Unnamed: 0
int64 0
389k
| code
stringlengths 26
79.6k
| docstring
stringlengths 1
46.9k
|
---|---|---|
11,600 | def start_segment_address(cs, ip):
b = [4, 0, 0, 0x03, (cs>>8)&0x0FF, cs&0x0FF,
(ip>>8)&0x0FF, ip&0x0FF]
return Record._from_bytes(b) | Return Start Segment Address Record.
@param cs 16-bit value for CS register.
@param ip 16-bit value for IP register.
@return String representation of Intel Hex SSA record. |
11,601 | async def fetch_token(self):
url = .format(API_URL)
payload = .format(self._email, self._password)
reg = await self.api_post(url, None, payload)
if reg is None:
_LOGGER.error()
else:
self._userid = reg[][]
self._token = reg[][]
self._expdate = reg[][]
_LOGGER.debug(, self._userid, self.token) | Fetch new session token from api. |
11,602 | def update_config(config_new, config_default):
if any([isinstance(v, dict) for v in list(config_new.values())]):
for k,v in list(config_new.items()):
if isinstance(v,dict) and k in config_default:
update_config(config_new[k],config_default[k])
else:
config_default[k] = v
else:
config_default.update(config_new)
return config_default | Updates the loaded method configuration with default values. |
11,603 | def _set_shared_instances(self):
self.inqueue = self.em.get_inqueue()
self.outqueue = self.em.get_outqueue()
self.namespace = self.em.get_namespace() | Sets attributes from the shared instances. |
11,604 | def _vmf_normalize(kappa, dim):
num = np.power(kappa, dim / 2. - 1.)
if dim / 2. - 1. < 1e-15:
denom = np.power(2. * np.pi, dim / 2.) * i0(kappa)
else:
denom = np.power(2. * np.pi, dim / 2.) * iv(dim / 2. - 1., kappa)
if np.isinf(num):
raise ValueError("VMF scaling numerator was inf.")
if np.isinf(denom):
raise ValueError("VMF scaling denominator was inf.")
if np.abs(denom) < 1e-15:
raise ValueError("VMF scaling denominator was 0.")
return num / denom | Compute normalization constant using built-in numpy/scipy Bessel
approximations.
Works well on small kappa and mu. |
11,605 | def parse(station: str, txt: str) -> TafData:
core.valid_station(station)
while len(txt) > 3 and txt[:4] in (, , ):
txt = txt[4:]
_, station, time = core.get_station_and_time(txt[:20].split())
retwx = {
: None,
: txt,
: None,
: None,
: station,
: core.make_timestamp(time)
}
txt = txt.replace(station, )
txt = txt.replace(time, ).strip()
if core.uses_na_format(station):
use_na = True
units = Units(**NA_UNITS)
else:
use_na = False
units = Units(**IN_UNITS)
txt, retwx[] = core.get_taf_remarks(txt)
lines = core.split_taf(txt)
parsed_lines = parse_lines(lines, units, use_na)
if parsed_lines:
parsed_lines[-1][], retwx[], retwx[] \
= core.get_temp_min_and_max(parsed_lines[-1][])
if not (retwx[] or retwx[]):
parsed_lines[0][], retwx[], retwx[] \
= core.get_temp_min_and_max(parsed_lines[0][])
start, end = parsed_lines[0][], parsed_lines[0][]
parsed_lines[0][] = None
retwx[], retwx[] = start, end
parsed_lines = core.find_missing_taf_times(parsed_lines, start, end)
parsed_lines = core.get_taf_flight_rules(parsed_lines)
if retwx[][0] == :
parsed_lines[-1][], retwx[], retwx[] \
= core.get_oceania_temp_and_alt(parsed_lines[-1][])
retwx[] = [TafLineData(**line) for line in parsed_lines]
return TafData(**retwx), units | Returns TafData and Units dataclasses with parsed data and their associated units |
11,606 | def _get_layout(self):
connected = list()
active_layout = list()
disconnected = list()
layout = OrderedDict(
{"connected": OrderedDict(), "disconnected": OrderedDict()}
)
current = self.py3.command_output("xrandr")
for line in current.splitlines():
try:
s = line.split(" ")
infos = line[line.find("(") :]
if s[1] == "connected":
output, state, mode = s[0], s[1], None
for index, x in enumerate(s[2:], 2):
if "x" in x and "+" in x:
mode = x
active_layout.append(output)
infos = line[line.find(s[index + 1]) :]
break
elif "(" in x:
break
connected.append(output)
elif s[1] == "disconnected":
output, state, mode = s[0], s[1], None
disconnected.append(output)
else:
continue
except Exception as err:
self.py3.log(.format(err))
else:
layout[state][output] = {"infos": infos, "mode": mode, "state": state}
if self.active_layout is None:
self.active_comb = tuple(active_layout)
self.active_layout = self._get_string_and_set_width(
tuple(active_layout), self.active_mode
)
return layout | Get the outputs layout from xrandr and try to detect the
currently active layout as best as we can on start. |
11,607 | def _show(self, message, indent=0, enable_verbose=True):
if enable_verbose:
print(" " * indent + message) | Message printer. |
11,608 | def mime(self):
mime = self.mime_object()
self.headers.prepare(mime)
return mime | Returns the finalised mime object, after
applying the internal headers. Usually this
is not to be overriden. |
11,609 | def render(self, target, data):
rows = self.get_rows(target, data)
rows = self._filter_rows(rows)
renderer = getattr(self, "_render_%s" % target.name, None)
if renderer is None:
raise ValueError(
"Cannot render %r for %s." % (self.value, target))
else:
return renderer(rows) | Render the table. |
11,610 | def points_on_circle(radius, points):
angle = np.linspace(0, 2*np.pi, points)
x_coord = np.cos(angle)*radius
y_coord = np.sin(angle)*radius
return x_coord, y_coord | returns a set of uniform points around a circle
:param radius: radius of the circle
:param points: number of points on the circle
:return: |
11,611 | async def count(self, query, clear_limit=False):
query = self._swap_database(query)
return (await count(query, clear_limit=clear_limit)) | Perform *COUNT* aggregated query asynchronously.
:return: number of objects in ``select()`` query |
11,612 | def ostree_compose(self, release):
start = datetime.utcnow()
treefile = os.path.join(release[], )
cmd = release[] % treefile
with file(treefile, ) as tree:
json.dump(release[], tree)
out, err, rcode = self.mock_chroot(release, cmd, new_chroot=True)
ref = None
commitid = None
for line in out.split():
if in line:
line = line.replace(, )
ref, _, commitid = line.partition()
self.log.info(,
datetime.utcnow() - start, ref, commitid)
return ref, commitid | Compose the OSTree in the mock container |
11,613 | def _prepend_name(self, prefix, dict_):
return dict([.join([prefix, name]), msg]
for name, msg in dict_.iteritems()) | changes the keys of the dictionary prepending them with "name." |
11,614 | def _words_by_score(words, score, least_to_most, n=None):
if words.shape != score.shape:
raise ValueError()
if n is not None and (n <= 0 or n > len(words)):
raise ValueError()
indices = np.argsort(score)
if not least_to_most:
indices = indices[::-1]
ordered_words = words[indices]
if n is not None:
return ordered_words[:n]
else:
return ordered_words | Order a vector of `words` by a `score`, either `least_to_most` or reverse. Optionally return only the top `n`
results. |
11,615 | async def create_student_container(self, job_id, parent_container_id, sockets_path, student_path, systemfiles_path,
course_common_student_path, socket_id, environment_name, memory_limit,
time_limit, hard_time_limit, share_network, write_stream):
try:
self._logger.debug("Starting new student container... %s %s %s %s", environment_name, memory_limit, time_limit, hard_time_limit)
if environment_name not in self._containers:
self._logger.warning("Student container asked for an unknown environment %s (not in aliases)", environment_name)
await self._write_to_container_stdin(write_stream, {"type": "run_student_retval", "retval": 254, "socket_id": socket_id})
return
environment = self._containers[environment_name]["id"]
try:
socket_path = path_join(sockets_path, str(socket_id) + ".sock")
container_id = await self._docker.create_container_student(parent_container_id, environment, share_network,
memory_limit, student_path, socket_path,
systemfiles_path, course_common_student_path)
except Exception as e:
self._logger.exception("Cannot create student container!")
