Unnamed: 0
int64 0
389k
| code
stringlengths 26
79.6k
| docstring
stringlengths 1
46.9k
|
---|---|---|
11,800 | def nmap_smb_vulnscan():
service_search = ServiceSearch()
services = service_search.get_services(ports=[], tags=[], up=True)
services = [service for service in services]
service_dict = {}
for service in services:
service.add_tag()
service_dict[str(service.address)] = service
nmap_args = "-Pn -n --disable-arp-ping --script smb-security-mode.nse,smb-vuln-ms17-010.nse -p 445".split(" ")
if services:
result = nmap(nmap_args, [str(s.address) for s in services])
parser = NmapParser()
report = parser.parse_fromstring(result)
smb_signing = 0
ms17 = 0
for nmap_host in report.hosts:
for script_result in nmap_host.scripts_results:
script_result = script_result.get(, {})
service = service_dict[str(nmap_host.address)]
if script_result.get(, ) == :
print_success("({}) SMB Signing disabled".format(nmap_host.address))
service.add_tag()
smb_signing += 1
if script_result.get(, {}).get(, ) == :
print_success("({}) Vulnerable for MS17-010".format(nmap_host.address))
service.add_tag()
ms17 += 1
service.update(tags=service.tags)
print_notification("Completed, tag added to systems with smb signing disabled, tag added to systems that did not apply MS17-010.")
stats = {: smb_signing, : ms17, : len(services)}
Logger().log(, .format(len(services)), stats)
else:
print_notification("No services found to scan.") | Scans available smb services in the database for smb signing and ms17-010. |
11,801 | def main(command_line=True, **kwargs):
def fix_separation(filename, new_filename):
old_file = open(filename, )
data = old_file.readlines()
new_data = []
for line in data:
new_line = line.replace(, )
new_line = new_line.replace(, )
new_data.append(new_line)
new_file = open(new_filename, )
for s in new_data:
new_file.write(s)
old_file.close()
new_file.close()
return new_filename
def old_fix_separation(filename, new_filename):
old_file = open(filename, )
data = old_file.readlines()
new_data = []
for line in data:
new_line = []
for i in line.split():
if in i[1:]:
lead_char = if i[0] == else
if lead_char:
v = i[1:].split()
else:
v = i.split()
new_line.append(lead_char + v[0])
new_line.append( + v[1])
else:
new_line.append(i)
new_line = (.join(new_line)) +
new_data.append(new_line)
new_file = open(new_filename, )
for s in new_data:
new_file.write(s)
new_file.close()
old_file.close()
return new_filename
noave=0
volume=2.5**3
inst=""
samp_con,Z=,""
missing=1
demag="N"
er_location_name="unknown"
citation=
args=sys.argv
meth_code="LP-NO"
version_num=pmag.get_version()
dir_path=
MagRecs=[]
samp_file =
meas_file =
mag_file =
if command_line:
if in sys.argv:
ind = sys.argv.index()
dir_path=sys.argv[ind+1]
if in sys.argv:
ind = sys.argv.index()
input_dir_path = sys.argv[ind+1]
else:
input_dir_path = dir_path
output_dir_path = dir_path
if "-h" in args:
print(main.__doc__)
return False
if in args:
ind=args.index("-F")
meas_file = args[ind+1]
if in args:
ind = args.index("-fsa")
samp_file = args[ind+1]
if samp_file[0]!=:
samp_file = os.path.join(input_dir_path, samp_file)
try:
open(samp_file,)
ErSamps,file_type=pmag.magic_read(samp_file)
except:
print(samp_file,)
print()
if in args:
ind = args.index("-f")
mag_file= args[ind+1]
if "-loc" in args:
ind=args.index("-loc")
er_location_name=args[ind+1]
if "-A" in args:
noave=1
if not command_line:
dir_path = kwargs.get(, )
input_dir_path = kwargs.get(, dir_path)
output_dir_path = dir_path
meas_file = kwargs.get(, )
mag_file = kwargs.get(, )
samp_file = kwargs.get(, )
specnum = kwargs.get(, 1)
samp_con = kwargs.get(, )
if len(str(samp_con)) > 1:
samp_con, Z = samp_con.split()
else:
Z =
er_location_name = kwargs.get(, )
noave = kwargs.get(, 0)
meth_code = kwargs.get(, "LP-NO")
meth_code=meth_code+":FS-C-DRILL-IODP:SP-SS-C:SO-V"
meth_code=meth_code.strip(":")
if mag_file:
mag_file = os.path.join(input_dir_path, mag_file)
samp_file = os.path.join(input_dir_path, samp_file)
meas_file = os.path.join(output_dir_path, meas_file)
if not mag_file:
print("You must provide an IODP_jr6 format file")
return False, "You must provide an IODP_jr6 format file"
if not os.path.exists(mag_file):
print(.format(mag_file))
return False, .format(mag_file)
if not os.path.exists(samp_file):
print("Your input directory:\n{}\nmust contain an er_samples.txt file, or you must explicitly provide one".format(input_dir_path))
return False, "Your input directory:\n{}\nmust contain an er_samples.txt file, or you must explicitly provide one".format(input_dir_path)
temp = os.path.join(output_dir_path, )
fix_separation(mag_file, temp)
samples, filetype = pmag.magic_read(samp_file)
with open(temp, ) as finput:
lines = finput.readlines()
os.remove(temp)
for line in lines:
MagRec = {}
line = line.split()
spec_text_id = line[0].split()[1]
SampRecs=pmag.get_dictitem(samples,,spec_text_id,)
if len(SampRecs)>0:
MagRec[]=SampRecs[0][]
MagRec[]=MagRec[]
MagRec[]=MagRec[]
MagRec["er_citation_names"]="This study"
MagRec[]=er_location_name
MagRec[]=version_num
MagRec["treatment_temp"]= % (273)
MagRec["measurement_temp"]= % (273)
MagRec["measurement_flag"]=
MagRec["measurement_standard"]=
MagRec["measurement_number"]=
MagRec["treatment_ac_field"]=
volume=float(SampRecs[0][])
x = float(line[4])
y = float(line[3])
negz = float(line[2])
cart=np.array([x,y,-negz]).transpose()
direction = pmag.cart2dir(cart).transpose()
expon = float(line[5])
magn_volume = direction[2] * (10.0**expon)
moment = magn_volume * volume
MagRec["measurement_magn_moment"]=str(moment)
MagRec["measurement_magn_volume"]=str(magn_volume)
MagRec["measurement_dec"]=%(direction[0])
MagRec["measurement_inc"]=%(direction[1])
step = line[1]
if step == :
meas_type="LT-NO"
elif step[0:2] == :
meas_type="LT-AF-Z"
treat=float(step[2:])
MagRec["treatment_ac_field"]= %(treat*1e-3)
elif step[0:2] == :
meas_type="LT-T-Z"
treat=float(step[2:])
MagRec["treatment_temp"]= % (treat+273.)
elif step[0:3]==:
meas_type="LT-AF-I"
treat=float(row[][3:])
MagRec["treatment_ac_field"]= %(treat*1e-3)
MagRec["treatment_dc_field"]= %(50e-6)
MagRec["measurement_description"]=
elif step[0:3]==:
meas_type="LT-IRM"
treat=float(step[3:])
MagRec["treatment_dc_field"]= %(treat*1e-3)
else:
print(,row)
return False, ,row
MagRec[]=meas_type
MagRecs.append(MagRec.copy())
else:
print(,row[])
MagOuts=pmag.measurements_methods(MagRecs,noave)
file_created, error_message = pmag.magic_write(meas_file,MagOuts,)
if file_created:
return True, meas_file
else:
return False, | NAME
iodp_jr6_magic.py
DESCRIPTION
converts shipboard .jr6 format files to magic_measurements format files
SYNTAX
iodp_jr6_magic.py [command line options]
OPTIONS
-h: prints the help message and quits.
-f FILE: specify input file, or
-F FILE: specify output file, default is magic_measurements.txt
-fsa FILE: specify er_samples.txt file for sample name lookup ,
default is 'er_samples.txt'
-loc HOLE : specify hole name (U1456A)
-A: don't average replicate measurements
INPUT
JR6 .jr6 format file |
11,802 | def use(cls, ec):
if isinstance(ec, (str, unicode)):
m = get_model(cls._alias, ec, signal=False)
else:
m = cls._use(ec)
return m | use will duplicate a new Model class and bind ec
ec is Engine name or Sesstion object |
11,803 | def is_orderable(cls):
if not getattr(settings, , None):
return False
labels = resolve_labels(cls)
if labels[] in settings.ORDERABLE_MODELS:
return settings.ORDERABLE_MODELS[labels[]]
return False | Checks if the provided class is specified as an orderable in
settings.ORDERABLE_MODELS. If it is return its settings. |
11,804 | def ensure_matplotlib_figure(obj):
import matplotlib
from matplotlib.figure import Figure
if obj == matplotlib.pyplot:
obj = obj.gcf()
elif not isinstance(obj, Figure):
if hasattr(obj, "figure"):
obj = obj.figure
if not isinstance(obj, Figure):
raise ValueError(
"Only matplotlib.pyplot or matplotlib.pyplot.Figure objects are accepted.")
if not obj.gca().has_data():
raise ValueError(
"You attempted to log an empty plot, pass a figure directly or ensure the global plot isn't closed.")
return obj | Extract the current figure from a matplotlib object or return the object if it's a figure.
raises ValueError if the object can't be converted. |
11,805 | def set(
self,
key,
value,
loader_identifier=None,
tomlfy=False,
dotted_lookup=True,
is_secret=False,
):
if "." in key and dotted_lookup is True:
return self._dotted_set(
key, value, loader_identifier=loader_identifier, tomlfy=tomlfy
)
value = parse_conf_data(value, tomlfy=tomlfy)
key = key.strip().upper()
existing = getattr(self, key, None)
if existing is not None and existing != value:
value = self._merge_before_set(key, existing, value, is_secret)
if isinstance(value, dict):
value = DynaBox(value, box_it_up=True)
setattr(self, key, value)
self.store[key] = value
self._deleted.discard(key)
if loader_identifier and loader_identifier in self.loaded_by_loaders:
self.loaded_by_loaders[loader_identifier][key] = value
elif loader_identifier:
self.loaded_by_loaders[loader_identifier] = {key: value}
elif loader_identifier is None:
self._defaults[key] = value | Set a value storing references for the loader
:param key: The key to store
:param value: The value to store
:param loader_identifier: Optional loader name e.g: toml, yaml etc.
:param tomlfy: Bool define if value is parsed by toml (defaults False)
:param is_secret: Bool define if secret values is hidden on logs. |
11,806 | def _write_init_models(self, filenames):
self.write(destination=self.output_directory, filename="__init__.py", template_name="__init_model__.py.tpl",
filenames=self._prepare_filenames(filenames),
class_prefix=self._class_prefix,
product_accronym=self._product_accronym,
header=self.header_content) | Write init file
Args:
filenames (dict): dict of filename and classes |
11,807 | def link(self, stream_instance):
if isinstance(stream_instance, collections.Iterable):
self.input_stream = stream_instance
elif getattr(stream_instance, , None):
self.input_stream = stream_instance.output_stream
else:
raise RuntimeError( % type(stream_instance)) | Set my input stream |
11,808 | def _is_gs_folder(cls, result):
return (cls.is_key(result) and
result.size == 0 and
result.name.endswith(cls._gs_folder_suffix)) | Return ``True`` if GS standalone folder object.
