Unnamed: 0
int64 0
389k
| code
stringlengths 26
79.6k
| docstring
stringlengths 1
46.9k
|
---|---|---|
12,000 | def find_session(self, session_name):
if not isinstance(session_name, basestring):
raise TypeError("session_name can only be an instance of type basestring")
sessions = self._call("findSession",
in_p=[session_name])
sessions = [IGuestSession(a) for a in sessions]
return sessions | Finds guest sessions by their friendly name and returns an interface
array with all found guest sessions.
in session_name of type str
The session's friendly name to find. Wildcards like ? and * are allowed.
return sessions of type :class:`IGuestSession`
Array with all guest sessions found matching the name specified. |
12,001 | def _convert_old_schema(self, parameters):
merged = []
for parameter in parameters:
segments = parameter.name.split()
_merge_associative_list(merged, segments, parameter)
result = [self._inner_convert_old_schema(node, 1) for node in merged]
return result | Convert an ugly old schema, using dotted names, to the hot new schema,
using List and Structure.
The old schema assumes that every other dot implies an array. So a list
of two parameters,
[Integer("foo.bar.baz.quux"), Integer("foo.bar.shimmy")]
becomes::
[List(
"foo",
item=Structure(
fields={"baz": List(item=Integer()),
"shimmy": Integer()}))]
By design, the old schema syntax ignored the names "bar" and "quux". |
12,002 | def canonical_new_peer_list( self, peers_to_add ):
new_peers = list(set(self.new_peers + peers_to_add))
random.shuffle( new_peers )
tmp = []
for peer in new_peers:
tmp.append( self.canonical_peer(peer) )
new_peers = tmp
if self.my_hostport in new_peers:
new_peers.remove(self.my_hostport)
return new_peers | Make a list of canonical new peers, using the
self.new_peers and the given peers to add
Return a shuffled list of canonicalized host:port
strings. |
12,003 | def to_unix_ts(start_time):
if isinstance(start_time, datetime):
if is_timezone_aware(start_time):
start_time = start_time.astimezone(pytz.utc)
else:
log.warning(
"Non timezone-aware datetime object passed to IncrementalEndpoint. "
"The Zendesk API expects UTC time, if this is not the case results will be incorrect!"
)
unix_time = calendar.timegm(start_time.timetuple())
else:
unix_time = start_time
return int(unix_time) | Given a datetime object, returns its value as a unix timestamp |
12,004 | def get_target(self):
with open( % self.path) as f:
for line in f.readlines():
matches = re.findall(r, line)
if len(matches) == 0:
continue
return matches[0].replace(, )
return % (config.sdk_version) | Reads the android target based on project.properties file.
Returns
A string containing the project target (android-23 being the default if none is found) |
12,005 | def event_later(self, delay, data_tuple):
return self._base.event_later(delay, self.make_event_data(*data_tuple)) | Schedule an event to be emitted after a delay.