await self._write_to_container_stdin(write_stream, {"type": "run_student_retval", "retval": 254, "socket_id": socket_id})
if isinstance(e, asyncio.CancelledError):
raise
return
self._student_containers_for_job[job_id].add(container_id)
self._student_containers_running[container_id] = job_id, parent_container_id, socket_id, write_stream
await self._write_to_container_stdin(write_stream, {"type": "run_student_started", "socket_id": socket_id})
try:
await self._docker.start_container(container_id)
except Exception as e:
self._logger.exception("Cannot start student container!")
await self._write_to_container_stdin(write_stream, {"type": "run_student_retval", "retval": 254, "socket_id": socket_id})
if isinstance(e, asyncio.CancelledError):
raise
return
await self._timeout_watcher.register_container(container_id, time_limit, hard_time_limit)
except asyncio.CancelledError:
raise
except:
self._logger.exception("Exception in create_student_container") | Creates a new student container.
:param write_stream: stream on which to write the return value of the container (with a correctly formatted msgpack message) |
11,616 | def _finalize(self):
if self.status in [, ]:
if self.verbose > 0:
print_()
self.status =
self.save_state()
self.db._finalize() | Reset the status and tell the database to finalize the traces. |
11,617 | def overlap_cplx(vec1, vec2, psd=None, low_frequency_cutoff=None,
high_frequency_cutoff=None, normalized=True):
htilde = make_frequency_series(vec1)
stilde = make_frequency_series(vec2)
kmin, kmax = get_cutoff_indices(low_frequency_cutoff,
high_frequency_cutoff, stilde.delta_f, (len(stilde)-1) * 2)
if psd:
inner = (htilde[kmin:kmax]).weighted_inner(stilde[kmin:kmax], psd[kmin:kmax])
else:
inner = (htilde[kmin:kmax]).inner(stilde[kmin:kmax])
if normalized:
sig1 = sigma(vec1, psd=psd, low_frequency_cutoff=low_frequency_cutoff,
high_frequency_cutoff=high_frequency_cutoff)
sig2 = sigma(vec2, psd=psd, low_frequency_cutoff=low_frequency_cutoff,
high_frequency_cutoff=high_frequency_cutoff)
norm = 1 / sig1 / sig2
else:
norm = 1
return 4 * htilde.delta_f * inner * norm | Return the complex overlap between the two TimeSeries or FrequencySeries.
Parameters
----------
vec1 : TimeSeries or FrequencySeries
The input vector containing a waveform.
vec2 : TimeSeries or FrequencySeries
The input vector containing a waveform.
psd : Frequency Series
A power spectral density to weight the overlap.
low_frequency_cutoff : {None, float}, optional
The frequency to begin the overlap.
high_frequency_cutoff : {None, float}, optional
The frequency to stop the overlap.
normalized : {True, boolean}, optional
Set if the overlap is normalized. If true, it will range from 0 to 1.
Returns
-------
overlap: complex |
11,618 | def get_notmuch_setting(self, section, key, fallback=None):
value = None
if section in self._notmuchconfig:
if key in self._notmuchconfig[section]:
value = self._notmuchconfig[section][key]
if value is None:
value = fallback
return value | look up config values from notmuch's config
:param section: key is in
:type section: str
:param key: key to look up
:type key: str
:param fallback: fallback returned if key is not present
:type fallback: str
:returns: config value with type as specified in the spec-file |
11,619 | def statistical_axes(fit, **kw):
method = kw.pop(, )
confidence_level = kw.pop(, 0.95)
dof = kw.pop(,2)
nominal = fit.eigenvalues
if method == :
cov = sampling_covariance(fit,**kw)
elif method == :
cov = noise_covariance(fit,**kw)
if kw.pop(, False):
z = chi2.ppf(confidence_level,dof)
else:
z = fisher_statistic(fit.n,confidence_level,dof=dof)
err = z*N.sqrt(cov)
return apply_error_scaling(nominal, err, n=fit.n, **kw) | Hyperbolic error using a statistical process (either sampling
or noise errors)
Integrates covariance with error level
and degrees of freedom for plotting
confidence intervals.
Degrees of freedom is set to 2, which is the
relevant number of independent dimensions
to planar fitting of *a priori* centered data. |
11,620 | def assumes(*args):
s assumptions as an attribute.'
args = tuple(args)
def decorator(func):
func.assumptions = args
return func
return decorator | Stores a function's assumptions as an attribute. |
11,621 | def getProductUIDs(self):
uids = []
for orderitem in self.objectValues():
product = orderitem.getProduct()
if product is not None:
uids.append(orderitem.getProduct().UID())
return uids | return the uids of the products referenced by order items |
11,622 | def p_theory(self, p):
if len(p) == 4:
p[0] = Theory(p[2])
else:
p[0] = Theory(p[2], literals=p[4]) | theory : LBRACKET superclauses_sum RBRACKET
| LBRACKET superclauses_sum RBRACKET literal_list |
11,623 | def object_data(self):
self.foxml_buffer = io.BytesIO()
if self.progress_bar:
self.progress_bar.start()
previous_section = None
while True:
try:
section = self.get_next_section()
except StopIteration:
break
if section == BINARY_CONTENT_START:
self.within_file = True
dsinfo = self.get_datastream_info(previous_section)
if dsinfo:
logger.info(,
dsinfo)
else:
raise Exception( \
% (self.obj.pid, previous_section))
if self.xml_only and not \
dsinfo[] in [, ,
]:
try:
dsid = dsinfo[].split()[0]
except ValueError:
% content_location))
elif section == BINARY_CONTENT_END:
self.within_file = False
elif self.within_file:
continue
else:
self.foxml_buffer.write(section)
previous_section = section
return self.foxml_buffer | Process the archival export and return a buffer with foxml
content for ingest into the destination repository.
:returns: :class:`io.BytesIO` for ingest, with references
to uploaded datastream content or content location urls |
11,624 | def _init_metadata(self):
self._provenance_metadata = {
: Id(self.my_osid_object_form._authority,
self.my_osid_object_form._namespace,
),
: ,
: ,
: False,
: False,
: False,
: False,
: [],
: ,
: None,
: None,
: []
} | stub |
11,625 | def get_aggregations(self, query, group_by, stats_field, percents=(50, 95, 99, 99.9), size=100):
body = {
"query": {
"bool": {
"must": [{
"query_string": {
"query": query,
},
}]
},
},
"aggregations": {
"group_by_agg": {
"terms": {
"field": group_by,
"size": size,
},
"aggregations": {
"field_stats": {
"percentiles": {
"field": stats_field,
"percents": percents
}
}
}
}
}
}
body[][][].append(self._get_timestamp_filer())
self._logger.info("Getting aggregations for %s field when grouped by %s", group_by, stats_field)
res = self._es.search(
body=body,
index=self._index,
size=0,
)
aggs = {}
for bucket in res[][][]:
entry = {
"count": bucket[]
}
entry.update(bucket[][])
aggs[bucket[]] = entry
return aggs | Returns aggregations (rows count + percentile stats) for a given query
This is basically the same as the following pseudo-SQL query:
SELECT PERCENTILE(stats_field, 75) FROM query GROUP BY group_by LIMIT size
https://www.elastic.co/guide/en/elasticsearch/reference/5.5/search-aggregations-bucket-terms-aggregation.html
https://www.elastic.co/guide/en/elasticsearch/reference/5.5/search-aggregations-metrics-percentile-aggregation.html
Please note that group_by should be provided by a "keyword" field:
Fielddata is disabled on text fields by default. Set fielddata=true on [@context.caller] in order to load
fielddata in memory by uninverting the inverted index. Note that this can however use significant memory.\
Alternatively use a keyword field instead.