GS will create a 0 byte ``<FOLDER NAME>_$folder$`` key as a
pseudo-directory place holder if there are no files present. |
11,809 | def buttonbox(msg="", title=" ", choices=("Button[1]", "Button[2]", "Button[3]"), image=None, root=None, default_choice=None, cancel_choice=None):
global boxRoot, __replyButtonText, buttonsFrame
if default_choice is None:
default_choice = choices[0]
__replyButtonText = choices[0]
if root:
root.withdraw()
boxRoot = Toplevel(master=root)
boxRoot.withdraw()
else:
boxRoot = Tk()
boxRoot.withdraw()
boxRoot.title(title)
boxRoot.iconname()
boxRoot.geometry(st.rootWindowPosition)
boxRoot.minsize(400, 100)
messageFrame = Frame(master=boxRoot)
messageFrame.pack(side=TOP, fill=BOTH)
if image:
tk_Image = None
try:
tk_Image = ut.load_tk_image(image)
except Exception as inst:
print(inst)
if tk_Image:
imageFrame = Frame(master=boxRoot)
imageFrame.pack(side=TOP, fill=BOTH)
label = Label(imageFrame, image=tk_Image)
label.image = tk_Image
label.pack(side=TOP, expand=YES, fill=X, padx=, pady=)
buttonsFrame = Frame(master=boxRoot)
buttonsFrame.pack(side=TOP, fill=BOTH)
messageWidget = Message(messageFrame, text=msg, width=400)
messageWidget.configure(
font=(st.PROPORTIONAL_FONT_FAMILY, st.PROPORTIONAL_FONT_SIZE))
messageWidget.pack(side=TOP, expand=YES, fill=X, padx=, pady=)
__put_buttons_in_buttonframe(choices, default_choice, cancel_choice)
boxRoot.deiconify()
boxRoot.mainloop()
boxRoot.destroy()
if root:
root.deiconify()
return __replyButtonText | Display a msg, a title, an image, and a set of buttons.
The buttons are defined by the members of the choices list.
:param str msg: the msg to be displayed
:param str title: the window title
:param list choices: a list or tuple of the choices to be displayed
:param str image: Filename of image to display
:param str default_choice: The choice you want highlighted when the gui appears
:param str cancel_choice: If the user presses the 'X' close, which button should be pressed
:return: the text of the button that the user selected |
11,810 | def draw_flat_samples(**kwargs):
nsamples = kwargs.get(, 1)
min_mass = kwargs.get(, 1.)
max_mass = kwargs.get(, 2.)
m1 = np.random.uniform(min_mass, max_mass, nsamples)
m2 = np.random.uniform(min_mass, max_mass, nsamples)
return np.maximum(m1, m2), np.minimum(m1, m2) | Draw samples for uniform in mass
Parameters
----------
**kwargs: string
Keyword arguments as model parameters and number of samples
Returns
-------
array
The first mass
array
The second mass |
11,811 | def safe_urlencode(params, doseq=0):
if IS_PY3:
return urlencode(params, doseq)
if hasattr(params, "items"):
params = params.items()
new_params = []
for k, v in params:
k = k.encode("utf-8")
if isinstance(v, (list, tuple)):
new_params.append((k, [force_bytes(i) for i in v]))
else:
new_params.append((k, force_bytes(v)))
return urlencode(new_params, doseq) | UTF-8-safe version of safe_urlencode
The stdlib safe_urlencode prior to Python 3.x chokes on UTF-8 values
which can't fail down to ascii. |
11,812 | def handle_json_GET_routepatterns(self, params):
schedule = self.server.schedule
route = schedule.GetRoute(params.get(, None))
if not route:
self.send_error(404)
return
time = int(params.get(, 0))
date = params.get(, "")
sample_size = 3
pattern_id_trip_dict = route.GetPatternIdTripDict()
patterns = []
for pattern_id, trips in pattern_id_trip_dict.items():
time_stops = trips[0].GetTimeStops()
if not time_stops:
continue
has_non_zero_trip_type = False;
trips_with_service = []
for trip in trips:
service_id = trip.service_id
service_period = schedule.GetServicePeriod(service_id)
if date and not service_period.IsActiveOn(date):
continue
trips_with_service.append(trip)
if trip[] and trip[] != :
has_non_zero_trip_type = True
start_sample_index = len(trips)
for i, trip in enumerate(trips):
if trip.GetStartTime() >= time:
start_sample_index = i
break
num_after_sample = num_trips - (start_sample_index + sample_size)
if num_after_sample < 0:
num_after_sample = 0
start_sample_index = num_trips - sample_size
sample = []
for t in trips[start_sample_index:start_sample_index + sample_size]:
sample.append( (t.GetStartTime(), t.trip_id) )
patterns.append((name, pattern_id, start_sample_index, sample,
num_after_sample, (0,1)[has_non_zero_trip_type]))
patterns.sort()
return patterns | Given a route_id generate a list of patterns of the route. For each
pattern include some basic information and a few sample trips. |
11,813 | def start(self):
self._events_to_write = []
self._new_contracts_to_write = []
@events.on(SmartContractEvent.CONTRACT_CREATED)
@events.on(SmartContractEvent.CONTRACT_MIGRATED)
def call_on_success_event(sc_event: SmartContractEvent):
self.on_smart_contract_created(sc_event)
@events.on(SmartContractEvent.RUNTIME_NOTIFY)
def call_on_event(sc_event: NotifyEvent):
self.on_smart_contract_event(sc_event)
Blockchain.Default().PersistCompleted.on_change += self.on_persist_completed | Handle EventHub events for SmartContract decorators |
11,814 | def update_table(self, tablename, throughput=None, global_indexes=None,
index_updates=None):
kwargs = {
: tablename
}
all_attrs = set()
if throughput is not None:
kwargs[] = throughput.schema()
if index_updates is not None:
updates = []
for update in index_updates:
all_attrs.update(update.get_attrs())
updates.append(update.serialize())
kwargs[] = updates
elif global_indexes is not None:
kwargs[] = [
{
: {
: key,
: value.schema(),
}
}
for key, value in six.iteritems(global_indexes)
]
if all_attrs:
attr_definitions = [attr.definition() for attr in all_attrs]
kwargs[] = attr_definitions
return self.call(, **kwargs) | Update the throughput of a table and/or global indexes
Parameters
----------
tablename : str
Name of the table to update
throughput : :class:`~dynamo3.fields.Throughput`, optional
The new throughput of the table
global_indexes : dict, optional
DEPRECATED. Use index_updates now.
Map of index name to :class:`~dynamo3.fields.Throughput`
index_updates : list of :class:`~dynamo3.fields.IndexUpdate`, optional
List of IndexUpdates to perform |
11,815 | def getChecked(self):
attrs = []
layout = self.layout()
for i in range(layout.count()):
w = layout.itemAt(i).widget()
if w.isChecked():
attrs.append(str(w.text()))
return attrs | Gets the checked attributes
:returns: list<str> -- checked attribute names |
11,816 | def get_passage(self, objectId, subreference):
passage = self.resolver.getTextualNode(
textId=objectId,
subreference=subreference,
metadata=True
)
return passage | Retrieve the passage identified by the parameters
:param objectId: Collection Identifier
:type objectId: str
:param subreference: Subreference of the passage
:type subreference: str
:return: An object bearing metadata and its text
:rtype: InteractiveTextualNode |
11,817 | def stage_name(self):
if in self.data and self.data.stage_name:
return self.data.get()
else:
return self.stage.data.name | Get stage name of current job instance.
Because instantiating job instance could be performed in different ways and those return different results,
we have to check where from to get name of the stage.
:return: stage name. |
11,818 | def _write_family(family, filename):
with open(filename, ) as f:
for detection in family.detections:
det_str =
for key in detection.__dict__.keys():
if key == and detection.__dict__[key] is not None:
value = str(detection.event.resource_id)
elif key in [, , ]:
value = format(detection.__dict__[key], ).rstrip()
else:
value = str(detection.__dict__[key])
det_str += key + + value +
f.write(det_str + )
return | Write a family to a csv file.
:type family: :class:`eqcorrscan.core.match_filter.Family`
:param family: Family to write to file
:type filename: str
:param filename: File to write to. |
11,819 | def _get_MAP_spikes(F, c_hat, theta, dt, tol=1E-6, maxiter=100, verbosity=0):
npix, nt = F.shape
sigma, alpha, beta, lamb, gamma = theta
alpha_ss = np.dot(alpha, alpha)
c = np.dot(alpha, F) - np.dot(alpha, beta)
scale_var = 1. / (2 * sigma * sigma)
lD = lamb * dt
grad_lnprior = np.zeros(nt, dtype=DTYPE)
grad_lnprior[1:] = lD
grad_lnprior[:-1] -= lD * gamma
z = 1.
n_hat = c_hat[1:] - gamma * c_hat[:-1]
res = c - alpha_ss * c_hat
LL_best = _post_LL(n_hat, res, scale_var, lD, z)
LL_barrier = LL_best
nloop1 = 0
terminate_interior = False
% maxiter)
terminate_interior = True
nloop1 += 1
z /= Z_FAC
return n_hat, c_hat, LL_best | Used internally by deconvolve to compute the maximum a posteriori
spike train for a given set of fluorescence traces and model parameters.
See the documentation for deconvolve for the meaning of the
arguments
Returns: n_hat_best, c_hat_best, LL_best |
11,820 | def _socket_reconnect_and_wait_ready(self):
logger.info("Start connecting: host={}; port={};".format(self.__host, self.__port))
with self._lock:
self._status = ContextStatus.Connecting
ret, msg, conn_id = self._net_mgr.connect((self.__host, self.__port), self, 5)
if ret == RET_OK:
self._conn_id = conn_id
else:
logger.warning(msg)
if ret == RET_OK:
while True:
with self._lock:
if self._sync_req_ret is not None:
if self._sync_req_ret.ret == RET_OK:
self._status = ContextStatus.Ready
else:
ret, msg = self._sync_req_ret.ret, self._sync_req_ret.msg
self._sync_req_ret = None
break
sleep(0.01)
if ret == RET_OK:
ret, msg = self.on_api_socket_reconnected()
else:
self._wait_reconnect()
return RET_OK, | sync_socket & async_socket recreate
:return: (ret, msg) |
11,821 | def pick(self, filenames: Iterable[str]) -> str:
filenames = sorted(filenames, reverse=True)
for priority in sorted(self.rules.keys(), reverse=True):
patterns = self.rules[priority]
for pattern in patterns:
for filename in filenames:
if pattern.search(filename):
return filename
return filenames[0] | Pick one filename based on priority rules. |
11,822 | def solveConsKinkedR(solution_next,IncomeDstn,LivPrb,DiscFac,CRRA,Rboro,Rsave,
PermGroFac,BoroCnstArt,aXtraGrid,vFuncBool,CubicBool):
s one period problem.
IncomeDstn : [np.array]
A list containing three arrays of floats, representing a discrete
approximation to the income process between the period being solved
and the one immediately following (in solution_next). Order: event
probabilities, permanent shocks, transitory shocks.
LivPrb : float
Survival probability; likelihood of being alive at the beginning of
the succeeding period.
DiscFac : float
Intertemporal discount factor for future utility.
CRRA : float
Coefficient of relative risk aversion.
Rboro: float
Interest factor on assets between this period and the succeeding
period when assets are negative.
Rsave: float
Interest factor on assets between this period and the succeeding
period when assets are positive.
PermGroFac : float
Expected permanent income growth factor at the end of this period.
BoroCnstArt: float or None
Borrowing constraint for the minimum allowable assets to end the
period with. If it is less than the natural borrowing constraint,
then it is irrelevant; BoroCnstArt=None indicates no artificial bor-
rowing constraint.
aXtraGrid: np.array
Array of "extra" end-of-period asset values-- assets above the
absolute minimum acceptable level.
vFuncBool: boolean
An indicator for whether the value function should be computed and
included in the reported solution.
CubicBool: boolean
Indicator for whether the solver should use cubic or linear interpolation.
Returns
-------
solution_now : ConsumerSolution
The solution to the single period consumption-saving problem. Includes
a consumption function cFunc (using cubic or linear splines), a marginal
value function vPfunc, a minimum acceptable level of normalized market
resources mNrmMin, normalized human wealth hNrm, and bounding MPCs MPCmin
and MPCmax. It might also have a value function vFunc.
'
solver = ConsKinkedRsolver(solution_next,IncomeDstn,LivPrb,
DiscFac,CRRA,Rboro,Rsave,PermGroFac,BoroCnstArt,
aXtraGrid,vFuncBool,CubicBool)
solver.prepareToSolve()
solution = solver.solve()
return solution | Solves a single period consumption-saving problem with CRRA utility and risky
income (subject to permanent and transitory shocks), and different interest
factors on borrowing and saving. Restriction: Rboro >= Rsave. Currently
cannot construct a cubic spline consumption function, only linear. Can gen-
erate a value function if requested.
Parameters
----------
solution_next : ConsumerSolution
The solution to next period's one period problem.
