests one on each side of the join
(position 0).
:param int end: Required. The end of the window (0-based, exclusive)
for which overlapping variants should be returned.
:param str reference_name: The name of the
:class:`ga4gh.protocol.Reference` we wish to return variants from.
:param list call_set_ids: Only return variant calls which belong to
call sets with these IDs. If an empty array, returns variants
without any call objects. If null, returns all variant calls.
:return: An iterator over the :class:`ga4gh.protocol.Variant` objects
defined by the query parameters.
:rtype: iter |
11,585 | def get_slide_vars(self, slide_src, source=None):
presenter_notes = None
find = re.search(r, slide_src,
re.DOTALL | re.UNICODE | re.IGNORECASE)
if find:
if self.presenter_notes:
presenter_notes = slide_src[find.end():].strip()
slide_src = slide_src[:find.start()]
find = re.search(r, slide_src,
re.DOTALL | re.UNICODE)
if not find:
header = level = title = None
content = slide_src.strip()
else:
header = find.group(1)
level = int(find.group(2))
title = find.group(3)
content = find.group(4).strip() if find.group(4) else find.group(4)
slide_classes = []
if header:
header, _ = self.process_macros(header, source)
if content:
content, slide_classes = self.process_macros(content, source)
source_dict = {}
if source:
source_dict = {: source,
: os.path.abspath(source)}
if header or content:
return {: header, : title, : level,
: content, : slide_classes,
: source_dict, : presenter_notes,
: self.math_output} | Computes a single slide template vars from its html source code.
Also extracts slide informations for the table of contents. |
11,586 | def _correctArtefacts(self, image, threshold):
image = np.nan_to_num(image)
medianThreshold(image, threshold, copy=False)
return image | Apply a thresholded median replacing high gradients
and values beyond the boundaries |
11,587 | def autodiscover():
global LOADED
if LOADED:
return
LOADED = True
for app in get_app_name_list():
try:
module = import_module(app)
except ImportError:
pass
else:
try:
import_module("%s.page_processors" % app)
except:
if module_has_submodule(module, "page_processors"):
raise | Taken from ``django.contrib.admin.autodiscover`` and used to run
any calls to the ``processor_for`` decorator. |
11,588 | def unique(func, num_args=0, max_attempts=100, cache=None):
if cache is None:
cache = _cache_unique
@wraps(func)
def wrapper(*args):
key = "%s_%s" % (str(func.__name__), str(args[:num_args]))
attempt = 0
while attempt < max_attempts:
attempt += 1
drawn = cache.get(key, [])
result = func(*args)
if result not in drawn:
drawn.append(result)
cache[key] = drawn
return result
raise MaxAttemptException()
return wrapper | wraps a function so that produce unique results
:param func:
:param num_args:
>>> import random
>>> choices = [1,2]
>>> a = unique(random.choice, 1)
>>> a,b = a(choices), a(choices)
>>> a == b
False |
11,589 | def drain_events(self, timeout=None):
chanmap = self.channels
chanid, method_sig, args, content = self._wait_multiple(
chanmap, None, timeout=timeout,
)
channel = chanmap[chanid]
if (content and
channel.auto_encode_decode and
hasattr(content, )):
try:
content.body = content.body.decode(content.content_encoding)
except Exception:
pass
amqp_method = (self._method_override.get(method_sig) or
channel._METHOD_MAP.get(method_sig, None))
if amqp_method is None:
raise AMQPNotImplementedError(
.format(method_sig))
if content is None:
return amqp_method(channel, args)
else:
return amqp_method(channel, args, content) | Wait for an event on a channel. |
11,590 | def _read_fasta_files(f, args):
seq_l = {}
sample_l = []
idx = 1
for line1 in f:
line1 = line1.strip()
cols = line1.split("\t")
with open(cols[0], ) as fasta:
sample_l.append(cols[1])
for line in fasta:
if line.startswith(">"):
idx += 1
counts = int(re.search("x([0-9]+)", line.strip()).group(1))
else:
seq = line.strip()
seq = seq[0:int(args.maxl)] if len(seq) > int(args.maxl) else seq
if counts > int(args.minc) and len(seq) > int(args.minl):
if seq not in seq_l:
seq_l[seq] = sequence_unique(idx, seq)
seq_l[seq].add_exp(cols[1], counts)
return seq_l, sample_l | read fasta files of each sample and generate a seq_obj
with the information of each unique sequence in each sample
:param f: file containing the path for each fasta file and
the name of the sample. Two column format with `tab` as field
separator
:returns: * :code:`seq_l`: is a list of seq_obj objects, containing
the information of each sequence
* :code:`sample_l`: is a list with the name of the samples
(column two of the config file) |
11,591 | def parse_boolargs(self, args):
if not isinstance(args, list):
args = [args]
return_vals = []
bool_args = []
for arg in args:
if not isinstance(arg, tuple):
return_val = arg
bool_arg = None
elif len(arg) == 1:
return_val = arg[0]
bool_arg = None
elif len(arg) == 2:
return_val, bool_arg = arg
else:
raise ValueError("argument not formatted correctly")
return_vals.append(return_val)
bool_args.append(bool_arg)
outdtype = numpy.array(return_vals).dtype
out = numpy.zeros(self.size, dtype=outdtype)
mask = numpy.zeros(self.size, dtype=bool)
leftovers = numpy.ones(self.size, dtype=bool)
for ii,(boolarg,val) in enumerate(zip(bool_args, return_vals)):
if boolarg is None or boolarg == or boolarg.lower() == :
if ii+1 != len(bool_args):
raise ValueError("only the last item may not provide "
"any boolean arguments")
mask = leftovers
else:
mask = leftovers & self[boolarg]
out[mask] = val
leftovers &= ~mask
return out, numpy.where(leftovers)[0] | Returns an array populated by given values, with the indices of
those values dependent on given boolen tests on self.