:type query str
:type group_by str
:type stats_field str
:type percents tuple[int]
:type size int
:rtype: dict |
11,626 | def tex_parse(string):
string = string.replace(, ).replace(, )
def tex_replace(match):
return \
sub(r, r,
sub(r, r,
sub(r, r,
sub(r, r,
sub(r + GREEK_LETTERS + , r, match.group(1))))))
return mark_safe(sub(r, tex_replace, escape(string))) | Renders some basic TeX math to HTML. |
11,627 | def to_dict(self) -> Dict[str, Any]:
return {
: self.__class__.__name__,
: self.channel_identifier,
: to_normalized_address(self.token_network_address),
: encode_hex(self.balance_hash),
: self.nonce,
: encode_hex(self.additional_hash),
: encode_hex(self.signature),
: self.chain_id,
} | Message format according to monitoring service spec |
11,628 | def json_dumps(obj):
try:
return json.dumps(obj, indent=2, sort_keys=True, allow_nan=False)
except ValueError:
pass
json_str = json.dumps(obj, indent=2, sort_keys=True, allow_nan=True)
json_obj = json.loads(json_str)
def do_map(obj):
if obj is None:
return None
if isinstance(obj, basestring):
return obj
if isinstance(obj, dict):
res = {}
for (key, value) in obj.items():
res[key] = do_map(value)
return res
if isinstance(obj, collections.Iterable):
res = []
for el in obj:
res.append(do_map(el))
return res
if math.isnan(obj):
return "NaN"
if math.isinf(obj):
return "Infinity" if obj > 0 else "-Infinity"
return obj
return json.dumps(
do_map(json_obj), indent=2, sort_keys=True, allow_nan=False) | A safe JSON dump function that provides correct diverging numbers for a
ECMAscript consumer. |
11,629 | def _generate_current_command(self):
s
axis-current settings, plus a small delay to wait for those settings
to take effect.
{}{}{} {}SET_CURRENT {currents} {code}P{seconds}DWELL'],
seconds=CURRENT_CHANGE_DELAY
)
log.debug("_generate_current_command: {}".format(command))
return command | Returns a constructed GCode string that contains this driver's
axis-current settings, plus a small delay to wait for those settings
to take effect. |
11,630 | def __updateJobResultsPeriodic(self):
if self._isBestModelStored and not self._isBestModel:
return
while True:
jobResultsStr = self._jobsDAO.jobGetFields(self._jobID, [])[0]
if jobResultsStr is None:
jobResults = {}
else:
self._isBestModelStored = True
if not self._isBestModel:
return
jobResults = json.loads(jobResultsStr)
bestModel = jobResults.get(, None)
bestMetric = jobResults.get(, None)
isSaved = jobResults.get(, False)
if (bestModel is not None) and (self._modelID != bestModel):
self._isBestModel = False
return
curValue=jobResultsStr,
newValue=newResults)
if isUpdated or (not isUpdated and newResults==jobResultsStr):
self._isBestModel = True
break | Periodic check to see if this is the best model. This should only have an
effect if this is the *first* model to report its progress |
11,631 | def randomize_molecule_low(molecule, manipulations):
manipulations = copy.copy(manipulations)
shuffle(manipulations)
coordinates = molecule.coordinates.copy()
for manipulation in manipulations:
manipulation.apply(coordinates)
return molecule.copy_with(coordinates=coordinates) | Return a randomized copy of the molecule, without the nonbond check. |
11,632 | def from_dataset(cls, dataset, constraints = (), **kwargs):
fm = LWLRForwardModel(dataset.dim_x, dataset.dim_y, **kwargs)
fm.dataset = dataset
im = cls.from_forward(fm, constraints = constraints, **kwargs)
return im | Construct a optimized inverse model from an existing dataset.
A LWLR forward model is constructed by default. |
11,633 | def main(argv=None):
if argv is None:
argv = sys.argv
try:
opts, args = getopt.getopt(argv[1:], , [])
except getopt.error as msg:
raise Usage(msg)
for opt, _ in opts:
if opt in (, ):
print(__doc__)
print(help_msg)
return 0
if not args or len(args) > 4:
raise Usage()
with open(args[0], ) as template:
fsm = TextFSM(template)
print( % fsm)
if len(args) > 1:
with open(args[1], ) as f:
cli_input = f.read()
table = fsm.ParseText(cli_input)
print()
result = str(fsm.header) +
for line in table:
result += str(line) +
print(result, end=)
if len(args) > 2:
with open(args[2], ) as f:
ref_table = f.read()
if ref_table != result:
print()
return 1
else:
print() | Validate text parsed with FSM or validate an FSM via command line. |
11,634 | def allreduce_ring(xs, devices, reduction_fn_string="SUM"):
n = len(xs)
if len(devices) != n:
raise ValueError("devices must be a list of length len(xs)")
if n == 1:
return xs
shape = xs[0].shape.as_list()
size = None if None in shape else mtf.list_product(shape)
if size is None or size < 1024 or size % n != 0:
return allreduce_ring_single_shard(xs, devices, reduction_fn_string)
def _circular_shift(l, n):
n %= len(l)
return l[-n:] + l[:-n]
def _flatten_and_split(x):
return tf.split(tf.reshape(x, [-1]), n)
def _concat_and_reshape(xs):
return tf.reshape(tf.concat(xs, 0), shape)
x_split = mtf.parallel(devices, _flatten_and_split, xs)
x_split_t = mtf.transpose_list_of_lists(x_split)
y_split_t = []
for shard in xrange(n):
shard_xs = _circular_shift(x_split_t[shard], shard)
shard_devices = _circular_shift(devices, shard)
shard_ys = allreduce_ring_single_shard(
shard_xs, shard_devices, reduction_fn_string)
y_split_t.append(_circular_shift(shard_ys, -shard))
y_split = mtf.transpose_list_of_lists(y_split_t)
ys = mtf.parallel(devices, _concat_and_reshape, y_split)
return ys | Compute the reduction of all Tensors and put the result everywhere.
Performance-optimized for a ring of devices.
Args:
xs: a list of n tf.Tensors
devices: a list of strings
reduction_fn_string: "SUM" or "MAX"
Returns:
a list of n Tensors
Raises:
ValueError: if devices is not a list of n strings |
11,635 | def results(self, dataset_name, index_by, timeframe):
url = "{0}/{1}/results".format(self._cached_datasets_url, dataset_name)
index_by = index_by if isinstance(index_by, str) else json.dumps(index_by)
timeframe = timeframe if isinstance(timeframe, str) else json.dumps(timeframe)
query_params = {
"index_by": index_by,
"timeframe": timeframe
}
return self._get_json(
HTTPMethods.GET, url, self._get_read_key(), params=query_params
) | Retrieve results from a Cached Dataset. Read key must be set. |
11,636 | def is_valid_address (s):
try:
pairs = s.split (":")
if len (pairs) != 6: return False
if not all(0 <= int(b, 16) <= 255 for b in pairs): return False
except:
return False
return True | returns True if address is a valid Bluetooth address
valid address are always strings of the form XX:XX:XX:XX:XX:XX
where X is a hexadecimal character. For example,
01:23:45:67:89:AB is a valid address, but
IN:VA:LI:DA:DD:RE is not |
11,637 | def input(self, _in, out, **kw):
args = [self.binary or ] + self.rebase_opt
if self.extra_args:
args.extend(self.extra_args)
self.subprocess(args, out, _in) | Input filtering. |
11,638 | def defocusThroughDepth(u, uf, f, fn, k=2.355):
return (k/fn) * (f**2*abs(u-uf)) / (u*(uf-f)) | return the defocus (mm std) through DOF
u -> scene point (depth value)
uf -> in-focus position (the distance at which the scene point should be placed in order to be focused)
f -> focal length
k -> camera dependent constant (transferring blur circle to PSF), 2.335 would be FHWD of 2dgaussian
fn --> f-number (relative aperture)
equation (3) taken from http://linkinghub.elsevier.com/retrieve/pii/S0031320312004736
Pertuz et.al. "Analysis of focus measure operators for shape-from-focus"
all parameter should be in same physical unit [mm]
!! assumes spatial invariant blur |
11,639 | def get_parent(self):
return None if self.zoom == 0 else self.tile_pyramid.tile(
self.zoom - 1, self.row // 2, self.col // 2
) | Return tile from previous zoom level. |
11,640 | def register(self, name, func):
try:
templatehook = self._registry[name]
except KeyError:
templatehook = self._register(name)
templatehook.register(func) | Register a new callback.\
When the name/id is not found\
a new hook is created under its name,\
meaning the hook is usually created by\
the first registered callback
:param str name: Hook name
:param callable func: A func reference (callback) |
11,641 | def process_from_web():
logger.info( % trrust_human_url)
res = requests.get(trrust_human_url)
res.raise_for_status()
df = pandas.read_table(io.StringIO(res.text))
tp = TrrustProcessor(df)
tp.extract_statements()
return tp | Return a TrrustProcessor based on the online interaction table.