IncomeDstn : [np.array]
A list containing three arrays of floats, representing a discrete
approximation to the income process between the period being solved
and the one immediately following (in solution_next). Order: event
probabilities, permanent shocks, transitory shocks.
LivPrb : float
Survival probability; likelihood of being alive at the beginning of
the succeeding period.
DiscFac : float
Intertemporal discount factor for future utility.
CRRA : float
Coefficient of relative risk aversion.
Rboro: float
Interest factor on assets between this period and the succeeding
period when assets are negative.
Rsave: float
Interest factor on assets between this period and the succeeding
period when assets are positive.
PermGroFac : float
Expected permanent income growth factor at the end of this period.
BoroCnstArt: float or None
Borrowing constraint for the minimum allowable assets to end the
period with. If it is less than the natural borrowing constraint,
then it is irrelevant; BoroCnstArt=None indicates no artificial bor-
rowing constraint.
aXtraGrid: np.array
Array of "extra" end-of-period asset values-- assets above the
absolute minimum acceptable level.
vFuncBool: boolean
An indicator for whether the value function should be computed and
included in the reported solution.
CubicBool: boolean
Indicator for whether the solver should use cubic or linear interpolation.
Returns
-------
solution_now : ConsumerSolution
The solution to the single period consumption-saving problem. Includes
a consumption function cFunc (using cubic or linear splines), a marginal
value function vPfunc, a minimum acceptable level of normalized market
resources mNrmMin, normalized human wealth hNrm, and bounding MPCs MPCmin
and MPCmax. It might also have a value function vFunc. |
11,823 | def main(argv=None):
arguments = cli_common(__doc__, argv=argv)
es_export = ESExporter(arguments[], arguments[])
es_export.export()
if argv is not None:
return es_export | ben-elastic entry point |
11,824 | def get_sources(src_dir=, ending=):
return [os.path.join(src_dir, fnm) for fnm in os.listdir(src_dir) if fnm.endswith(ending)] | Function to get a list of files ending with `ending` in `src_dir`. |
11,825 | def command_gen(self, *names):
if not names:
sys.exit()
for name in names:
name, count = name, 0
if in name:
name, count = name.split(, 1)
count = int(count)
create = self.generators[name]
print(.format(name, count))
create(self.session, count)
self.session.commit() | Runs generator functions.
Run `docs` generator function::
./manage.py sqla:gen docs
Run `docs` generator function with `count=10`::
./manage.py sqla:gen docs:10 |
11,826 | def pdftojpg(filehandle, meta):
resolution = meta.get(, 300)
width = meta.get(, 1080)
bgcolor = Color(meta.get(, ))
stream = BytesIO()
with Image(blob=filehandle.stream, resolution=resolution) as img:
img.background_color = bgcolor
img.alpha_channel = False
img.format =
ratio = width / img.width
img.resize(width, int(ratio * img.height))
img.compression_quality = 90
img.save(file=stream)
stream.seek(0)
filehandle.stream = stream
return filehandle | Converts a PDF to a JPG and places it back onto the FileStorage instance
passed to it as a BytesIO object.
Optional meta arguments are:
* resolution: int or (int, int) used for wand to determine resolution,
defaults to 300.
* width: new width of the image for resizing, defaults to 1080
* bgcolor: new background color, defaults to 'white' |
11,827 | def filter(self, query: Query, entity: type) -> Tuple[Query, Any]:
new_query = query
c_filter_list = []
for child in self._childs:
new_query, f_list = child.filter(new_query, entity)
c_filter_list.append(f_list)
return (
new_query,
self._method(*c_filter_list)
) | Apply the `_method` to all childs of the node.
:param query: The sqlachemy query.
:type query: Query
:param entity: The entity model of the query.
:type entity: type
:return: A tuple with in first place the updated query and in second
place the list of filters to apply to the query.
:rtype: Tuple[Query, Any] |
11,828 | def clear(self):
self.grid = [[EMPTY for dummy_col in range(self.grid_width)] for dummy_row in range(self.grid_height)] | Clears grid to be EMPTY |
11,829 | def writeRunSetInfoToLog(self, runSet):
runSetInfo = "\n\n"
if runSet.name:
runSetInfo += runSet.name + "\n"
runSetInfo += "Run set {0} of {1} with options and propertyfile \n\n".format(
runSet.index, len(self.benchmark.run_sets),
" ".join(runSet.options),
runSet.propertyfile)
titleLine = self.create_output_line(runSet, "inputfile", "status", "cpu time",
"wall time", "host", self.benchmark.columns, True)
runSet.simpleLine = "-" * (len(titleLine))
runSetInfo += titleLine + "\n" + runSet.simpleLine + "\n"
self.txt_file.append(runSetInfo) | This method writes the information about a run set into the txt_file. |
11,830 | def dmp_path(regex, kwargs=None, name=None, app_name=None):
dmp_pageprocess_request
return PagePattern(regex, kwargs, name, app_name) | Creates a DMP-style, convention-based pattern that resolves
to various view functions based on the 'dmp_page' value.
The following should exist as 1) regex named groups or
2) items in the kwargs dict:
dmp_app Should resolve to a name in INSTALLED_APPS.
If missing, defaults to DEFAULT_APP.
dmp_page The page name, which should resolve to a module:
project_dir/{dmp_app}/views/{dmp_page}.py
If missing, defaults to DEFAULT_PAGE.
dmp_function The function name (or View class name) within the module.
If missing, defaults to 'process_request'
dmp_urlparams The urlparams string to parse.
If missing, defaults to ''.
The reason for this convenience function is to be similar to
Django functions like url(), re_path(), and path(). |
11,831 | def ex6_2(n):
x = np.zeros(len(n))
for k, nn in enumerate(n):
if nn >= -2 and nn <= 5:
x[k] = 8 - nn
return x | Generate a triangle pulse as described in Example 6-2
of Chapter 6.
You need to supply an index array n that covers at least [-2, 5].
The function returns the hard-coded signal of the example.
Parameters
----------
n : time index ndarray covering at least -2 to +5.
Returns
-------
x : ndarray of signal samples in x
Examples
--------
>>> import numpy as np
>>> import matplotlib.pyplot as plt
>>> from sk_dsp_comm import sigsys as ss
>>> n = np.arange(-5,8)
>>> x = ss.ex6_2(n)
>>> plt.stem(n,x) # creates a stem plot of x vs n |
11,832 | def addResource(self, key, filePath, text):
url = self.root + "/addresource"
params = {
"f": "json",
"token" : self._securityHandler.token,
"key" : key,
"text" : text
}
files = {}
files[] = filePath
res = self._post(url=url,
param_dict=params,
files=files,
securityHandler=self._securityHandler,
proxy_url=self._proxy_url,
proxy_port=self._proxy_port)
return res | The add resource operation allows the administrator to add a file
resource, for example, the organization's logo or custom banner.
The resource can be used by any member of the organization. File
resources use storage space from your quota and are scanned for
viruses.
Inputs:
key - The name the resource should be stored under.
filePath - path of file to upload
text - Some text to be written (for example, JSON or JavaScript)
directly to the resource from a web client. |
11,833 | def reading_order(e1, e2):
b1 = e1.bbox
b2 = e2.bbox
if round(b1[y0]) == round(b2[y0]) or round(b1[y1]) == round(b2[y1]):
return float_cmp(b1[x0], b2[x0])
return float_cmp(b1[y0], b2[y0]) | A comparator to sort bboxes from top to bottom, left to right |
11,834 | def _adjustSyllabification(adjustedPhoneList, syllableList):
i = 0
retSyllableList = []
for syllableNum, syllable in enumerate(syllableList):
j = len(syllable)
if syllableNum == len(syllableList) - 1:
j = len(adjustedPhoneList) - i
tmpPhoneList = adjustedPhoneList[i:i + j]
numBlanks = -1
phoneList = tmpPhoneList[:]
while numBlanks != 0:
numBlanks = tmpPhoneList.count(u"")
if numBlanks > 0:
tmpPhoneList = adjustedPhoneList[i + j:i + j + numBlanks]
phoneList.extend(tmpPhoneList)
j += numBlanks
for k, phone in enumerate(phoneList):
if phone == u"":
syllable.insert(k, u"")
i += j
retSyllableList.append(syllable)
return retSyllableList | Inserts spaces into a syllable if needed
Originally the phone list and syllable list contained the same number
of phones. But the adjustedPhoneList may have some insertions which are
not accounted for in the syllableList. |
11,835 | def publish(self, topic, obj, reference_message=None):
logging.debug("Publishing topic (%s): \n%s" % (topic, obj))
e = Event(
data=obj,
type=topic,
)
if hasattr(obj, "sender"):
e.sender = obj.sender
if reference_message:
original_incoming_event_hash = None
if hasattr(reference_message, "original_incoming_event_hash"):
original_incoming_event_hash = reference_message.original_incoming_event_hash
elif hasattr(reference_message, "source") and hasattr(reference_message.source, "hash"):
original_incoming_event_hash = reference_message.source.hash
elif hasattr(reference_message, "source") and hasattr(reference_message.source, "original_incoming_event_hash"):
original_incoming_event_hash = reference_message.source.original_incoming_event_hash
elif hasattr(reference_message, "hash"):
original_incoming_event_hash = reference_message.hash
if original_incoming_event_hash:
e.original_incoming_event_hash = original_incoming_event_hash
return self.publish_to_backend(
self._localize_topic(topic),
self.encrypt(e)
) | Sends an object out over the pubsub connection, properly formatted,
and conforming to the protocol. Handles pickling for the wire, etc.
This method should *not* be subclassed. |
11,836 | def _getch_unix(_getall=False):
import sys, termios
fd = sys.stdin.fileno()
old_settings = termios.tcgetattr(fd)
chars = []
try:
newattr = list(old_settings)
newattr[3] &= ~termios.ICANON
newattr[3] &= ~termios.ECHO
newattr[6][termios.VMIN] = 1
newattr[6][termios.VTIME] = 0
termios.tcsetattr(fd, termios.TCSANOW, newattr)
ch = sys.stdin.read(1)
chars = [ch]
if _getall:
newattr = termios.tcgetattr(fd)
newattr[6][termios.VMIN] = 0
newattr[6][termios.VTIME] = 0
termios.tcsetattr(fd, termios.TCSANOW, newattr)
while True:
ch = sys.stdin.read(1)
if ch != :
chars.append(ch)
else:
break
finally:
termios.tcsetattr(fd, termios.TCSADRAIN, old_settings)
if _getall:
return chars
else:
return chars[0] | # --- current algorithm ---
# 1. switch to char-by-char input mode
# 2. turn off echo
# 3. wait for at least one char to appear
# 4. read the rest of the character buffer (_getall=True)
# 5. return list of characters (_getall on)
# or a single char (_getall off) |
11,837 | async def send_nym(self, did: str, verkey: str = None, alias: str = None, role: Role = None) -> None:
LOGGER.debug(
, did, verkey, alias, role)
if not ok_did(did):
LOGGER.debug(, did)
raise BadIdentifier(.format(did))
req_json = await ledger.build_nym_request(self.did, did, verkey, alias, (role or Role.USER).token())
await self._sign_submit(req_json)
LOGGER.debug() | Send input anchor's cryptonym (including DID, verification key, plus optional alias and role)
to the distributed ledger.
Raise BadLedgerTxn on failure, BadIdentifier for bad DID, or BadRole for bad role.