:param delay: number of seconds
:param data_tuple: a 2-tuple (flavor, data)
:return: an event object, useful for cancelling. |
12,006 | def trash_for(self, user):
return self.filter(
recipient=user,
recipient_deleted_at__isnull=False,
) | self.filter(
sender=user,
sender_deleted_at__isnull=False,
) | Returns all messages that were either received or sent by the given
user and are marked as deleted. |
12,007 | def remove_global_exception_handler(handler):
for i, cb in enumerate(state.global_exception_handlers):
cb = cb()
if cb is not None and cb is handler:
state.global_exception_handlers.pop(i)
log.info("removing a global exception handler")
return True
return False | remove a callback from the list of global exception handlers
:param handler:
the callback, previously added via :func:`global_exception_handler`,
to remove
:type handler: function
:returns: bool, whether the handler was found (and therefore removed) |
12,008 | def emit(_):
if not initialized:
raise NotInitialized
view = {
: __version__,
: {},
: {},
: {},
: {},
: {},
}
for (ty, module, name), metric in six.iteritems(all_metrics):
view[ty][ % (module, name)] = metric.view()
marshalled_view = marshal.dumps(view)
if len(marshalled_view) > MAX_MARSHALLED_VIEW_SIZE:
log.warn(
% (len(marshalled_view), MAX_MARSHALLED_VIEW_SIZE))
return
marshalled_metrics_mmap.seek(0)
try:
uwsgi.lock()
marshalled_metrics_mmap.write(marshalled_view)
finally:
uwsgi.unlock() | Serialize metrics to the memory mapped buffer. |
12,009 | def refresh_save_all_action(self):
editorstack = self.get_current_editorstack()
if editorstack:
state = any(finfo.editor.document().isModified() or finfo.newly_created
for finfo in editorstack.data)
self.save_all_action.setEnabled(state) | Enable 'Save All' if there are files to be saved |
12,010 | def codons(self, frame):
start = frame
while start + 3 <= self.size:
yield self.sequence[start : start + 3], start
start += 3 | A generator that yields DNA in one codon blocks
"frame" counts for 0. This function yields a tuple (triplet, index) with
index relative to the original DNA sequence |
12,011 | def get_coord_system_name(header):
try:
ctype = header[].strip().upper()
except KeyError:
try:
ra = header[]
try:
equinox = float(header[])
if equinox < 1984.0:
radecsys =
else:
radecsys =
except KeyError:
radecsys =
return radecsys.lower()
except KeyError:
return
match = re.match(r, ctype)
if match:
return
match = re.match(r, ctype)
if match:
return
match = re.match(r, ctype)
if match:
hdkey =
try:
radecsys = header[hdkey]
except KeyError:
try:
hdkey =
radecsys = header[hdkey]
except KeyError:
try:
equinox = float(header[])
if equinox < 1984.0:
radecsys =
else:
radecsys =
except KeyError:
radecsys =
radecsys = radecsys.strip()
return radecsys.lower()
match = re.match(r, ctype)
if match:
return
match = re.match(r, ctype)
if match:
return
match = re.match(r, ctype)
if match:
return
match = re.match(r, ctype)
if match:
return
return | Return an appropriate key code for the axes coordinate system by
examining the FITS header. |
12,012 | def get_path_to_repo(self, repo: str) -> Path:
return Path(self.base_dir) / "repos" / self.repo_id(repo) | Returns a :class:`Path <pathlib.Path>` to the location where all the branches from this repo are stored.
:param repo: Repo URL
:return: Path to where branches from this repository are cloned. |
12,013 | def _infer_unknown_dims(old_shape, shape_spec):
numerator_elements = [x if x else 0 for x in old_shape]
denominator = 1
unknowns = 0
normalized_shape_spec = []
for s in shape_spec:
(old_shape, shape_spec))
if numerator and unknowns:
unknown_elements = int(numerator / denominator)
return [unknown_elements if x == -1 else x for x in result]
else:
return result | Attempts to replace DIM_REST (if present) with a value.
Because of `pt.DIM_SAME`, this has more information to compute a shape value
than the default reshape's shape function.
Args:
old_shape: The current shape of the Tensor as a list.
shape_spec: A shape spec, see `pt.reshape`.
Returns:
A list derived from `shape_spec` with `pt.DIM_SAME` replaced by the value
from old_shape (if possible) and `pt.DIM_REST` computed (if possible).
Raises:
ValueError: If there are two many unknown dimensions or the shape_spec
requires out of range DIM_SAME.