Returns
-------
TrrustProcessor
A TrrustProcessor object that has a list of INDRA Statements in its
statements attribute. |
11,642 | def remove_item(self, val):
return cache.lrem(self.key, json.dumps(val)) | Removes given item from the list.
Args:
val: Item
Returns:
Cache backend response. |
11,643 | def unregister_message_callback(self, type_, from_):
if type_ is not None:
type_ = self._coerce_enum(type_, structs.MessageType)
warnings.warn(
"unregister_message_callback is deprecated; use "
"aioxmpp.dispatcher.SimpleMessageDispatcher instead",
DeprecationWarning,
stacklevel=2
)
self._xxx_message_dispatcher.unregister_callback(
type_,
from_,
) | Unregister a callback previously registered with
:meth:`register_message_callback`.
:param type_: Message type to listen for.
:type type_: :class:`~.MessageType` or :data:`None`
:param from_: Sender JID to listen for.
:type from_: :class:`~aioxmpp.JID` or :data:`None`
:raises KeyError: if no function is currently registered for the given
``(type_, from_)`` pair.
:raises ValueError: if `type_` is not a valid
:class:`~.MessageType` (and cannot be cast
to a :class:`~.MessageType`)
The match is made on the exact pair; it is not possible to unregister
arbitrary listeners by passing :data:`None` to both arguments (i.e. the
wildcarding only applies for receiving stanzas, not for unregistering
callbacks; unregistering the super-wildcard with both arguments set to
:data:`None` is of course possible).
.. versionchanged:: 0.7
The `type_` argument is now supposed to be a
:class:`~.MessageType` member.
.. deprecated:: 0.7
Passing a :class:`str` as `type_` argument is deprecated and will
raise a :class:`TypeError` as of the 1.0 release. See the Changelog
for :ref:`api-changelog-0.7` for further details on how to upgrade
your code efficiently.
.. deprecated:: 0.9
This method has been deprecated in favour of and is now implemented
in terms of the :class:`aioxmpp.dispatcher.SimpleMessageDispatcher`
service.
It is equivalent to call
:meth:`~.SimpleStanzaDispatcher.unregister_callback`, except that
the latter is not deprecated. |
11,644 | def datetimes(self):
if self._datetimes is None:
self._datetimes = tuple(self.header.analysis_period.datetimes)
return self._datetimes | Return datetimes for this collection as a tuple. |
11,645 | def get_available_modes(self):
resource = "modes"
resource_event = self.publish_and_get_event(resource)
if resource_event:
properties = resource_event.get("properties")
return properties.get("modes")
return None | Return a list of available mode objects for an Arlo user. |
11,646 | def clone(cls, model, use_json=True, use_lp=False):
model.update()
interface = sys.modules[cls.__module__]
if use_lp:
warnings.warn("Cloning with LP formats can change variable and constraint ID's.")
new_model = cls.from_lp(model.to_lp())
new_model.configuration = interface.Configuration.clone(model.configuration, problem=new_model)
return new_model
if use_json:
new_model = cls.from_json(model.to_json())
new_model.configuration = interface.Configuration.clone(model.configuration, problem=new_model)
return new_model
new_model = cls()
for variable in model.variables:
new_variable = interface.Variable.clone(variable)
new_model._add_variable(new_variable)
for constraint in model.constraints:
new_constraint = interface.Constraint.clone(constraint, model=new_model)
new_model._add_constraint(new_constraint)
if model.objective is not None:
new_model.objective = interface.Objective.clone(model.objective, model=new_model)
new_model.configuration = interface.Configuration.clone(model.configuration, problem=new_model)
return new_model | Make a copy of a model. The model being copied can be of the same type or belong to
a different solver interface. This is the preferred way of copying models.
Example
----------
>>> new_model = Model.clone(old_model) |
11,647 | def get_uri_template(urlname, args=None, prefix=""):
t appear in every pattern possibility)
%s/%s://')
possibilities = resolver.reverse_dict.getlist(urlname)
for tmp in possibilities:
possibility, pattern = tmp[:2]
if not args:
result, params = possibility[0]
return _convert(result, params)
else:
seen_params = []
for result, params in possibility:
seen_params.append(params)
common_params = reduce(lambda x, y: set(x) & set(y), seen_params)
expected_params = sorted(common_params.union(args))
for result, params in possibility:
if sorted(params) == expected_params:
return _convert(result, params)
return None | Utility function to return an URI Template from a named URL in django
Copied from django-digitalpaper.
Restrictions:
- Only supports named urls! i.e. url(... name="toto")
- Only support one namespace level
- Only returns the first URL possibility.
- Supports multiple pattern possibilities (i.e., patterns with
non-capturing parenthesis in them) by trying to find a pattern
whose optional parameters match those you specified (a parameter
is considered optional if it doesn't appear in every pattern possibility) |
11,648 | def _vector_size(v):
if isinstance(v, Vector):
return len(v)
elif type(v) in (array.array, list, tuple, xrange):
return len(v)
elif type(v) == np.ndarray:
if v.ndim == 1 or (v.ndim == 2 and v.shape[1] == 1):
return len(v)
else:
raise ValueError("Cannot treat an ndarray of shape %s as a vector" % str(v.shape))
elif _have_scipy and scipy.sparse.issparse(v):
assert v.shape[1] == 1, "Expected column vector"
return v.shape[0]
else:
raise TypeError("Cannot treat type %s as a vector" % type(v)) | Returns the size of the vector.
>>> _vector_size([1., 2., 3.])
3
>>> _vector_size((1., 2., 3.))
3
>>> _vector_size(array.array('d', [1., 2., 3.]))
3
>>> _vector_size(np.zeros(3))
3
>>> _vector_size(np.zeros((3, 1)))
3
>>> _vector_size(np.zeros((1, 3)))
Traceback (most recent call last):
...
ValueError: Cannot treat an ndarray of shape (1, 3) as a vector |
11,649 | def NewDefaultAgency(self, **kwargs):
agency = self._gtfs_factory.Agency(**kwargs)
if not agency.agency_id:
agency.agency_id = util.FindUniqueId(self._agencies)
self._default_agency = agency
self.SetDefaultAgency(agency, validate=False)
return agency | Create a new Agency object and make it the default agency for this Schedule |
11,650 | def convex_conj(self):
if self.exponent == np.inf:
return L1Norm(self.domain)
elif self.exponent == 2:
return L2Norm(self.domain)
else:
return LpNorm(self.domain, exponent=conj_exponent(self.exponent)) | The conjugate functional of IndicatorLpUnitBall.