:param did: anchor DID to send to ledger
:param verkey: optional anchor verification key
:param alias: optional alias
:param role: anchor role on the ledger (default value of USER) |
11,838 | def parse_legacy_argstring(argstring):
arg1arg2item1item2
argstring = argstring.replace(, )
argstring = argstring.replace(, )
argstring = argstring.replace(, )
argbits = shlex.split(argstring)
args = []
arg_buff = []
list_buff = []
in_list = False
for bit in argbits:
if bit == and not in_list:
in_list = True
continue
elif bit == and in_list:
in_list = False
args.append(list_buff)
list_buff = []
continue
elif bit == :
if not in_list and arg_buff:
args.append(.join(arg_buff))
arg_buff = []
continue
bit = bit.replace(, )
bit = bit.replace(, )
bit = bit.replace(, )
if in_list:
list_buff.append(bit)
else:
arg_buff.append(bit)
if arg_buff:
args.append(.join(arg_buff))
return args | Preparses CLI input:
``arg1,arg2`` => ``['arg1', 'arg2']``
``[item1, item2],arg2`` => ``[['item1', 'item2'], arg2]`` |
11,839 | def handle_read(self):
if self.state == STATE_DEAD:
return
global nr_handle_read
nr_handle_read += 1
new_data = self._handle_read_chunk()
if self.debug:
self.print_debug(b + new_data)
if self.handle_read_fast_case(self.read_buffer):
return
lf_pos = new_data.find(b)
if lf_pos >= 0:
lf_pos += len(self.read_buffer) - len(new_data)
elif self.state is STATE_NOT_STARTED and \
options.password is not None and \
b in self.read_buffer.lower():
self.dispatch_write(.format(options.password).encode())
self.read_buffer = b
return
while lf_pos >= 0:
line = self.read_buffer[:lf_pos + 1]
if callbacks.process(line):
pass
elif self.state in (STATE_IDLE, STATE_RUNNING):
self.print_lines(line)
elif self.state is STATE_NOT_STARTED:
self.read_in_state_not_started += line
if b in line:
msg = line.strip(b) + b
self.disconnect()
elif b in line:
msg = b
else:
msg = None
if msg:
self.print_lines(msg + b
b)
self.read_buffer = self.read_buffer[lf_pos + 1:]
if self.handle_read_fast_case(self.read_buffer):
return
lf_pos = self.read_buffer.find(b)
if self.state is STATE_NOT_STARTED and not self.init_string_sent:
self.dispatch_write(self.init_string)
self.init_string_sent = True | We got some output from a remote shell, this is one of the state
machine |
11,840 | def config_diff(args):
config_1 = config_get(args).splitlines()
args.project = args.Project
args.workspace = args.Workspace
cfg_1_name = args.config
if args.Config is not None:
args.config = args.Config
if args.Namespace is not None:
args.namespace = args.Namespace
config_2 = config_get(args).splitlines()
if not args.verbose:
config_1 = skip_cfg_ver(config_1)
config_2 = skip_cfg_ver(config_2)
return list(unified_diff(config_1, config_2, cfg_1_name, args.config, lineterm=)) | Compare method configuration definitions across workspaces. Ignores
methodConfigVersion if the verbose argument is not set |
11,841 | def create_build(self, tarball_url, env=None, app_name=None):
data = {
: {
: tarball_url
}
}
if env:
data[] = {: env}
if app_name:
data[] = {: app_name}
return self.api_request(, , data=data) | Creates an app-setups build. Returns response data as a dict.
:param tarball_url: URL of a tarball containing an ``app.json``.
:param env: Dict containing environment variable overrides.
:param app_name: Name of the Heroku app to create.
:returns: Response data as a ``dict``. |
11,842 | def compact_interval_string(value_list):
if not value_list:
return
value_list.sort()
interval_list = []
curr = []
for val in value_list:
if curr and (val > curr[-1] + 1):
interval_list.append((curr[0], curr[-1]))
curr = [val]
else:
curr.append(val)
if curr:
interval_list.append((curr[0], curr[-1]))
return .join([
.format(pair[0], pair[1]) if pair[0] != pair[1] else str(pair[0])
for pair in interval_list
]) | Compact a list of integers into a comma-separated string of intervals.
Args:
value_list: A list of sortable integers such as a list of numbers
Returns:
A compact string representation, such as "1-5,8,12-15" |
11,843 | def write(self, inline):
frame = inspect.currentframe().f_back
if frame:
mod = frame.f_globals.get()
else:
mod = sys._getframe(0).f_globals.get()
if not mod in self.modulenames:
self.stdout.write(inline) | Write a line to stdout if it isn't in a blacklist
Try to get the name of the calling module to see if we want
to filter it. If there is no calling module, use current
frame in case there's a traceback before there is any calling module |
11,844 | def rollout(self, batch_info: BatchInfo, model: RlModel, number_of_steps: int) -> Rollout:
assert not model.is_recurrent, "Replay env roller does not support recurrent models"
accumulator = TensorAccumulator()
episode_information = []
for step_idx in range(number_of_steps):
step = model.step(self.last_observation)
if self.action_noise is not None:
step[] = self.action_noise(step[], batch_info=batch_info)
replay_extra_information = {}
accumulator.add(, self.last_observation_cpu)
for name, tensor in step.items():
tensor_cpu = tensor.cpu()
accumulator.add(name, tensor_cpu)
if name != :
replay_extra_information[name] = tensor_cpu.numpy()
actions_numpy = step[].detach().cpu().numpy()
new_obs, new_rewards, new_dones, new_infos = self.environment.step(actions_numpy)
self.replay_buffer.store_transition(
frame=self.last_observation_cpu.numpy(),
action=actions_numpy,
reward=new_rewards,
done=new_dones,
extra_info=replay_extra_information
)
if self.ret_rms is not None:
self.accumulated_returns = new_rewards + self.discount_factor * self.accumulated_returns
self.ret_rms.update(self.accumulated_returns)
dones_tensor = torch.from_numpy(new_dones.astype(np.float32)).clone()
accumulator.add(, dones_tensor)
if self.action_noise is not None:
self.action_noise.reset_training_state(dones_tensor, batch_info=batch_info)
self.accumulated_returns = self.accumulated_returns * (1.0 - new_dones.astype(np.float32))
self.last_observation_cpu = torch.from_numpy(new_obs).clone()
self.last_observation = self.last_observation_cpu.to(self.device)
if self.ret_rms is not None:
new_rewards = np.clip(new_rewards / np.sqrt(self.ret_rms.var + 1e-8), -self.clip_obs, self.clip_obs)
accumulator.add(, torch.from_numpy(new_rewards.astype(np.float32)).clone())
episode_information.append(new_infos)
accumulated_tensors = accumulator.result()
return Trajectories(
num_steps=accumulated_tensors[].size(0),
num_envs=accumulated_tensors[].size(1),
environment_information=episode_information,
transition_tensors=accumulated_tensors,
rollout_tensors={}
).to_transitions() | Calculate env rollout |
11,845 | def _sendline(self, line):
self.lines = []
try:
self._read()
except socket.error:
logging.debug()
logger.debug(, line)
self._write(line + )
time.sleep(0.5) | Send exactly one line to the device
Args:
line str: data send to device |
11,846 | def decorate(decorator_cls, *args, **kwargs):
global _wrappers
wrapper_cls = _wrappers.get(decorator_cls, None)
if wrapper_cls is None:
class PythonWrapper(decorator_cls):
pass
wrapper_cls = PythonWrapper
wrapper_cls.__name__ = decorator_cls.__name__ + "PythonWrapper"
_wrappers[decorator_cls] = wrapper_cls
def decorator(fn):
wrapped = wrapper_cls(fn, *args, **kwargs)
_update_wrapper(wrapped, fn)
return wrapped
return decorator | Creates a decorator function that applies the decorator_cls that was passed in. |
11,847 | def import_orm(self):
orm = {}
data_source = self.config[][]
mv_grid_districts_name = self.config[data_source][]
mv_stations_name = self.config[data_source][]
lv_load_areas_name = self.config[data_source][]
lv_grid_district_name = self.config[data_source][]
lv_stations_name = self.config[data_source][]
conv_generators_name = self.config[data_source][]
re_generators_name = self.config[data_source][]
from egoio.db_tables import model_draft as orm_model_draft, \
supply as orm_supply, \
demand as orm_demand, \
grid as orm_grid
if data_source == :
orm[] = orm_model_draft.__getattribute__(mv_grid_districts_name)
orm[] = orm_model_draft.__getattribute__(mv_stations_name)
orm[] = orm_model_draft.__getattribute__(lv_load_areas_name)
orm[] = orm_model_draft.__getattribute__(lv_grid_district_name)
orm[] = orm_model_draft.__getattribute__(lv_stations_name)
orm[] = orm_model_draft.__getattribute__(conv_generators_name)
orm[] = orm_model_draft.__getattribute__(re_generators_name)
orm[] = 1 == 1
orm[] = 1 == 1
orm[] = 1 == 1
orm[] = 1 == 1
orm[] = 1 == 1
orm[] = 1 == 1
orm[] = 1 == 1
elif data_source == :
orm[] = orm_grid.__getattribute__(mv_grid_districts_name)
orm[] = orm_grid.__getattribute__(mv_stations_name)
orm[] = orm_demand.__getattribute__(lv_load_areas_name)
orm[] = orm_grid.__getattribute__(lv_grid_district_name)
orm[] = orm_grid.__getattribute__(lv_stations_name)
orm[] = orm_supply.__getattribute__(conv_generators_name)
orm[] = orm_supply.__getattribute__(re_generators_name)
orm[] = self.config[data_source][]
orm[] =\
orm[].version == orm[]
orm[] = \
orm[].version == orm[]
orm[] =\
orm[].version == orm[]
orm[] =\
orm[].version == orm[]
orm[] =\
orm[].version == orm[]
orm[] =\
orm[].columns.version == orm[]
orm[] =\
orm[].columns.version == orm[]
else:
logger.error("Invalid data source {} provided. Please re-check the file "
"`config_db_tables.cfg`".format(data_source))
raise NameError("{} is no valid data source!".format(data_source))
return orm | Import ORM classes for oedb access depending on input in config in
self.config which is loaded from 'config_db_tables.cfg'
Returns
-------
int
Descr #TODO check type |
11,848 | def dumps(self):
r
string = ""
if self.row_height is not None:
row_height = Command(, arguments=[
NoEscape(r),
self.row_height])
string += row_height.dumps() +
if self.col_space is not None:
col_space = Command(, arguments=[
NoEscape(r),
self.col_space])
string += col_space.dumps() +
return string + super().dumps() | r"""Turn the Latex Object into a string in Latex format. |
11,849 | def visit_List(self, node: ast.List) -> List[Any]:
if isinstance(node.ctx, ast.Store):
raise NotImplementedError("Can not compute the value of a Store on a list")
result = [self.visit(node=elt) for elt in node.elts]
self.recomputed_values[node] = result
return result | Visit the elements and assemble the results into a list. |
11,850 | def reindex_like(self, other, method=None, tolerance=None, copy=True):
indexers = alignment.reindex_like_indexers(self, other)
return self.reindex(indexers=indexers, method=method, copy=copy,
tolerance=tolerance) | Conform this object onto the indexes of another object, filling
in missing values with NaN.
Parameters
----------
other : Dataset or DataArray
Object with an 'indexes' attribute giving a mapping from dimension
names to pandas.Index objects, which provides coordinates upon
which to index the variables in this dataset. The indexes on this
other object need not be the same as the indexes on this
dataset. Any mis-matched index values will be filled in with
NaN, and any mis-matched dimension names will simply be ignored.
method : {None, 'nearest', 'pad'/'ffill', 'backfill'/'bfill'}, optional
Method to use for filling index values from other not found in this
dataset:
* None (default): don't fill gaps
* pad / ffill: propagate last valid index value forward
* backfill / bfill: propagate next valid index value backward
* nearest: use nearest valid index value (requires pandas>=0.16)
tolerance : optional
Maximum distance between original and new labels for inexact
matches. The values of the index at the matching locations must
satisfy the equation ``abs(index[indexer] - target) <= tolerance``.
Requires pandas>=0.17.
copy : bool, optional
If ``copy=True``, data in the return value is always copied. If
``copy=False`` and reindexing is unnecessary, or can be performed
with only slice operations, then the output may share memory with
the input. In either case, a new xarray object is always returned.
Returns
-------
reindexed : Dataset
Another dataset, with this dataset's data but coordinates from the
other object.
See Also
--------
Dataset.reindex
align |
11,851 | def get(self, url=None, delimiter="/"):
params = {: delimiter}
bucket, obj_key = _parse_url(url)
if bucket:
params[] = bucket
else:
return self.call("ListBuckets", response_data_key="Buckets")
if obj_key:
params[] = obj_key
objects = self.call("ListObjects", response_data_key="Contents",
**params)
if objects:
for obj in objects:
obj[] = "s3://{0}/{1}".format(bucket, obj[])
return objects | Path is an s3 url. Ommiting the path or providing "s3://" as the
path will return a list of all buckets. Otherwise, all subdirectories
and their contents will be shown. |
11,852 | def get_id_constraints(pkname, pkey):
if isinstance(pkname, str):
return {pkname: pkey}
else:
return dict(zip(pkname, pkey)) | Returns primary key consraints.