TypeError: If shape_spec if not iterable. |
12,014 | def syncTree(self, recursive=False, blockSignals=True):
tree = self.treeWidget()
if not tree:
return
items = [self]
if recursive:
items += list(self.children(recursive=True))
if blockSignals and not tree.signalsBlocked():
blocked = True
tree.blockSignals(True)
else:
blocked = False
date_format = self.ganttWidget().dateFormat()
for item in items:
for c, col in enumerate(tree.columns()):
value = item.property(col, )
item.setData(c, Qt.EditRole, wrapVariant(value))
if blocked:
tree.blockSignals(False) | Syncs the information from this item to the tree. |
12,015 | def _replace_envvar(s, _):
e = s.split(":")
if len(e) > 3 or len(e) == 1 or e[0] != "env":
raise ValueError()
elif len(e) == 2:
return os.environ[e[1]]
else:
return os.environ.get(e[1], e[2]) | env:KEY or env:KEY:DEFAULT |
12,016 | def branches(self):
branches = []
if self._taken_branch:
branches += [(self._taken_branch, )]
if self._not_taken_branch:
branches += [(self._not_taken_branch, )]
if self._direct_branch:
branches += [(self._direct_branch, )]
return branches | Get basic block branches. |
12,017 | def extend_to_data(self, data, **kwargs):
kernel = self.build_kernel_to_data(data, **kwargs)
if sparse.issparse(kernel):
pnm = sparse.hstack(
[sparse.csr_matrix(kernel[:, self.clusters == i].sum(
axis=1)) for i in np.unique(self.clusters)])
else:
pnm = np.array([np.sum(
kernel[:, self.clusters == i],
axis=1).T for i in np.unique(self.clusters)]).transpose()
pnm = normalize(pnm, norm=, axis=1)
return pnm | Build transition matrix from new data to the graph
Creates a transition matrix such that `Y` can be approximated by
a linear combination of landmarks. Any
transformation of the landmarks can be trivially applied to `Y` by
performing
`transform_Y = transitions.dot(transform)`
Parameters
----------
Y: array-like, [n_samples_y, n_features]
new data for which an affinity matrix is calculated
to the existing data. `n_features` must match
either the ambient or PCA dimensions
Returns
-------
transitions : array-like, [n_samples_y, self.data.shape[0]]
Transition matrix from `Y` to `self.data` |
12,018 | def wrap_paragraphs(content, hard_breaks=False):
paras = filter(None, [para.strip() for para in content.split()])
paras = [build_paragraph(para, hard_breaks) for para in paras]
return .join(paras) | Returns *content* with all paragraphs wrapped in `<p>` tags.
If *hard_breaks* is set, line breaks are converted to `<br />` tags. |
12,019 | def compile_dir(dfn, optimize_python=True):
if PYTHON is None:
return
if int(PYTHON_VERSION[0]) >= 3:
args = [PYTHON, , , , , dfn]
else:
args = [PYTHON, , , , dfn]
if optimize_python:
args.insert(1, )
return_code = subprocess.call(args)
if return_code != 0:
print(.format(.join(args)))
print(
)
exit(1) | Compile *.py in directory `dfn` to *.pyo |
12,020 | def mtf_image_transformer_base_imagenet_mp64():
hparams = mtf_image_transformer_base_imagenet()
hparams.mesh_shape = "model:8;batch:4"
hparams.layout = "batch:batch;d_ff:model;heads:model"
hparams.batch_size = 8
hparams.img_len = 64
hparams.num_decoder_layers = 8
return hparams | Model parallel ImageNet parameters. |
12,021 | def create_placeholder_access_object(self, instance):
related_model = self.related_model
def get_related_model_objects(name):
return related_model.objects.get(
parent_type=ContentType.objects.get_for_model(type(instance)),
parent_id=instance.id,
slot=name,
).get_content_items()
class PlaceholderAccess(object):
def __getattribute__(self, name):
try:
return get_related_model_objects(name)
except related_model.DoesNotExist:
return super(PlaceholderAccess, self).__getattribute__(name)
def __getitem__(self, item):
try:
return get_related_model_objects(item)
except related_model.DoesNotExist:
raise KeyError
return PlaceholderAccess() | Created objects with placeholder slots as properties.