The convex conjugate functional of an ``Lp`` norm, ``p < infty`` is the
indicator function on the unit ball defined by the corresponding dual
norm ``q``, given by ``1/p + 1/q = 1`` and where ``q = infty`` if
``p = 1`` [Roc1970]. By the Fenchel-Moreau theorem, the convex
conjugate functional of indicator function on the unit ball in ``Lq``
is the corresponding Lp-norm [BC2011].
References
----------
[Roc1970] Rockafellar, R. T. *Convex analysis*. Princeton
University Press, 1970.
[BC2011] Bauschke, H H, and Combettes, P L. *Convex analysis and
monotone operator theory in Hilbert spaces*. Springer, 2011. |
11,651 | def validate_json_schema(self):
errors = []
for work in self:
for task in work:
if not task.get_results().validate_json_schema():
errors.append(task)
if not work.get_results().validate_json_schema():
errors.append(work)
if not self.get_results().validate_json_schema():
errors.append(self)
return errors | Validate the JSON schema. Return list of errors. |
11,652 | def to_xdr_object(self):
return Xdr.types.Memo(type=Xdr.const.MEMO_HASH, hash=self.memo_hash) | Creates an XDR Memo object for a transaction with MEMO_HASH. |
11,653 | def scan_uow_candidates(self):
try:
since = settings.settings[]
uow_list = self.uow_dao.get_reprocessing_candidates(since)
except LookupError as e:
self.logger.info(.format(e))
return
for uow in uow_list:
try:
if uow.process_name not in self.managed_handlers:
self.logger.debug(
.format(uow.process_name))
continue
thread_handler = self.managed_handlers[uow.process_name]
assert isinstance(thread_handler, ManagedThreadHandler)
if not thread_handler.process_entry.is_on:
self.logger.debug(.format(uow.process_name))
continue
entry = PriorityEntry(uow)
if entry in self.reprocess_uows[uow.process_name]:
continue
if datetime.utcnow() - uow.created_at > timedelta(hours=settings.settings[]):
self._cancel_uow(uow)
continue
if datetime.utcnow() - uow.submitted_at > timedelta(hours=settings.settings[])\
or uow.is_invalid:
self.reprocess_uows[uow.process_name].put(entry)
except Exception as e:
self.logger.error(.format(e), exc_info=True) | method performs two actions:
- enlist stale or invalid units of work into reprocessing queue
- cancel UOWs that are older than 2 days and have been submitted more than 1 hour ago |
11,654 | def read_cf1_config(self):
target = self._cload.targets[0xFF]
config_page = target.flash_pages - 1
return self._cload.read_flash(addr=0xFF, page=config_page) | Read a flash page from the specified target |
11,655 | def _validate_zooms(zooms):
if isinstance(zooms, dict):
if any([a not in zooms for a in ["min", "max"]]):
raise MapcheteConfigError("min and max zoom required")
zmin = _validate_zoom(zooms["min"])
zmax = _validate_zoom(zooms["max"])
if zmin > zmax:
raise MapcheteConfigError(
"max zoom must not be smaller than min zoom")
return list(range(zmin, zmax + 1))
elif isinstance(zooms, list):
if len(zooms) == 1:
return zooms
elif len(zooms) == 2:
zmin, zmax = sorted([_validate_zoom(z) for z in zooms])
return list(range(zmin, zmax + 1))
else:
return zooms
else:
return [_validate_zoom(zooms)] | Return a list of zoom levels.
Following inputs are converted:
- int --> [int]
- dict{min, max} --> range(min, max + 1)
- [int] --> [int]
- [int, int] --> range(smaller int, bigger int + 1) |
11,656 | def get_url_parameters(self):
url_fields = {}
for field in self.url_fields:
url_fields[field] = getattr(self, field)
return url_fields | Create a dictionary of parameters used in URLs for this model. |
11,657 | def remove_all_cts_records_by(self, crypto_idfp):
regex = re.compile()
to_remove = []
for k, v in self.filter(regex, is_regex=True):
if v == crypto_idfp:
match = regex.match(k)
to_remove.append((match.group(1), int(match.group(2))))
for i in to_remove:
self.remove_cts_record(*i) | Remove all CTS records from the specified player
:param crypto_idfp:
:return: |
11,658 | def ctrl_transfer(self, bmRequestType, bRequest, wValue=0, wIndex=0,
data_or_wLength = None, timeout = None):
r
try:
buff = util.create_buffer(data_or_wLength)
except TypeError:
buff = _interop.as_array(data_or_wLength)
self._ctx.managed_open()
recipient = bmRequestType & 3
rqtype = bmRequestType & (3 << 5)
if recipient == util.CTRL_RECIPIENT_INTERFACE \
and rqtype != util.CTRL_TYPE_VENDOR:
interface_number = wIndex & 0xff
self._ctx.managed_claim_interface(self, interface_number)
ret = self._ctx.backend.ctrl_transfer(
self._ctx.handle,
bmRequestType,
bRequest,
wValue,
wIndex,
buff,
self.__get_timeout(timeout))
if isinstance(data_or_wLength, array.array) \
or util.ctrl_direction(bmRequestType) == util.CTRL_OUT:
return ret
elif ret != len(buff) * buff.itemsize:
return buff[:ret]
else:
return buff | r"""Do a control transfer on the endpoint 0.
This method is used to issue a control transfer over the endpoint 0
(endpoint 0 is required to always be a control endpoint).
The parameters bmRequestType, bRequest, wValue and wIndex are the same
of the USB Standard Control Request format.
Control requests may or may not have a data payload to write/read.
In cases which it has, the direction bit of the bmRequestType
field is used to infer the desired request direction. For
host to device requests (OUT), data_or_wLength parameter is
the data payload to send, and it must be a sequence type convertible
to an array object. In this case, the return value is the number
of bytes written in the data payload. For device to host requests
(IN), data_or_wLength is either the wLength parameter of the control
request specifying the number of bytes to read in data payload, and
the return value is an array object with data read, or an array
object which the data will be read to, and the return value is the
number of bytes read. |
11,659 | def find_lemma(self, verb):
v = verb.lower()
if not (v.startswith("ge") and v.endswith("t")):
for prefix in prefixes:
if v.startswith(prefix) and v[len(prefix):] in self.inflections:
return prefix + self.inflections[v[len(prefix):]]
b, suffix = " " in v and v.split()[:2] or (v, "")
if b.endswith(("ln", "rn")):
return b
for x in ("test", "est", "end", "ten", "tet", "en", "et", "te", "st", "e", "t"):
if b.endswith(x): b = b[:-len(x)]; break
for x, y in (
("ieb", "eib"), ( "ied", "eid"), ( "ief", "auf" ), ( "ieg", "eig" ), ("iel", "alt"),
("ien", "ein"), ("iess", "ass"), (u"ieß", u"aß" ), ( "iff", "eif" ), ("iss", "eiss"),
(u"iß", u"eiß"), ( "it", "eid"), ( "oss", "iess"), (u"öss", "iess")):
if b.endswith(x): b = b[:-len(x)] + y; break
b = b.replace("eeiss", "eiss")
b = b.replace("eeid", "eit")
if not b.endswith(("e", "l")) and not (b.endswith("er") and len(b) >= 3 and not b[-3] in VOWELS):
b = b + "e"
if b.endswith(("hl", "ll", "ul", "eil")):
b = b + "e"
if b.startswith("ge") and v.endswith("t"):
b = b[2:]
if b.endswith(("lnde", "rnde")):
b = b[:-3]
if b.endswith(("ae", "al", u"öe", u"üe")):
b = b.rstrip("e") + "te"
if b.endswith(u"äl"):
b = b + "e"
return suffix + b + "n" | Returns the base form of the given inflected verb, using a rule-based approach. |
11,660 | def do_selection_reduction_to_one_parent(selection):
all_models_selected = selection.get_all()
parent_m_count_dict = {}
for model in all_models_selected:
parent_m_count_dict[model.parent] = parent_m_count_dict[model.parent] + 1 if model.parent in parent_m_count_dict else 1
parent_m = None
current_count_parent = 0
for possible_parent_m, count in parent_m_count_dict.items():
parent_m = possible_parent_m if current_count_parent < count else parent_m
if len(selection.states) == 1 and selection.get_selected_state().state.is_root_state:
parent_m = None
if len(all_models_selected) > 1:
selection.set(selection.get_selected_state())
if parent_m is not None:
for model in all_models_selected:
if model.parent is not parent_m:
selection.remove(model)
return parent_m | Find and reduce selection to one parent state.