:pkname: if a string, returns a dict with pkname=pkey. pkname and pkey must be enumerables of
matching length. |
11,853 | def _get_lane_properties(self, node):
lane_name = self.get_lane(node.get())
lane_data = {: lane_name}
for a in self.xpath(".//bpmn:lane[@name=]/*/*/" % lane_name):
lane_data[a.attrib[]] = a.attrib[].strip()
return lane_data | Parses the given XML node
Args:
node (xml): XML node.
.. code-block:: xml
<bpmn2:lane id="Lane_8" name="Lane 8">
<bpmn2:extensionElements>
<camunda:properties>
<camunda:property value="foo,bar" name="perms"/>
</camunda:properties>
</bpmn2:extensionElements>
</bpmn2:lane>
Returns:
{'perms': 'foo,bar'} |
11,854 | def get_volume_object_info(self, location):
param = {: location}
data = self._api.get(url=self._URL[].format(
id=self.id), params=param).json()
return VolumeObject(api=self._api, **data) | Fetches information about single volume object - usually file
:param location: object location
:return: |
11,855 | def start(self, exceptions):
if not self._interval:
return False
self._running.set()
with self._lock:
self._threshold = 0
self._reads_since_check = 0
self._writes_since_check = 0
self._exceptions = exceptions
LOGGER.debug()
return self._start_new_timer() | Start the Heartbeat Checker.
:param list exceptions:
:return: |
11,856 | def GetFormattedMessages(self, event):
event_formatter = self.GetEventFormatter(event)
if not event_formatter:
return None, None
return event_formatter.GetMessages(self._formatter_mediator, event) | Retrieves the formatted messages related to the event.
Args:
event (EventObject): event.
Returns:
tuple: containing:
str: full message string or None if no event formatter was found.
str: short message string or None if no event formatter was found. |
11,857 | def generic_visit(self, node):
if (isinstance(node, ast.stmt) and
not isinstance(node, ast.FunctionDef)):
new_node = self.wrap_with_try(node)
if isinstance(node, self.ast_try_except):
self.try_except_handler(node)
return new_node
super(ErrorsCatchTransformer, self).generic_visit(node)
return new_node
return super(ErrorsCatchTransformer, self).generic_visit(node) | Surround node statement with a try/except block to catch errors.
This method is called for every node of the parsed code, and only
changes statement lines.
Args:
node (ast.AST): node statement to surround. |
11,858 | def calculate(self, **state):
T = state[]
y = state[]
x = amount_fractions(y)
return super().calculate(T=T, x=x) | Calculate dynamic viscosity at the specified temperature and
composition:
:param T: [K] temperature
:param y: [mass fraction] composition dictionary , e.g. \
{'SiO2': 0.25, 'CaO': 0.25, 'MgO': 0.25, 'FeO': 0.25}
:returns: [Pa.s] dynamic viscosity
The **state parameter contains the keyword argument(s) specified above\
that are used to describe the state of the material. |
11,859 | def search_directory(self, **kwargs):
search_response = self.request(, kwargs)
result = {}
items = {
"account": zobjects.Account.from_dict,
"domain": zobjects.Domain.from_dict,
"dl": zobjects.DistributionList.from_dict,
"cos": zobjects.COS.from_dict,
"calresource": zobjects.CalendarResource.from_dict
}
for obj_type, func in items.items():
if obj_type in search_response:
if isinstance(search_response[obj_type], list):
result[obj_type] = [
func(v) for v in search_response[obj_type]]
else:
result[obj_type] = func(search_response[obj_type])
return result | SearchAccount is deprecated, using SearchDirectory
:param query: Query string - should be an LDAP-style filter
string (RFC 2254)
:param limit: The maximum number of accounts to return
(0 is default and means all)
:param offset: The starting offset (0, 25, etc)
:param domain: The domain name to limit the search to
:param applyCos: applyCos - Flag whether or not to apply the COS
policy to account. Specify 0 (false) if only requesting attrs that
aren't inherited from COS
:param applyConfig: whether or not to apply the global config attrs to
account. specify 0 (false) if only requesting attrs that aren't
inherited from global config
:param sortBy: Name of attribute to sort on. Default is the account
name.
:param types: Comma-separated list of types to return. Legal values
are: accounts|distributionlists|aliases|resources|domains|coses
(default is accounts)
:param sortAscending: Whether to sort in ascending order. Default is
1 (true)
:param countOnly: Whether response should be count only. Default is
0 (false)
:param attrs: Comma-seperated list of attrs to return ("displayName",
"zimbraId", "zimbraAccountStatus")
:return: dict of list of "account" "alias" "dl" "calresource" "domain"
"cos" |
11,860 | def update(self, obj, **kwargs):
"Update the tree item when the object name changes"
child = self.tree.FindItem(self.root, kwargs[])
if DEBUG: print "update child", child, kwargs
if child:
self.tree.ScrollTo(child)
self.tree.SetCurrentItem(child)
self.tree.SelectItem(child)
child.Selected = True
self.tree.SetItemText(child, obj.name, 0) | Update the tree item when the object name changes |
11,861 | def mtie_phase_fast(phase, rate=1.0, data_type="phase", taus=None):
rate = float(rate)
phase = np.asarray(phase)
k_max = int(np.floor(np.log2(len(phase))))
phase = phase[0:pow(2, k_max)]
assert len(phase) == pow(2, k_max)
taus = [ pow(2,k) for k in range(k_max)]
print("taus N=", len(taus), " ",taus)
devs = np.zeros(len(taus))
deverrs = np.zeros(len(taus))
ns = np.zeros(len(taus))
taus_used = np.array(taus)
mtie_max = np.zeros((len(phase)-1, k_max))
mtie_min = np.zeros((len(phase)-1, k_max))
for kidx in range(k_max):
k = kidx+1
imax = len(phase)-pow(2, k)+1
tie = np.zeros(imax)
ns[kidx]=imax
for i in range(imax):
if k == 1:
mtie_max[i, kidx] = max(phase[i], phase[i+1])
mtie_min[i, kidx] = min(phase[i], phase[i+1])
else:
p = int(pow(2, k-1))
mtie_max[i, kidx] = max(mtie_max[i, kidx-1],
mtie_max[i+p, kidx-1])
mtie_min[i, kidx] = min(mtie_min[i, kidx-1],
mtie_min[i+p, kidx-1])
tie[i] = mtie_max[i, kidx] - mtie_min[i, kidx]
devs[kidx] = np.amax(tie)
devs = np.array(devs)
print("devs N=",len(devs)," ",devs)
print("taus N=", len(taus_used), " ",taus_used)
return remove_small_ns(taus_used, devs, deverrs, ns) | fast binary decomposition algorithm for MTIE
See: STEFANO BREGNI "Fast Algorithms for TVAR and MTIE Computation in
Characterization of Network Synchronization Performance" |
11,862 | def trust_key(keyid=None,
fingerprint=None,
trust_level=None,
user=None):
s keychain to access, defaults to user Salt is running as.
Passing the user as ``salt`` will set the GnuPG home directory to the
``/etc/salt/gpgkeys``.
CLI Example:
.. code-block:: bash
salt gpg.trust_key keyid= trust_level=
salt gpg.trust_key fingerprint= trust_level=
salt gpg.trust_key keys=3FAD9F1E trust_level= user=
resmessageexpiredunknownnot_trustedmarginallyfullyultimatelyresmessageOnly specify one argument, fingerprint or keyidfingerprintresmessageFingerprint not found for keyid {0}fingerprintresmessageKeyID {0} not in GPG keychainresmessageRequired argument, fingerprint or keyidERROR: Valid trust levels - {0},{0}:{1}\n--import-ownertrustsaltconfig.getconfig_dirgpgkeys--homedirrootcmd.run_allretcoderesmessagestderrstderr\dstderrfingerprintmessageChanging ownership trust from {0} to {1}.fingerprintmessageSetting ownership trust to {0}.messagestderr']
return ret | Set the trust level for a key in GPG keychain
keyid
The keyid of the key to set the trust level for.
fingerprint
The fingerprint of the key to set the trust level for.
trust_level
The trust level to set for the specified key, must be one
of the following:
expired, unknown, not_trusted, marginally, fully, ultimately
user
Which user's keychain to access, defaults to user Salt is running as.
Passing the user as ``salt`` will set the GnuPG home directory to the
``/etc/salt/gpgkeys``.
CLI Example:
.. code-block:: bash
salt '*' gpg.trust_key keyid='3FAD9F1E' trust_level='marginally'
salt '*' gpg.trust_key fingerprint='53C96788253E58416D20BCD352952C84C3252192' trust_level='not_trusted'
salt '*' gpg.trust_key keys=3FAD9F1E trust_level='ultimately' user='username' |
11,863 | def _block(self, rdd, bsize, dtype):
return rdd.mapPartitions(lambda x: _block_tuple(x, dtype, bsize)) | Execute the blocking process on the given rdd.
Parameters
----------
rdd : pyspark.rdd.RDD
Distributed data to block
bsize : int or None
The desired size of the blocks
Returns
-------
rdd : pyspark.rdd.RDD
Blocked rdd. |
11,864 | def _pop_import_LOAD_ATTRs(module_name, queue):
popped = popwhile(is_a(instrs.LOAD_ATTR), queue, side=)
if popped:
expected = module_name.split(, maxsplit=1)[1]
actual = .join(map(op.attrgetter(), popped))
if expected != actual:
raise DecompilationError(
"Decompiling import of module %s, but LOAD_ATTRS imply %s" % (
expected, actual,
)
)
return popped | Pop LOAD_ATTR instructions for an import of the form::
import a.b.c as d
which should generate bytecode like this::
1 0 LOAD_CONST 0 (0)
3 LOAD_CONST 1 (None)
6 IMPORT_NAME 0 (a.b.c.d)
9 LOAD_ATTR 1 (b)
12 LOAD_ATTR 2 (c)
15 LOAD_ATTR 3 (d)
18 STORE_NAME 3 (d) |
11,865 | def on_all_ok(self):
out_ddb = self.merge_ddb_files()
return self.Results(node=self, returncode=0, message="DDB merge done") | This method is called when all tasks reach S_OK
Ir runs `mrgddb` in sequential on the local machine to produce
the final DDB file in the outdir of the `Work`. |
11,866 | def linear_reaction_coefficients(model, reactions=None):
linear_coefficients = {}
reactions = model.reactions if not reactions else reactions
try:
objective_expression = model.solver.objective.expression
coefficients = objective_expression.as_coefficients_dict()
except AttributeError:
return linear_coefficients
for rxn in reactions:
forward_coefficient = coefficients.get(rxn.forward_variable, 0)
reverse_coefficient = coefficients.get(rxn.reverse_variable, 0)
if forward_coefficient != 0:
if forward_coefficient == -reverse_coefficient:
linear_coefficients[rxn] = float(forward_coefficient)
return linear_coefficients | Coefficient for the reactions in a linear objective.
Parameters
----------
model : cobra model
the model object that defined the objective
reactions : list
an optional list for the reactions to get the coefficients for. All
reactions if left missing.
Returns
-------
dict
A dictionary where the key is the reaction object and the value is
the corresponding coefficient. Empty dictionary if there are no
linear terms in the objective. |
11,867 | def describe_alarms(self, action_prefix=None, alarm_name_prefix=None,
alarm_names=None, max_records=None, state_value=None,
next_token=None):
params = {}
if action_prefix:
params[] = action_prefix
if alarm_name_prefix:
params[] = alarm_name_prefix
elif alarm_names:
self.build_list_params(params, alarm_names, )
if max_records:
params[] = max_records
if next_token:
params[] = next_token
if state_value:
params[] = state_value
return self.get_list(, params,
[(, MetricAlarms)])[0] | Retrieves alarms with the specified names. If no name is specified, all
alarms for the user are returned. Alarms can be retrieved by using only
a prefix for the alarm name, the alarm state, or a prefix for any
action.
:type action_prefix: string
:param action_name: The action name prefix.