The given `args` should be a list of tuples, with the first element the
return value and the second argument a string that evaluates to either
True or False for each element in self.
Each boolean argument is evaluated on elements for which every prior
boolean argument was False. For example, if array `foo` has a field
`bar`, and `args = [(1, 'bar < 10'), (2, 'bar < 20'), (3, 'bar < 30')]`,
then the returned array will have `1`s at the indices for
which `foo.bar < 10`, `2`s where `foo.bar < 20 and not foo.bar < 10`,
and `3`s where `foo.bar < 30 and not (foo.bar < 10 or foo.bar < 20)`.
The last argument in the list may have "else", an empty string, None,
or simply list a return value. In any of these cases, any element not
yet populated will be assigned the last return value.
Parameters
----------
args : {(list of) tuples, value}
One or more return values and boolean argument determining where
they should go.
Returns
-------
return_values : array
An array with length equal to self, with values populated with the
return values.
leftover_indices : array
An array of indices that evaluated to False for all arguments.
These indices will not have been popluated with any value,
defaulting to whatever numpy uses for a zero for the return
values' dtype. If there are no leftovers, an empty array is
returned.
Examples
--------
Given the following array:
>>> arr = FieldArray(5, dtype=[('mtotal', float)])
>>> arr['mtotal'] = numpy.array([3., 5., 2., 1., 4.])
Return `"TaylorF2"` for all elements with `mtotal < 4` (note that the
elements 1 and 4 are leftover):
>>> arr.parse_boolargs(('TaylorF2', 'mtotal<4'))
(array(['TaylorF2', '', 'TaylorF2', 'TaylorF2', ''],
dtype='|S8'),
array([1, 4]))
Return `"TaylorF2"` for all elements with `mtotal < 4`,
`"SEOBNR_ROM_DoubleSpin"` otherwise:
>>> arr.parse_boolargs([('TaylorF2', 'mtotal<4'), ('SEOBNRv2_ROM_DoubleSpin', 'else')])
(array(['TaylorF2', 'SEOBNRv2_ROM_DoubleSpin', 'TaylorF2', 'TaylorF2',
'SEOBNRv2_ROM_DoubleSpin'],
dtype='|S23'),
array([], dtype=int64))
The following will also return the same:
>>> arr.parse_boolargs([('TaylorF2', 'mtotal<4'), ('SEOBNRv2_ROM_DoubleSpin',)])
>>> arr.parse_boolargs([('TaylorF2', 'mtotal<4'), ('SEOBNRv2_ROM_DoubleSpin', '')])
>>> arr.parse_boolargs([('TaylorF2', 'mtotal<4'), 'SEOBNRv2_ROM_DoubleSpin'])
Return `"TaylorF2"` for all elements with `mtotal < 3`, `"IMRPhenomD"`
for all elements with `3 <= mtotal < 4`, `"SEOBNRv2_ROM_DoubleSpin"`
otherwise:
>>> arr.parse_boolargs([('TaylorF2', 'mtotal<3'), ('IMRPhenomD', 'mtotal<4'), 'SEOBNRv2_ROM_DoubleSpin'])
(array(['IMRPhenomD', 'SEOBNRv2_ROM_DoubleSpin', 'TaylorF2', 'TaylorF2',
'SEOBNRv2_ROM_DoubleSpin'],
dtype='|S23'),
array([], dtype=int64))
Just return `"TaylorF2"` for all elements:
>>> arr.parse_boolargs('TaylorF2')
(array(['TaylorF2', 'TaylorF2', 'TaylorF2', 'TaylorF2', 'TaylorF2'],
dtype='|S8'),
array([], dtype=int64)) |
11,592 | def set_nsxcontroller_ip(self, **kwargs):
name = kwargs.pop()
ip_addr = str((kwargs.pop(, None)))
nsxipaddress = ip_interface(unicode(ip_addr))
if nsxipaddress.version != 4:
raise ValueError()
ip_args = dict(name=name, address=ip_addr)
method_name =
method_class = self._brocade_tunnels
nsxcontroller_attr = getattr(method_class, method_name)
config = nsxcontroller_attr(**ip_args)
output = self._callback(config)
return output | Set nsx-controller IP
Args:
IP (str): IPV4 address.
callback (function): A function executed upon completion of the
method.
Returns:
Return value of `callback`.