:param selection:
:return: state model which is parent of selection or None if root state |
11,661 | def get_stdev(self, col, row):
return javabridge.call(self.jobject, "getStdDev", "(II)D", col, row) | Returns the standard deviation at this location (if valid location).
:param col: the 0-based column index
:type col: int
:param row: the 0-based row index
:type row: int
:return: the standard deviation
:rtype: float |
11,662 | def process(self, plugin, context, instance=None, action=None):
plugin = plugin.to_json()
instance = instance.to_json() if instance is not None else None
return self._dispatch("process", args=[plugin, instance, action]) | Transmit a `process` request to host
Arguments:
plugin (PluginProxy): Plug-in to process
context (ContextProxy): Filtered context
instance (InstanceProxy, optional): Instance to process
action (str, optional): Action to process |
11,663 | def generate_value_label(self, byteorder, encoding):
self._encoding = encoding
bio = BytesIO()
null_string =
null_byte = b
bio.write(struct.pack(byteorder + , self.len))
labname = self._encode(_pad_bytes(self.labname[:32], 33))
bio.write(labname)
for i in range(3):
bio.write(struct.pack(, null_byte))
bio.write(struct.pack(byteorder + , self.n))
bio.write(struct.pack(byteorder + , self.text_len))
for offset in self.off:
bio.write(struct.pack(byteorder + , offset))
for value in self.val:
bio.write(struct.pack(byteorder + , value))
for text in self.txt:
bio.write(self._encode(text + null_string))
bio.seek(0)
return bio.read() | Parameters
----------
byteorder : str
Byte order of the output
encoding : str
File encoding
Returns
-------
value_label : bytes
Bytes containing the formatted value label |
11,664 | def convert_p(element, text):
depth = -1
while element:
if (not element.name == and
not element.parent.get() == ):
depth += 1
element = element.parent
if text:
text = * depth + text
return text | Adds 2 newlines to the end of text |
11,665 | def _is_locked(self):
if os.path.isfile(self._lck):
try:
import psutil
except ImportError:
return True
with open(self._lck) as f:
pid = f.read()
return True if psutil.pid_exists(int(pid)) else False
else:
return False | Checks to see if we are already pulling items from the queue |
11,666 | def lower_key(fn):
def lower(key):
try:
return key.lower()
except AttributeError:
return key
return process_key(lower, fn) | :param fn: a key function
:return:
a function that wraps around the supplied key function to ensure
the returned key is in lowercase. |
11,667 | def get_assessments_by_query(self, assessment_query):
if in assessment_query._query_terms:
collection = JSONClientValidated(,
collection=,
runtime=self._runtime)
match = in assessment_query._query_terms[].keys()
if match:
match_identifiers = [ObjectId(Id(i).identifier) for i in assessment_query._query_terms[][]]
query = {: match_identifiers}
else:
match_identifiers = [ObjectId(Id(i).identifier) for i in assessment_query._query_terms[][]]
query = {: match_identifiers}
result = collection.find({
"_id": query
})
assessment_ids = [ObjectId(Id(r[]).identifier) for r in result]
collection = JSONClientValidated(,
collection=,
runtime=self._runtime)
result = collection.find({
"_id": {"$in": assessment_ids}
})
return objects.AssessmentList(result, runtime=self._runtime, proxy=self._proxy)
else:
and_list = list()
or_list = list()
for term in assessment_query._query_terms:
if in assessment_query._query_terms[term] and in assessment_query._query_terms[term]:
and_list.append(
{: [{term: {: assessment_query._query_terms[term][]}},
{term: {: assessment_query._query_terms[term][]}}]})
else:
and_list.append({term: assessment_query._query_terms[term]})
for term in assessment_query._keyword_terms:
or_list.append({term: assessment_query._keyword_terms[term]})
if or_list:
and_list.append({: or_list})
view_filter = self._view_filter()
if view_filter:
and_list.append(view_filter)
if and_list:
query_terms = {: and_list}
collection = JSONClientValidated(,
collection=,
runtime=self._runtime)
result = collection.find(query_terms).sort(, DESCENDING)
else:
result = []
return objects.AssessmentList(result, runtime=self._runtime, proxy=self._proxy) | Gets a list of ``Assessments`` matching the given assessment query.
arg: assessment_query (osid.assessment.AssessmentQuery): the
assessment query
return: (osid.assessment.AssessmentList) - the returned
``AssessmentList``
raise: NullArgument - ``assessment_query`` is ``null``
raise: OperationFailed - unable to complete request
raise: PermissionDenied - authorization failure occurred
raise: Unsupported - ``assessment_query`` is not of this
service
*compliance: mandatory -- This method must be implemented.* |
11,668 | def get_data_by_slug(model, slug, kind=, **kwargs):
instance = get_instance_by_slug(model, slug, **kwargs)
if not instance:
return
return ins2dict(instance, kind) | Get instance data by slug and kind. Raise 404 Not Found if there is no data.
This function requires model has a `slug` column.
:param model: a string, model name in rio.models
:param slug: a string used to query by `slug`. This requires there is a
slug field in model definition.
:param kind: a string specified which kind of dict tranformer should be called.
:return: a dict or None. |
11,669 | def get_lines(handle, line):
for i, l in enumerate(handle):
if i == line:
return l | Get zero-indexed line from an open file-like. |
11,670 | def flip_coded(self):
self.genotypes = 2 - self.genotypes
self.reference, self.coded = self.coded, self.reference | Flips the coding of the alleles. |
11,671 | def instantiate_components(self, context):
with use_ipopo(context) as ipopo:
for name, (factory, properties) in self.__state.components.items():
ipopo.instantiate(factory, name, properties) | Instantiate the defined components
.. note::
This method requires the iPOPO core service to be registered.
This means that the ``pelix.ipopo.core`` must have been declared in
the list of bundles (or installed and started programmatically).
:param context: A :class:`~pelix.framework.BundleContext` object
:raise BundleException: Error looking for the iPOPO service or
starting a component |
11,672 | def refresh_db(**kwargs):
salt.utils.pkg.clear_rtag(__opts__)
cmd = [, ]
return salt.utils.mac_utils.execute_return_success(cmd) | Update ports with ``port selfupdate``
CLI Example:
.. code-block:: bash
salt mac pkg.refresh_db |
11,673 | def _tryMatch(self, textToMatchObject):
for rule in self.context.rules:
ruleTryMatchResult = rule.tryMatch(textToMatchObject)
if ruleTryMatchResult is not None:
_logger.debug(,
rule.shortId(),
textToMatchObject.currentColumnIndex,
self.context.parser.syntax.name,
self.context.name)
return ruleTryMatchResult
else:
return None | Try to find themselves in the text.
Returns (count, matchedRule) or (None, None) if doesn't match |
11,674 | def nonterminal(n):
def match_nonterminal(s, grm=None, pos=0):
if grm is None: grm = {}
expr = grm[n]
return expr(s, grm, pos)
return match_nonterminal | Create a PEG function to match a nonterminal. |
11,675 | def get_image_path(definition):
path = resources_path(
, , % definition[])
if os.path.exists(path):
return path
else:
return not_set_image_path | Helper to get path of image from a definition in resource directory.
:param definition: A definition (hazard, exposure).
:type definition: dict
:returns: The definition's image path.