:type alarm_name_prefix: string
:param alarm_name_prefix: The alarm name prefix. AlarmNames cannot
be specified if this parameter is specified.
:type alarm_names: list
:param alarm_names: A list of alarm names to retrieve information for.
:type max_records: int
:param max_records: The maximum number of alarm descriptions
to retrieve.
:type state_value: string
:param state_value: The state value to be used in matching alarms.
:type next_token: string
:param next_token: The token returned by a previous call to
indicate that there is more data.
:rtype list |
11,868 | def _check_hla_alleles(
alleles,
valid_alleles=None):
require_iterable_of(alleles, string_types, "HLA alleles")
missing_alleles = [
allele
for allele in alleles
if allele not in valid_alleles
]
if len(missing_alleles) > 0:
raise UnsupportedAllele(
"Unsupported HLA alleles: %s" % missing_alleles)
return list(alleles) | Given a list of HLA alleles and an optional list of valid
HLA alleles, return a set of alleles that we will pass into
the MHC binding predictor. |
11,869 | def which(program, add_win_suffixes=True):
def is_exe(fpath):
return os.path.isfile(fpath) and os.access(fpath, os.X_OK)
fpath, fname = os.path.split(program)
if add_win_suffixes and platform.system().lower() == and not (
fname.endswith() or fname.endswith()):
fnames = [fname + , fname + ]
else:
fnames = [fname]
for i in fnames:
if fpath:
exe_file = os.path.join(fpath, i)
if is_exe(exe_file):
return exe_file
else:
for path in os.environ[].split(os.pathsep):
exe_file = os.path.join(path, i)
if is_exe(exe_file):
return exe_file
return None | Mimic 'which' command behavior.
Adapted from https://stackoverflow.com/a/377028 |
11,870 | def prettify_json_file(file_list):
for json_file in set(file_list):
if not json_file.endswith(".json"):
logger.log_warning("Only JSON file format can be prettified, skip: {}".format(json_file))
continue
logger.color_print("Start to prettify JSON file: {}".format(json_file), "GREEN")
dir_path = os.path.dirname(json_file)
file_name, file_suffix = os.path.splitext(os.path.basename(json_file))
outfile = os.path.join(dir_path, "{}.pretty.json".format(file_name))
with io.open(json_file, , encoding=) as stream:
try:
obj = json.load(stream)
except ValueError as e:
raise SystemExit(e)
with io.open(outfile, , encoding=) as out:
json.dump(obj, out, indent=4, separators=(, ))
out.write()
print("success: {}".format(outfile)) | prettify JSON testcase format |
11,871 | def latexify(obj, **kwargs):
if hasattr(obj, ):
return obj.__pk_latex__(**kwargs)
if isinstance(obj, text_type):
from .unicode_to_latex import unicode_to_latex
return unicode_to_latex(obj)
if isinstance(obj, bool):
raise ValueError( % obj)
if isinstance(obj, float):
nplaces = kwargs.get()
if nplaces is None:
return % obj
return % (nplaces, obj)
if isinstance(obj, int):
return % obj
if isinstance(obj, binary_type):
if all(c in _printable_ascii for c in obj):
return obj.decode()
raise ValueError( % obj)
raise ValueError(t LaTeXify %r' % obj) | Render an object in LaTeX appropriately. |
11,872 | def _asarray(self, vec):
shape = self.domain[0, 0].shape + self.pshape
arr = np.empty(shape, dtype=self.domain.dtype)
for i, xi in enumerate(vec):
for j, xij in enumerate(xi):
arr[..., i, j] = xij.asarray()
return arr | Convert ``x`` to an array.
Here the indices are changed such that the "outer" indices come last
in order to have the access order as `numpy.linalg.svd` needs it.
This is the inverse of `_asvector`. |
11,873 | def file_download(context, id, file_id, target):
dci_file.download(context, id=id, file_id=file_id, target=target) | file_download(context, id, path)
Download a job file
>>> dcictl job-download-file [OPTIONS]
:param string id: ID of the job to download file [required]
:param string file_id: ID of the job file to download [required]
:param string target: Destination file [required] |
11,874 | def add(addon, dev, interactive):
application = get_current_application()
application.add(
addon,
dev=dev,
interactive=interactive
) | Add a dependency.
Examples:
$ django add dynamic-rest==1.5.0
+ dynamic-rest == 1.5.0 |
11,875 | def get_locale():
*
ret =
lc_ctl = salt.utils.systemd.booted(__context__)
if lc_ctl and not (__grains__[] in [] and __grains__[] in [12]):
ret = (_parse_dbus_locale() if dbus is not None else _localectl_status()[]).get(, )
else:
if in __grains__[]:
cmd =
elif in __grains__[]:
cmd =
elif in __grains__[]:
cmd =
elif in __grains__[]:
cmd =
return __salt__[](cmd).strip()
elif in __grains__[]:
cmd =
else:
return ret | Get the current system locale
CLI Example:
.. code-block:: bash
salt '*' locale.get_locale |
11,876 | def libvlc_media_list_player_new(p_instance):
f = _Cfunctions.get(, None) or \
_Cfunction(, ((1,),), class_result(MediaListPlayer),
ctypes.c_void_p, Instance)
return f(p_instance) | Create new media_list_player.
@param p_instance: libvlc instance.
@return: media list player instance or NULL on error. |
11,877 | def cv(params, dtrain, num_boost_round=10, nfold=3, stratified=False, folds=None,
metrics=(), obj=None, feval=None, maximize=False, early_stopping_rounds=None,
fpreproc=None, as_pandas=True, verbose_eval=None, show_stdv=True,
seed=0, callbacks=None, shuffle=True):
if stratified is True and not SKLEARN_INSTALLED:
raise XGBoostError()
if isinstance(metrics, str):
metrics = [metrics]
if isinstance(params, list):
_metrics = [x[1] for x in params if x[0] == ]
params = dict(params)
if in params:
params[] = _metrics
else:
params = dict((k, v) for k, v in params.items())
if (not metrics) and in params:
if isinstance(params[], list):
metrics = params[]
else:
metrics = [params[]]
params.pop("eval_metric", None)
results = {}
cvfolds = mknfold(dtrain, nfold, params, seed, metrics, fpreproc,
stratified, folds, shuffle)
callbacks = [] if callbacks is None else callbacks
if early_stopping_rounds is not None:
callbacks.append(callback.early_stop(early_stopping_rounds,
maximize=maximize,
verbose=False))
if isinstance(verbose_eval, bool) and verbose_eval:
callbacks.append(callback.print_evaluation(show_stdv=show_stdv))
else:
if isinstance(verbose_eval, int):
callbacks.append(callback.print_evaluation(verbose_eval, show_stdv=show_stdv))
callbacks_before_iter = [
cb for cb in callbacks if cb.__dict__.get(, False)]
callbacks_after_iter = [
cb for cb in callbacks if not cb.__dict__.get(, False)]
for i in range(num_boost_round):
for cb in callbacks_before_iter:
cb(CallbackEnv(model=None,
cvfolds=cvfolds,
iteration=i,
begin_iteration=0,
end_iteration=num_boost_round,
rank=0,
evaluation_result_list=None))
for fold in cvfolds:
fold.update(i, obj)
res = aggcv([f.eval(i, feval) for f in cvfolds])
for key, mean, std in res:
if key + not in results:
results[key + ] = []
if key + not in results:
results[key + ] = []
results[key + ].append(mean)
results[key + ].append(std)
try:
for cb in callbacks_after_iter:
cb(CallbackEnv(model=None,
cvfolds=cvfolds,
iteration=i,
begin_iteration=0,
end_iteration=num_boost_round,
rank=0,
evaluation_result_list=res))
except EarlyStopException as e:
for k in results:
results[k] = results[k][:(e.best_iteration + 1)]
break
if as_pandas:
try:
import pandas as pd
results = pd.DataFrame.from_dict(results)
except ImportError:
pass
return results | Cross-validation with given parameters.
Parameters
----------
params : dict
Booster params.
dtrain : DMatrix
Data to be trained.
num_boost_round : int
Number of boosting iterations.
nfold : int
Number of folds in CV.
stratified : bool
Perform stratified sampling.
folds : a KFold or StratifiedKFold instance or list of fold indices
Sklearn KFolds or StratifiedKFolds object.
Alternatively may explicitly pass sample indices for each fold.
For ``n`` folds, **folds** should be a length ``n`` list of tuples.
Each tuple is ``(in,out)`` where ``in`` is a list of indices to be used
as the training samples for the ``n`` th fold and ``out`` is a list of
indices to be used as the testing samples for the ``n`` th fold.
metrics : string or list of strings
Evaluation metrics to be watched in CV.
obj : function
Custom objective function.
feval : function
Custom evaluation function.
maximize : bool
Whether to maximize feval.
early_stopping_rounds: int
Activates early stopping. CV error needs to decrease at least
every <early_stopping_rounds> round(s) to continue.
Last entry in evaluation history is the one from best iteration.
fpreproc : function
Preprocessing function that takes (dtrain, dtest, param) and returns
transformed versions of those.
as_pandas : bool, default True
Return pd.DataFrame when pandas is installed.
If False or pandas is not installed, return np.ndarray
verbose_eval : bool, int, or None, default None
Whether to display the progress. If None, progress will be displayed
when np.ndarray is returned. If True, progress will be displayed at
boosting stage. If an integer is given, progress will be displayed
at every given `verbose_eval` boosting stage.
show_stdv : bool, default True
Whether to display the standard deviation in progress.
Results are not affected, and always contains std.
seed : int
Seed used to generate the folds (passed to numpy.random.seed).
callbacks : list of callback functions
List of callback functions that are applied at end of each iteration.
It is possible to use predefined callbacks by using
:ref:`Callback API <callback_api>`.
Example:
.. code-block:: python
[xgb.callback.reset_learning_rate(custom_rates)]
shuffle : bool
Shuffle data before creating folds.
Returns
-------
evaluation history : list(string) |
11,878 | def resample_melody_series(times, frequencies, voicing,
times_new, kind=):
if times.shape == times_new.shape and np.allclose(times, times_new):
return frequencies, voicing.astype(np.bool)
if not (np.allclose(np.diff(times), np.diff(times).mean()) or
(np.allclose(np.diff(times[1:]), np.diff(times[1:]).mean()) and
frequencies[0] == frequencies[1])):
warnings.warn(
"Non-uniform timescale passed to resample_melody_series. Pitch "
"will be linearly interpolated, which will result in undesirable "
"behavior if silences are indicated by missing values. Silences "
"should be indicated by nonpositive frequency values.")
times = np.round(times, 10)
times_new = np.round(times_new, 10)
return frequencies_resampled, voicing_resampled.astype(np.bool) | Resamples frequency and voicing time series to a new timescale. Maintains
any zero ("unvoiced") values in frequencies.
If ``times`` and ``times_new`` are equivalent, no resampling will be
performed.
Parameters
----------
times : np.ndarray
Times of each frequency value
frequencies : np.ndarray
Array of frequency values, >= 0
voicing : np.ndarray
Boolean array which indicates voiced or unvoiced
times_new : np.ndarray
Times to resample frequency and voicing sequences to
kind : str
kind parameter to pass to scipy.interpolate.interp1d.
(Default value = 'linear')
Returns
-------
frequencies_resampled : np.ndarray
Frequency array resampled to new timebase
voicing_resampled : np.ndarray, dtype=bool
Boolean voicing array resampled to new timebase |
11,879 | def set_eol_chars(self, text):
if not is_text_string(text):
text = to_text_string(text)
eol_chars = sourcecode.get_eol_chars(text)
is_document_modified = eol_chars is not None and self.eol_chars is not None
self.eol_chars = eol_chars
if is_document_modified:
self.document().setModified(True)
if self.sig_eol_chars_changed is not None:
self.sig_eol_chars_changed.emit(eol_chars) | Set widget end-of-line (EOL) characters from text (analyzes text) |
11,880 | def flip(self):
self._load()
groups = self.config.keys()
tabular = {}
for g in groups:
config = self.config[g]
for k in config:
r = tabular.get(k, {})
r[g] = config[k]
tabular[k] = r
return tabular | Provide flip view to compare how key/value pair is defined in each
environment for administrative usage.