Raises:
None |
11,593 | def getAddPerson(self):
fragment = AddPersonFragment(self.organizer)
fragment.setFragmentParent(self)
return fragment | Return an L{AddPersonFragment} which is a child of this fragment and
which will add a person to C{self.organizer}. |
11,594 | def assets(lon=None, lat=None, begin=None, end=None):
base_url = "https://api.nasa.gov/planetary/earth/assets?"
if not lon or not lat:
raise ValueError(
"assets endpoint expects lat and lon, type has to be float. Call the method with keyword args. Ex : lon=100.75, lat=1.5")
else:
try:
validate_float(lon, lat)
lon = decimal.Decimal(lon)
lat = decimal.Decimal(lat)
base_url += "lon=" + str(lon) + "&" + "lat=" + str(lat) + "&"
except:
raise ValueError(
"assets endpoint expects lat and lon, type has to be float. Call the method with keyword args. Ex : lon=100.75, lat=1.5")
if not begin:
raise ValueError(
"Begin date is missing, which is mandatory. Format : YYYY-MM-DD")
else:
try:
vali_date(begin)
base_url += "begin=" + begin + "&"
except:
raise ValueError("Incorrect date format, should be YYYY-MM-DD")
if end:
try:
vali_date(end)
base_url += "end=" + end + "&"
except:
raise ValueError("Incorrect date format, should be YYYY-MM-DD")
req_url = base_url + "api_key=" + nasa_api_key()
return dispatch_http_get(req_url) | HTTP REQUEST
GET https://api.nasa.gov/planetary/earth/assets
QUERY PARAMETERS
Parameter Type Default Description
lat float n/a Latitude
lon float n/a Longitude
begin YYYY-MM-DD n/a beginning of date range
end YYYY-MM-DD today end of date range
api_key string DEMO_KEY api.nasa.gov key for expanded usage
EXAMPLE QUERY
https://api.nasa.gov/planetary/earth/assets?lon=100.75&lat=1.5&begin=2014-02-01&api_key=DEMO_KEY |
11,595 | def visit_BinaryOperation(self, node):
self.visit(node.left)
self.visit(node.right) | Visitor for `BinaryOperation` AST node. |
11,596 | def make_shift_function(alphabet):
def shift_case_sensitive(shift, symbol):
case = [case for case in alphabet if symbol in case]
if not case:
return symbol
case = case[0]
index = case.index(symbol)
return case[(index - shift) % len(case)]
return shift_case_sensitive | Construct a shift function from an alphabet.
Examples:
Shift cases independently
>>> make_shift_function([string.ascii_uppercase, string.ascii_lowercase])
<function make_shift_function.<locals>.shift_case_sensitive>
Additionally shift punctuation characters
>>> make_shift_function([string.ascii_uppercase, string.ascii_lowercase, string.punctuation])
<function make_shift_function.<locals>.shift_case_sensitive>
Shift entire ASCII range, overflowing cases
>>> make_shift_function([''.join(chr(x) for x in range(32, 127))])
<function make_shift_function.<locals>.shift_case_sensitive>
Args:
alphabet (iterable): Ordered iterable of strings representing separate cases of an alphabet
Returns:
Function (shift, symbol) |
11,597 | def new_job(frontier, job_conf):
validate_conf(job_conf)
job = Job(frontier.rr, {
"conf": job_conf, "status": "ACTIVE",
"started": doublethink.utcnow()})
if "id" in job_conf:
job.id = job_conf["id"]
if "max_claimed_sites" in job_conf:
job.max_claimed_sites = job_conf["max_claimed_sites"]
job.save()
sites = []
pages = []
for seed_conf in job_conf["seeds"]:
merged_conf = merge(seed_conf, job_conf)
merged_conf.pop("seeds")
merged_conf["job_id"] = job.id
merged_conf["seed"] = merged_conf.pop("url")
site = brozzler.Site(frontier.rr, merged_conf)
site.id = str(uuid.uuid4())
sites.append(site)
pages.append(new_seed_page(frontier, site))
for batch in (pages[i:i+500] for i in range(0, len(pages), 500)):
logging.info(, len(batch))
result = frontier.rr.table().insert(batch).run()
for batch in (sites[i:i+100] for i in range(0, len(sites), 100)):
logging.info(, len(batch))
result = frontier.rr.table().insert(batch).run()
logging.info(, job.id)
return job | Returns new Job. |
11,598 | def run_unlock(device_type, args):
util.setup_logging(verbosity=args.verbose)
with device_type() as d:
log.info(, d) | Unlock hardware device (for future interaction). |
11,599 | def get_metric_parsers(metric_packages=tuple(), include_defaults=True):
metric_parsers = set()
if include_defaults:
import git_code_debt.metrics
metric_parsers.update(discover(git_code_debt.metrics, is_metric_cls))
for metric_package in metric_packages:
metric_parsers.update(discover(metric_package, is_metric_cls))
return metric_parsers | Gets all of the metric parsers.
Args:
metric_packages - Defaults to no extra packages. An iterable of
metric containing packages. A metric inherits DiffParserBase
and does not have __metric__ = False
A metric package must be imported using import a.b.c
include_defaults - Whether to include the generic metric parsers |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.