:rtype: str |
11,676 | def get_anki_phrases(lang=, limit=None):
lang = lang.strip().lower()[:3]
lang = LANG2ANKI[lang[:2]] if lang not in ANKI_LANGUAGES else lang
if lang[:2] == :
return get_anki_phrases_english(limit=limit)
return sorted(get_data(lang).iloc[:, -1].str.strip().values) | Retrieve as many anki paired-statement corpora as you can for the requested language
If `ankis` (requested languages) is more than one, then get the english texts associated with those languages.
TODO: improve modularity: def function that takes a single language and call it recursively if necessary
>>> get_anki_phrases('afr')[:2]
["'n Groen piesang is nie ryp genoeg om te eet nie.",
"'n Hond het agter die kat aan gehardloop."] |
11,677 | def is_bool_dtype(arr_or_dtype):
if arr_or_dtype is None:
return False
try:
dtype = _get_dtype(arr_or_dtype)
except TypeError:
return False
if isinstance(arr_or_dtype, CategoricalDtype):
arr_or_dtype = arr_or_dtype.categories
if isinstance(arr_or_dtype, ABCIndexClass):
return dtype._is_boolean
return issubclass(dtype.type, np.bool_) | Check whether the provided array or dtype is of a boolean dtype.
Parameters
----------
arr_or_dtype : array-like
The array or dtype to check.
Returns
-------
boolean
Whether or not the array or dtype is of a boolean dtype.
Notes
-----
An ExtensionArray is considered boolean when the ``_is_boolean``
attribute is set to True.
Examples
--------
>>> is_bool_dtype(str)
False
>>> is_bool_dtype(int)
False
>>> is_bool_dtype(bool)
True
>>> is_bool_dtype(np.bool)
True
>>> is_bool_dtype(np.array(['a', 'b']))
False
>>> is_bool_dtype(pd.Series([1, 2]))
False
>>> is_bool_dtype(np.array([True, False]))
True
>>> is_bool_dtype(pd.Categorical([True, False]))
True
>>> is_bool_dtype(pd.SparseArray([True, False]))
True |
11,678 | def send_method_request(self, method: str, method_params: dict) -> dict:
url = .join((self.METHOD_URL, method))
method_params[] = self.API_VERSION
if self._access_token:
method_params[] = self._access_token
response = self.post(url, method_params, timeout=10)
response.raise_for_status()
return json.loads(response.text) | Sends user-defined method and method params |
11,679 | def export_chat_invite_link(
self,
chat_id: Union[int, str]
) -> str:
peer = self.resolve_peer(chat_id)
if isinstance(peer, types.InputPeerChat):
return self.send(
functions.messages.ExportChatInvite(
peer=peer.chat_id
)
).link
elif isinstance(peer, types.InputPeerChannel):
return self.send(
functions.channels.ExportInvite(
channel=peer
)
).link | Use this method to generate a new invite link for a chat; any previously generated link is revoked.
You must be an administrator in the chat for this to work and have the appropriate admin rights.
Args:
chat_id (``int`` | ``str``):
Unique identifier for the target chat or username of the target channel/supergroup
(in the format @username).
Returns:
On success, the exported invite link as string is returned.
Raises:
:class:`RPCError <pyrogram.RPCError>` in case of a Telegram RPC error. |
11,680 | def _decodeAddressField(byteIter, smscField=False, log=False):
addressLen = next(byteIter)
if addressLen > 0:
toa = next(byteIter)
ton = (toa & 0x70)
if ton == 0x50:
addressLen = int(math.ceil(addressLen / 2.0))
septets = unpackSeptets(byteIter, addressLen)
addressValue = decodeGsm7(septets)
return (addressValue, (addressLen + 2))
else:
if smscField:
addressValue = decodeSemiOctets(byteIter, addressLen-1)
else:
if addressLen % 2:
addressLen = int(addressLen / 2) + 1
else:
addressLen = int(addressLen / 2)
addressValue = decodeSemiOctets(byteIter, addressLen)
addressLen += 1
if ton == 0x10:
addressValue = + addressValue
return (addressValue, (addressLen + 1))
else:
return (None, 1) | Decodes the address field at the current position of the bytearray iterator
:param byteIter: Iterator over bytearray
:type byteIter: iter(bytearray)
:return: Tuple containing the address value and amount of bytes read (value is or None if it is empty (zero-length))
:rtype: tuple |
11,681 | def tobytes(self):
d = offsetcopy(self._datastore, 0).rawbytes
unusedbits = 8 - self.len % 8
if unusedbits != 8:
d[-1] &= (0xff << unusedbits)
return bytes(d) | Return the bitstring as bytes, padding with zero bits if needed.
Up to seven zero bits will be added at the end to byte align. |
11,682 | def check_extension(conn, extension: str) -> bool:
query =
with conn.cursor() as cursor:
cursor.execute(query, (extension,))
result = cursor.fetchone()
if result is None:
raise psycopg2.ProgrammingError(
, extension
)
else:
extension_version = result[0]
return bool(extension_version) | Check to see if an extension is installed. |
11,683 | def get_git_branch(git_path=):
branch_match = call((git_path, , , ))
if branch_match == "HEAD":
return None
else:
return os.path.basename(branch_match) | Returns the name of the current git branch |
11,684 | def encode_notifications(tokens, notifications):
fmt = "!BH32sH%ds"
structify = lambda t, p: struct.pack(fmt % len(p), 0, 32, t, len(p), p)
binaryify = lambda t: t.decode()
if type(notifications) is dict and type(tokens) in (str, unicode):
tokens, notifications = ([tokens], [notifications])
if type(notifications) is list and type(tokens) is list:
return .join(map(lambda y: structify(*y), ((binaryify(t), json.dumps(p, separators=(,), ensure_ascii=False).encode())
for t, p in zip(tokens, notifications)))) | Returns the encoded bytes of tokens and notifications
tokens a list of tokens or a string of only one token
notifications a list of notifications or a dictionary of only one |
11,685 | def _from_dict(cls, _dict):
args = {}
if in _dict:
args[] = _dict.get()
if in _dict:
args[] = Location._from_dict(_dict.get())
if in _dict:
args[] = _dict.get()
if in _dict:
args[] = [
TypeLabelComparison._from_dict(x) for x in (_dict.get())
]
if in _dict:
args[] = [
CategoryComparison._from_dict(x)
for x in (_dict.get())
]
if in _dict:
args[] = [
Attribute._from_dict(x) for x in (_dict.get())
]
return cls(**args) | Initialize a UnalignedElement object from a json dictionary. |
11,686 | def read_input_data(filename):
logging.info(, filename)
input_file = open(filename, )
data = []
labels = []
for line in input_file:
tokens = line.split(, 1)
labels.append(tokens[0].strip())
data.append(tokens[1].strip())
return labels, data | Helper function to get training data |
11,687 | def visit_snippet(self, node):
lang = self.highlightlang
linenos = node.rawsource.count() >= self.highlightlinenothreshold - 1
fname = node[]
highlight_args = node.get(, {})
if in node:
lang = node[]
highlight_args[] = True
if in node:
linenos = node[]
def warner(msg):
self.builder.warn(msg, (self.builder.current_docname, node.line))
highlighted = self.highlighter.highlight_block(node.rawsource, lang,
warn=warner,
linenos=linenos,
**highlight_args)
starttag = self.starttag(node, , suffix=,
CLASS= % lang)
self.body.append(starttag)
self.body.append( % (fname,))
self.body.append(highlighted)
self.body.append()
raise nodes.SkipNode | HTML document generator visit handler |
11,688 | def sub(x, y, context=None):
return _apply_function_in_current_context(
BigFloat,
mpfr.mpfr_sub,
(
BigFloat._implicit_convert(x),
BigFloat._implicit_convert(y),
),
context,
) | Return ``x`` - ``y``. |
11,689 | def check_geophysical_vars_fill_value(self, ds):
results = []
for geo_var in get_geophysical_variables(ds):
results.append(
self._has_var_attr(ds, geo_var, , , BaseCheck.MEDIUM),
)
return results | Check that geophysical variables contain fill values.