:rtype: dict |
11,881 | def contains_rva(self, rva):
if (self.next_section_virtual_address is not None and
self.next_section_virtual_address > self.VirtualAddress and
VirtualAddress_adj + size > self.next_section_virtual_address):
size = self.next_section_virtual_address - VirtualAddress_adj
return VirtualAddress_adj <= rva < VirtualAddress_adj + size | Check whether the section contains the address provided. |
11,882 | def find_best_root(self, force_positive=True, slope=None):
self._calculate_averages()
best_root = {"chisq": np.inf}
for n in self.tree.find_clades():
if n==self.tree.root:
continue
tv = self.tip_value(n)
bv = self.branch_value(n)
var = self.branch_variance(n)
x, chisq = self._optimal_root_along_branch(n, tv, bv, var, slope=slope)
if (chisq<best_root["chisq"]):
tmpQ = self.propagate_averages(n, tv, bv*x, var*x) \
+ self.propagate_averages(n, tv, bv*(1-x), var*(1-x), outgroup=True)
reg = base_regression(tmpQ, slope=slope)
if reg["slope"]>=0 or (force_positive==False):
best_root = {"node":n, "split":x}
best_root.update(reg)
if not in best_root:
print("TreeRegression.find_best_root: No valid root found!", force_positive)
return None
if in best_root:
deriv = []
n = best_root["node"]
tv = self.tip_value(n)
bv = self.branch_value(n)
var = self.branch_variance(n)
for dx in [-0.001, 0.001]:
y = min(1.0, max(0.0, best_root["split"]+dx))
tmpQ = self.propagate_averages(n, tv, bv*y, var*y) \
+ self.propagate_averages(n, tv, bv*(1-y), var*(1-y), outgroup=True)
reg = base_regression(tmpQ, slope=slope)
deriv.append([y,reg[], tmpQ[tavgii], tmpQ[davgii]])
estimator_hessian = np.zeros((3,3))
estimator_hessian[:2,:2] = best_root[]
estimator_hessian[2,2] = (deriv[0][1] + deriv[1][1] - 2.0*best_root[])/(deriv[0][0] - deriv[1][0])**2
estimator_hessian[0,2] = estimator_hessian[2,0]
estimator_hessian[1,2] = estimator_hessian[2,1]
best_root[] = estimator_hessian
best_root[] = np.linalg.inv(estimator_hessian)
return best_root | determine the position on the tree that minimizes the bilinear
product of the inverse covariance and the data vectors.
Returns
-------
best_root : (dict)
dictionary with the node, the fraction `x` at which the branch
is to be split, and the regression parameters |
11,883 | def pipe_dateformat(context=None, _INPUT=None, conf=None, **kwargs):
conf = DotDict(conf)
loop_with = kwargs.pop(, None)
date_format = conf.get(, **kwargs)
for item in _INPUT:
_with = item.get(loop_with, **kwargs) if loop_with else item
try:
date_string = time.strftime(date_format, _with)
except TypeError as e:
if context and context.verbose:
print % item
print e
continue
else:
yield date_string | Formats a datetime value. Loopable.
Parameters
----------
context : pipe2py.Context object
_INPUT : pipedatebuilder pipe like object (iterable of date timetuples)
conf : {
'format': {'value': <'%B %d, %Y'>},
'timezone': {'value': <'EST'>}
}
Yields
------
_OUTPUT : formatted dates |
11,884 | def add(self, device):
if not isinstance(device, Device):
raise TypeError()
self.__devices.append(device) | Add device. |
11,885 | def connect(self, From, to,
protocolName, clientFactory,
chooser):
publicIP = self._determinePublicIP()
A = dict(From=From,
to=to,
protocol=protocolName)
if self.service.dispatcher is not None:
A[] = (publicIP,
self.service.sharedUDPPortnum)
else:
log.msg("dispatcher unavailable when connecting")
D = self.callRemote(Inbound, **A)
def _connected(answer):
listenersD = defer.maybeDeferred(chooser, answer[])
def gotListeners(listeners):
allConnectionAttempts = []
for listener in listeners:
d = self.attemptConnectionMethods(
listener[],
listener[],
From, to,
protocolName, clientFactory,
)
allConnectionAttempts.append(d)
return defer.DeferredList(allConnectionAttempts)
listenersD.addCallback(gotListeners)
def finishedAllAttempts(results):
succeededAny = False
failures = []
if not results:
return Failure(NoAttemptsMade(
"there was no available path for connections "
"(%r->%r/%s)" % (From, to, protocolName)))
for succeeded, result in results:
if succeeded:
succeededAny = True
randomConnection = result
break
else:
failures.append(result)
if not succeededAny:
return Failure(
AttemptsFailed(
[failure.getBriefTraceback()
for failure in failures]
)
)
return randomConnection
return listenersD.addCallback(finishedAllAttempts)
return D.addCallback(_connected) | Issue an INBOUND command, creating a virtual connection to the peer,
given identifying information about the endpoint to connect to, and a
protocol factory.
@param clientFactory: a *Client* ProtocolFactory instance which will
generate a protocol upon connect.
@return: a Deferred which fires with the protocol instance that was
connected, or fails with AttemptsFailed if the connection was not
possible. |
11,886 | def pickle_dump(self):
with open(os.path.join(self.workdir, self.PICKLE_FNAME), mode="wb") as fh:
pickle.dump(self, fh) | Save the status of the object in pickle format. |
11,887 | def mcp_als(X, rank, mask, random_state=None, init=, **options):
optim_utils._check_cpd_inputs(X, rank)
U, _ = optim_utils._get_initial_ktensor(init, X, rank, random_state, scale_norm=False)
result = FitResult(U, , **options)
normX = np.linalg.norm((X * mask))
while result.still_optimizing:
for n in range(X.ndim):
U.rebalance()
unf = unfold(X, n)
m = unfold(mask, n)
components = [U[j] for j in range(X.ndim) if j != n]
krt = khatri_rao(components).T
lhs_stack = np.matmul(m[:, None, :] * krt[None, :, :], krt.T[None, :, :])
rhs_stack = np.dot(unf * m, krt.T)[:, :, None]
U[n] = np.linalg.solve(lhs_stack, rhs_stack).reshape(X.shape[n], rank)
obj = linalg.norm(mask * (U.full() - X)) / normX
result.update(obj)
return result.finalize() | Fits CP Decomposition with missing data using Alternating Least Squares (ALS).
Parameters
----------
X : (I_1, ..., I_N) array_like
A tensor with ``X.ndim >= 3``.
rank : integer
The `rank` sets the number of components to be computed.
mask : (I_1, ..., I_N) array_like
A binary tensor with the same shape as ``X``. All entries equal to zero
correspond to held out or missing data in ``X``. All entries equal to
one correspond to observed entries in ``X`` and the decomposition is
fit to these datapoints.
random_state : integer, ``RandomState``, or ``None``, optional (default ``None``)
If integer, sets the seed of the random number generator;
If RandomState instance, random_state is the random number generator;
If None, use the RandomState instance used by ``numpy.random``.
init : str, or KTensor, optional (default ``'randn'``).
Specifies initial guess for KTensor factor matrices.
If ``'randn'``, Gaussian random numbers are used to initialize.
If ``'rand'``, uniform random numbers are used to initialize.
If KTensor instance, a copy is made to initialize the optimization.
options : dict, specifying fitting options.
tol : float, optional (default ``tol=1E-5``)
Stopping tolerance for reconstruction error.
max_iter : integer, optional (default ``max_iter = 500``)
Maximum number of iterations to perform before exiting.
min_iter : integer, optional (default ``min_iter = 1``)
Minimum number of iterations to perform before exiting.
max_time : integer, optional (default ``max_time = np.inf``)
Maximum computational time before exiting.
verbose : bool ``{'True', 'False'}``, optional (default ``verbose=True``)
Display progress.
Returns
-------
result : FitResult instance
Object which holds the fitted results. It provides the factor matrices
in form of a KTensor, ``result.factors``.
Notes
-----
Fitting CP decompositions with missing data can be exploited to perform
cross-validation.
References
----------
Williams, A. H.
"Solving Least-Squares Regression with Missing Data."
http://alexhwilliams.info/itsneuronalblog/2018/02/26/censored-lstsq/ |
11,888 | def display_task_progress(
self, instance, project, region, request_id=None, user=None,
poll_interval=60):
total_completed = 0
while True:
task_results = self.client.get_task_data(
instance, project, region, request_id=request_id, user=user)
tasks = {task[]: task for task in task_results}
completed_tasks = set()
pending_tasks = set()
for task in tasks.values():
if task.get() is not None:
completed_tasks.add(task[])
else:
pending_tasks.add(task[])
if len(completed_tasks) > total_completed or not completed_tasks:
total_completed = len(completed_tasks)
print(.format(
len(completed_tasks), len(pending_tasks)))
print()
for task_id in completed_tasks:
self._print_task_data(tasks[task_id])
print()
for task_id in pending_tasks:
self._print_task_data(tasks[task_id])
if len(completed_tasks) == len(task_results) and completed_tasks:
print(.format(len(task_results)))
return
time.sleep(poll_interval) | Displays the overall progress of tasks in a Turbinia job.
Args:
instance (string): The name of the Turbinia instance
project (string): The project containing the disk to process
region (string): Region where turbinia is configured.
request_id (string): The request ID provided by Turbinia.
user (string): The username to filter tasks by.
poll_interval (int): The interval at which to poll for new results. |
11,889 | def is_valid_filename(filename, return_ext=False):
ext = Path(filename).suffixes
if len(ext) > 2:
logg.warn(
.format(ext, ext[-2:]))
ext = ext[-2:]
if len(ext) == 2 and ext[0][1:] in text_exts and ext[1][1:] in (, ):
return ext[0][1:] if return_ext else True
elif ext and ext[-1][1:] in avail_exts:
return ext[-1][1:] if return_ext else True
elif .join(ext) == :
return if return_ext else True
elif .join(ext) == :
return if return_ext else True
else:
if return_ext:
raise ValueError(
.format(filename, avail_exts))
else:
return False | Check whether the argument is a filename. |
11,890 | def fuzzy_get_value(obj, approximate_key, default=None, **kwargs):
dict_obj = OrderedDict(obj)
try:
return dict_obj[list(dict_obj.keys())[int(approximate_key)]]
except (ValueError, IndexError):
pass
return fuzzy_get(dict_obj, approximate_key, key_and_value=False, **kwargs) | Like fuzzy_get, but assume the obj is dict-like and return the value without the key
Notes:
Argument order is in reverse order relative to `fuzzywuzzy.process.extractOne()`
but in the same order as get(self, key) method on dicts
Arguments:
obj (dict-like): object to run the get method on using the key that is most similar to one within the dict
approximate_key (str): key to look for a fuzzy match within the dict keys
default (obj): the value to return if a similar key cannote be found in the `possible_keys`
similarity (str): fractional similiarity between the approximate_key and the dict key
(0.9 means 90% of characters must be identical)
tuple_joiner (str): Character to use as delimitter/joiner between tuple elements.
Used to create keys of any tuples to be able to use fuzzywuzzy string matching on it.
key_and_value (bool): Whether to return both the key and its value (True) or just the value (False).
Default is the same behavior as dict.get (i.e. key_and_value=False)
dict_keys (list of str): if you already have a set of keys to search, this will save this funciton
a little time and RAM
Examples:
>>> fuzzy_get_value({'seller': 2.7, 'sailor': set('e')}, 'sail') == set(['e'])
True
>>> fuzzy_get_value({'seller': 2.7, 'sailor': set('e'), 'camera': object()}, 'SLR')
2.7
>>> fuzzy_get_value({'seller': 2.7, 'sailor': set('e'), 'camera': object()}, 'I') == set(['e'])
True
>>> fuzzy_get_value({'word': tuple('word'), 'noun': tuple('noun')}, 'woh!', similarity=.3)
('w', 'o', 'r', 'd')
>>> df = pd.DataFrame(np.arange(6*2).reshape(2,6), columns=('alpha','beta','omega','begin','life','end'))
>>> fuzzy_get_value(df, 'life')[0], fuzzy_get(df, 'omega')[0]
(4, 2) |
11,891 | def render(self, template, context=None, at_paths=None,
at_encoding=anytemplate.compat.ENCODING, **kwargs):
kwargs = self.filter_options(kwargs, self.render_valid_options())
paths = anytemplate.utils.mk_template_paths(template, at_paths)
if context is None:
context = {}
LOGGER.debug("Render template %s %s context, options=%s",
template, "without" if context is None else "with a",
str(kwargs))
return self.render_impl(template, context, at_paths=paths,
at_encoding=at_encoding, **kwargs) | :param template: Template file path
:param context: A dict or dict-like object to instantiate given
template file
:param at_paths: Template search paths
:param at_encoding: Template encoding
:param kwargs: Keyword arguments passed to the template engine to
render templates with specific features enabled.