:param netCDF4.Dataset ds: An open netCDF dataset |
11,690 | def make_request(self, session, url, **kwargs):
log.debug( % (url, kwargs))
return session.post(url, **kwargs) | Make a HTTP POST request.
:param url: The URL to post to.
:param data: The data to post.
:returns: The response to the request.
:rtype: requests.Response |
11,691 | def _perp_eigendecompose(matrix: np.ndarray,
rtol: float = 1e-5,
atol: float = 1e-8,
) -> Tuple[np.array, List[np.ndarray]]:
vals, cols = np.linalg.eig(matrix)
vecs = [cols[:, i] for i in range(len(cols))]
for i in range(len(vecs)):
vecs[i] = np.reshape(vecs[i], (len(vecs[i]), vecs[i].ndim))
n = len(vecs)
groups = _group_similar(
list(range(n)),
lambda k1, k2: np.allclose(vals[k1], vals[k2], rtol=rtol))
for g in groups:
q, _ = np.linalg.qr(np.hstack([vecs[i] for i in g]))
for i in range(len(g)):
vecs[g[i]] = q[:, i]
return vals, vecs | An eigendecomposition that ensures eigenvectors are perpendicular.
numpy.linalg.eig doesn't guarantee that eigenvectors from the same
eigenspace will be perpendicular. This method uses Gram-Schmidt to recover
a perpendicular set. It further checks that all eigenvectors are
perpendicular and raises an ArithmeticError otherwise.
Args:
matrix: The matrix to decompose.
rtol: Relative threshold for determining whether eigenvalues are from
the same eigenspace and whether eigenvectors are perpendicular.
atol: Absolute threshold for determining whether eigenvalues are from
the same eigenspace and whether eigenvectors are perpendicular.
Returns:
The eigenvalues and column eigenvectors. The i'th eigenvalue is
associated with the i'th column eigenvector.
Raises:
ArithmeticError: Failed to find perpendicular eigenvectors. |
11,692 | def _diff_cache_cluster(current, desired):
modifiables a dict mapping the param as used
in modify_cache_cluster() to that in describe_cache_clusters(). Any data fiddlery that
needs to be done to make the mappings meaningful should be done in the munging section
below as well.
This function will ONLY touch settings that are explicitly called out in - any
settings which might have previously been changed from their values will not be
changed back simply by leaving them out of . This is both intentional, and
much, much easier to code :)
SecurityGroupsSecurityGroupIdsSecurityGroupIdSecurityGroupsCacheSecurityGroupsCacheSecurityGroupNamesCacheSecurityGroupNameCacheSecurityGroupsNotificationConfigurationNotificationTopicArnNotificationConfigurationTopicArnNotificationTopicStatusNotificationConfigurationTopicStatusCacheParameterGroupCacheParameterGroupNameCacheParameterGroupCacheParameterGroupNameAutoMinorVersionUpgradeAutoMinorVersionUpgradeAZModeAZModeCacheNodeTypeCacheNodeTypeCacheNodeIdsToRemoveCacheParameterGroupNameCacheParameterGroupNameCacheSecurityGroupNamesCacheSecurityGroupNamesEngineVersionEngineVersionNewAvailabilityZonesNotificationTopicArnNotificationTopicArnNotificationTopicStatusNotificationTopicStatusNumCacheNodesNumCacheNodesPreferredMaintenanceWindowPreferredMaintenanceWindowSecurityGroupIdsSecurityGroupIdsSnapshotRetentionLimitSnapshotRetentionLimitSnapshotWindowSnapshotWindow'
}
need_update = {}
for m, o in modifiable.items():
if m in desired:
if not o:
need_update[m] = desired[m]
else:
if m in current:
if current[m] != desired[m]:
need_update[m] = desired[m]
return need_update | If you need to enhance what modify_cache_cluster() considers when deciding what is to be
(or can be) updated, add it to 'modifiable' below. It's a dict mapping the param as used
in modify_cache_cluster() to that in describe_cache_clusters(). Any data fiddlery that
needs to be done to make the mappings meaningful should be done in the munging section
below as well.
This function will ONLY touch settings that are explicitly called out in 'desired' - any
settings which might have previously been changed from their 'default' values will not be
changed back simply by leaving them out of 'desired'. This is both intentional, and
much, much easier to code :) |
11,693 | def _make_order(field_path, direction):
return query_pb2.StructuredQuery.Order(
field=query_pb2.StructuredQuery.FieldReference(field_path=field_path),
direction=_enum_from_direction(direction),
) | Helper for :meth:`order_by`. |
11,694 | def _create_state_data(self, context, resp_args, relay_state):
state = super()._create_state_data(context, resp_args, relay_state)
state["target_entity_id"] = context.target_entity_id_from_path()
return state | Adds the frontend idp entity id to state
See super class satosa.frontends.saml2.SAMLFrontend#save_state
:type context: satosa.context.Context
:type resp_args: dict[str, str | saml2.samlp.NameIDPolicy]
:type relay_state: str
:rtype: dict[str, dict[str, str] | str] |
11,695 | def send_command_w_enter(self, *args, **kwargs):
if len(args) > 1:
raise ValueError("Must pass in delay_factor as keyword argument")
delay_factor = kwargs.get("delay_factor", 1)
kwargs["delay_factor"] = self.select_delay_factor(delay_factor)
output = self.send_command_timing(*args, **kwargs)
if "Press any key" in output or "Press Enter to" in output:
new_args = list(args)
if len(args) == 1:
new_args[0] = self.RETURN
else:
kwargs["command_string"] = self.RETURN
if not kwargs.get("max_loops"):
kwargs["max_loops"] = 150
output = self.send_command_timing(*new_args, **kwargs)
if "802.11b Advanced Configuration" in output:
time.sleep(kwargs["delay_factor"] * 30)
not_done = True
i = 1
while not_done and i <= 150:
time.sleep(kwargs["delay_factor"] * 3)
i += 1
new_data = ""
new_data = self.read_channel()
if new_data:
output += new_data
else:
not_done = False
strip_prompt = kwargs.get("strip_prompt", True)
if strip_prompt:
output = self.strip_prompt(output)
output = self.strip_prompt(output)
return output | For 'show run-config' Cisco WLC adds a 'Press Enter to continue...' message
Even though pagination is disabled
show run-config also has excessive delays in the output which requires special
handling.
Arguments are the same as send_command_timing() method |
11,696 | def interactive(f):
return f | Decorator for making functions appear as interactively defined.
This results in the function being linked to the user_ns as globals()
instead of the module globals(). |
11,697 | def sanitizer(name, replacements=[(,), (,), (,)]):
for old,new in replacements:
name = name.replace(old,new)
return name | String sanitizer to avoid problematic characters in filenames. |
11,698 | def settings_module(self):
settings_module = parse_conf_data(
os.environ.get(
self.ENVVAR_FOR_DYNACONF, self.SETTINGS_FILE_FOR_DYNACONF
),
tomlfy=True,
)
if settings_module != getattr(self, "SETTINGS_MODULE", None):
self.set("SETTINGS_MODULE", settings_module)
return self.SETTINGS_MODULE | Gets SETTINGS_MODULE variable |
11,699 | def cupy_wrapper(func):
@functools.wraps(func)
def wrapped(*args, **kwargs):
args = list(args)
for n, a in enumerate(args):
if isinstance(a, np.ndarray):
args[n] = cp.asarray(a)
for k, v in kwargs.items():
if isinstance(v, np.ndarray):
kwargs[k] = cp.asarray(v)
rtn = func(*args, **kwargs)
if isinstance(rtn, (list, tuple)):
for n, a in enumerate(rtn):
if isinstance(a, cp.core.core.ndarray):
rtn[n] = cp.asnumpy(a)
else:
if isinstance(rtn, cp.core.core.ndarray):
rtn = cp.asnumpy(rtn)
return rtn
return wrapped | A wrapper function that converts numpy ndarray arguments to cupy
arrays, and convert any cupy arrays returned by the wrapped
function into numpy ndarrays. |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.