:return: Rendered string |
11,892 | def covar(X, remove_mean=False, modify_data=False, weights=None, sparse_mode=, sparse_tol=0.0):
w, s, M = moments_XX(X, remove_mean=remove_mean, weights=weights, modify_data=modify_data,
sparse_mode=sparse_mode, sparse_tol=sparse_tol)
return M / float(w) | Computes the covariance matrix of X
Computes
.. math:
C_XX &=& X^\top X
while exploiting zero or constant columns in the data matrix.
WARNING: Directly use moments_XX if you can. This function does an additional
constant-matrix multiplication and does not return the mean.
Parameters
----------
X : ndarray (T, M)
Data matrix
remove_mean : bool
True: remove column mean from the data, False: don't remove mean.
modify_data : bool
If remove_mean=True, the mean will be removed in the data matrix X,
without creating an independent copy. This option is faster but might
lead to surprises because your input array is changed.
weights : None or ndarray(T, )
weights assigned to each trajectory point of X. If None, all data points have weight one.
If ndarray, each data point is assigned a separate weight.
sparse_mode : str
one of:
* 'dense' : always use dense mode
* 'sparse' : always use sparse mode if possible
* 'auto' : automatic
sparse_tol: float
Threshold for considering column to be zero in order to save computing
effort when the data is sparse or almost sparse.
If max(abs(X[:, i])) < sparse_tol, then row i (and also column i if Y
is not given) of the covariance matrix will be set to zero. If Y is
given and max(abs(Y[:, i])) < sparse_tol, then column i of the
covariance matrix will be set to zero.
Returns
-------
C_XX : ndarray (M, M)
Covariance matrix of X
See also
--------
moments_XX |
11,893 | def asset_path(path, format_kwargs={}, keep_slash=False):
if format_kwargs:
path = path.format_map(format_kwargs)
has_slash = path.endswith(os.sep)
if in path:
package_name, *rel_path = path.split(, 1)
else:
package_name, rel_path = path, ()
try:
package = importlib.import_module(package_name)
except ImportError:
raise ValueError(
.format_map(locals()))
if not hasattr(package, ):
raise ValueError("Can{path}{slash}'.format(path=path, slash=os.sep)
return path | Get absolute path to asset in package.
``path`` can be just a package name like 'package' or it can be
a package name and a relative file system path like 'package:util'.
If ``path`` ends with a slash, it will be stripped unless
``keep_slash`` is set (for use with ``rsync``, for example).
>>> file_path = os.path.normpath(__file__)
>>> dir_name = os.path.dirname(file_path)
>>> file_name = os.path.basename(file_path)
>>> os.chdir(dir_name)
>>>
>>> asset_path('runcommands.util') == dir_name
True
>>> asset_path('runcommands.util:path.py') == file_path
True
>>> asset_path('runcommands.util:{name}.py', format_kwargs={'name': 'path'}) == file_path
True
>>> asset_path('runcommands.util:dir/') == (dir_name + '/dir')
True
>>> asset_path('runcommands.util:dir/', keep_slash=True) == (dir_name + '/dir/')
True |
11,894 | def price_options(S=100.0, K=100.0, sigma=0.25, r=0.05, days=260, paths=10000):
import numpy as np
from math import exp,sqrt
h = 1.0/days
const1 = exp((r-0.5*sigma**2)*h)
const2 = sigma*sqrt(h)
stock_price = S*np.ones(paths, dtype=)
stock_price_sum = np.zeros(paths, dtype=)
for j in range(days):
growth_factor = const1*np.exp(const2*np.random.standard_normal(paths))
stock_price = stock_price*growth_factor
stock_price_sum = stock_price_sum + stock_price
stock_price_avg = stock_price_sum/days
zeros = np.zeros(paths, dtype=)
r_factor = exp(-r*h*days)
euro_put = r_factor*np.mean(np.maximum(zeros, K-stock_price))
asian_put = r_factor*np.mean(np.maximum(zeros, K-stock_price_avg))
euro_call = r_factor*np.mean(np.maximum(zeros, stock_price-K))
asian_call = r_factor*np.mean(np.maximum(zeros, stock_price_avg-K))
return (euro_call, euro_put, asian_call, asian_put) | Price European and Asian options using a Monte Carlo method.
Parameters
----------
S : float
The initial price of the stock.
K : float
The strike price of the option.
sigma : float
The volatility of the stock.
r : float
The risk free interest rate.
days : int
The number of days until the option expires.
paths : int
The number of Monte Carlo paths used to price the option.
Returns
-------
A tuple of (E. call, E. put, A. call, A. put) option prices. |
11,895 | def _add_constraints(self, relation):
expression = relation.expression
constr_count = sum(True for _ in expression.value_sets())
if constr_count == 0:
return []
row_indices = count(swiglpk.glp_add_rows(self._p, constr_count))
names = []
for i, value_set in zip(row_indices, expression.value_sets()):
value_set = list(value_set)
var_indices = swiglpk.intArray(1 + len(value_set))
var_values = swiglpk.doubleArray(1 + len(value_set))
for j, (variable, coeff) in enumerate(value_set):
var_indices[1 + j] = self._variables[variable]
var_values[1 + j] = float(coeff)
swiglpk.glp_set_mat_row(
self._p, i, len(value_set), var_indices, var_values)
if relation.sense == RelationSense.Greater:
swiglpk.glp_set_row_bnds(
self._p, i, swiglpk.GLP_LO, -float(expression.offset), 0)
elif relation.sense == RelationSense.Less:
swiglpk.glp_set_row_bnds(
self._p, i, swiglpk.GLP_UP, 0, -float(expression.offset))
else:
swiglpk.glp_set_row_bnds(
self._p, i, swiglpk.GLP_FX, -float(expression.offset), 0)
names.append(i)
self._do_presolve = True
return names | Add the given relation as one or more constraints.
Return a list of the names of the constraints added. |
11,896 | def format_path(path):
localhost:30000managercomp0.rtclocalhost:30000/manager/comp0.rtclocalhostmanagercomp0.rtcinlocalhost/manager/comp0.rtc:in/localhostmanagercomp0.rtc/localhost/manager/comp0.rtc/localhostmanagercomp0.rtcin/localhost/manager/comp0.rtc:inmanagercomp0.rtcmanager/comp0.rtccomp0.rtccomp0.rtc
if path[1]:
port = + path[1]
else:
port =
if type(path[0]) is str:
| Formats a path as a string, placing / between each component.
@param path A path in rtctree format, as a tuple with the port name as the
second component.
Examples:
>>> format_path((['localhost:30000', 'manager', 'comp0.rtc'], None))
'localhost:30000/manager/comp0.rtc'
>>> format_path((['localhost', 'manager', 'comp0.rtc'], 'in'))
'localhost/manager/comp0.rtc:in'
>>> format_path((['/', 'localhost', 'manager', 'comp0.rtc'], None))
'/localhost/manager/comp0.rtc'
>>> format_path((['/', 'localhost', 'manager', 'comp0.rtc'], 'in'))
'/localhost/manager/comp0.rtc:in'
>>> format_path((['manager', 'comp0.rtc'], None))
'manager/comp0.rtc'
>>> format_path((['comp0.rtc'], None))
'comp0.rtc' |
11,897 | def add_pegasus_profile(self, namespace, key, value):
self.__pegasus_profile.append((str(namespace),str(key),str(value))) | Add a Pegasus profile to this job which will be written to the dax as
<profile namespace="NAMESPACE" key="KEY">VALUE</profile>
This can be used to add classads to particular jobs in the DAX
@param namespace: A valid Pegasus namespace, e.g. condor.
@param key: The name of the attribute.
@param value: The value of the attribute. |
11,898 | def repackage_to_staging(output_path):
import google.datalab.ml as ml
package_root = os.path.join(os.path.dirname(__file__), )
setup_py = os.path.join(os.path.dirname(__file__), )
staging_package_url = os.path.join(output_path, , )
ml.package_and_copy(package_root, setup_py, staging_package_url)
return staging_package_url | Repackage it from local installed location and copy it to GCS. |
11,899 | def create_qualification_type(Name=None, Keywords=None, Description=None, QualificationTypeStatus=None, RetryDelayInSeconds=None, Test=None, AnswerKey=None, TestDurationInSeconds=None, AutoGranted=None, AutoGrantedValue=None):
pass | The CreateQualificationType operation creates a new Qualification type, which is represented by a QualificationType data structure.
See also: AWS API Documentation
:example: response = client.create_qualification_type(
Name='string',
Keywords='string',
Description='string',
QualificationTypeStatus='Active'|'Inactive',
RetryDelayInSeconds=123,
Test='string',
AnswerKey='string',
TestDurationInSeconds=123,
AutoGranted=True|False,
AutoGrantedValue=123
)
:type Name: string
:param Name: [REQUIRED]
The name you give to the Qualification type. The type name is used to represent the Qualification to Workers, and to find the type using a Qualification type search. It must be unique across all of your Qualification types.
:type Keywords: string
:param Keywords: One or more words or phrases that describe the Qualification type, separated by commas. The keywords of a type make the type easier to find during a search.
:type Description: string
:param Description: [REQUIRED]
A long description for the Qualification type. On the Amazon Mechanical Turk website, the long description is displayed when a Worker examines a Qualification type.
:type QualificationTypeStatus: string
:param QualificationTypeStatus: [REQUIRED]
The initial status of the Qualification type.
Constraints: Valid values are: Active | Inactive
:type RetryDelayInSeconds: integer
:param RetryDelayInSeconds: The number of seconds that a Worker must wait after requesting a Qualification of the Qualification type before the worker can retry the Qualification request.
Constraints: None. If not specified, retries are disabled and Workers can request a Qualification of this type only once, even if the Worker has not been granted the Qualification. It is not possible to disable retries for a Qualification type after it has been created with retries enabled. If you want to disable retries, you must delete existing retry-enabled Qualification type and then create a new Qualification type with retries disabled.
:type Test: string
:param Test: The questions for the Qualification test a Worker must answer correctly to obtain a Qualification of this type. If this parameter is specified, TestDurationInSeconds must also be specified.
Constraints: Must not be longer than 65535 bytes. Must be a QuestionForm data structure. This parameter cannot be specified if AutoGranted is true.
Constraints: None. If not specified, the Worker may request the Qualification without answering any questions.
:type AnswerKey: string
:param AnswerKey: The answers to the Qualification test specified in the Test parameter, in the form of an AnswerKey data structure.
Constraints: Must not be longer than 65535 bytes.
Constraints: None. If not specified, you must process Qualification requests manually.
:type TestDurationInSeconds: integer
:param TestDurationInSeconds: The number of seconds the Worker has to complete the Qualification test, starting from the time the Worker requests the Qualification.
:type AutoGranted: boolean
:param AutoGranted: Specifies whether requests for the Qualification type are granted immediately, without prompting the Worker with a Qualification test.
Constraints: If the Test parameter is specified, this parameter cannot be true.
:type AutoGrantedValue: integer
:param AutoGrantedValue: The Qualification value to use for automatically granted Qualifications. This parameter is used only if the AutoGranted parameter is true.
:rtype: dict
:return: {
'QualificationType': {
'QualificationTypeId': 'string',
'CreationTime': datetime(2015, 1, 1),
'Name': 'string',
'Description': 'string',
'Keywords': 'string',
'QualificationTypeStatus': 'Active'|'Inactive',
'Test': 'string',
'TestDurationInSeconds': 123,
'AnswerKey': 'string',
'RetryDelayInSeconds': 123,
'IsRequestable': True|False,
'AutoGranted': True|False,
'AutoGrantedValue': 123
}
} |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.