Each placeholder created for an object will be added to a
`PlaceHolderAccess` object as a set property. |
12,022 | def initialize(config):
if in config:
client = utils.find_entrypoint(,
config[], required=True)
else:
client = redis.StrictRedis
kwargs = {}
for cfg_var, type_ in REDIS_CONFIGS.items():
if cfg_var in config:
kwargs[cfg_var] = type_(config[cfg_var])
if not in kwargs and not in kwargs:
raise redis.ConnectionError("No host specified for redis database")
cpool_class = None
cpool = {}
extra_kwargs = {}
for key, value in config.items():
if key.startswith():
_dummy, _sep, varname = key.partition()
if varname == :
cpool[varname] = utils.find_entrypoint(
, value, required=True)
elif varname == :
cpool[varname] = int(value)
elif varname == :
cpool[varname] = utils.find_entrypoint(
, value, required=True)
else:
cpool[varname] = value
elif key not in REDIS_CONFIGS and key not in REDIS_EXCLUDES:
extra_kwargs[key] = value
if cpool:
cpool_class = redis.ConnectionPool
if in config:
cpool_class = utils.find_entrypoint(,
config[],
required=True)
if cpool_class:
cpool.update(kwargs)
if not in cpool:
if in cpool:
if in cpool:
del cpool[]
if in cpool:
del cpool[]
cpool[] = cpool[]
del cpool[]
cpool[] = redis.UnixDomainSocketConnection
else:
cpool[] = redis.Connection
kwargs = dict(connection_pool=cpool_class(**cpool))
kwargs.update(extra_kwargs)
return client(**kwargs) | Initialize a connection to the Redis database. |
12,023 | def sheets(self):
data = Dict()
for src in [src for src in self.zipfile.namelist() if in src]:
name = os.path.splitext(os.path.basename(src))[0]
xml = self.xml(src)
data[name] = xml
return data | return the sheets of data. |
12,024 | def main(args,parser,subparser=None):
base = args.base
if base is None:
base = os.environ.get()
if base is None:
bot.error("You must set a base of experiments with --base" % base)
sys.exit(1)
if not os.path.exists(base):
bot.error("Base folder %s does not exist." % base)
sys.exit(1)
experiments = args.experiments
if experiments is None:
experiments = " ".join(glob("%s/*" % base))
os.environ[] = experiments
if args.vars is not None:
if os.path.exists(args.vars):
os.environ[] = args.vars
os.environ[] = args.delim
else:
bot.warning( %args.vars)
subid = os.environ.get()
if args.subid is not None:
subid = args.subid
os.environ[] = subid
os.environ[] = str(args.disable_randomize)
os.environ[] = base
from expfactory.server import start
start(port=5000) | this is the main entrypoint for a container based web server, with
most of the variables coming from the environment. See the Dockerfile
template for how this function is executed. |
12,025 | def get_all(self, sort_order=None, sort_target=):
return self.get(
key=_encode(b),
metadata=True,
sort_order=sort_order,
sort_target=sort_target,
range_end=_encode(b),
) | Get all keys currently stored in etcd.
:returns: sequence of (value, metadata) tuples |
12,026 | def PartialDynamicSystem(self, ieq, variable):
if ieq == 0:
if variable == self.physical_nodes[0].variable:
return [WeightedSum([self.physical_nodes[1].variable, self.voltage_signal], variable, [1, -1])]
elif variable == self.physical_nodes[1].variable:
return [WeightedSum([self.physical_nodes[0].variable, self.voltage_signal], variable, [1, 1])] | returns dynamical system blocks associated to output variable |
12,027 | def get_path_for_termid(self,termid):
terminal_id = self.terminal_for_term.get(termid)
paths = self.paths_for_terminal[terminal_id]
labels = [self.label_for_nonter[nonter] for nonter in paths[0]]
return labels | This function returns the path (in terms of phrase types) from one term the root
@type termid: string
@param termid: one term id
@rtype: list
@return: the path, list of phrase types |
12,028 | def find_path(network, pore_pairs, weights=None):
r
Ps = sp.array(pore_pairs, ndmin=2)
if weights is None:
weights = sp.ones_like(network.Ts)
graph = network.create_adjacency_matrix(weights=weights, fmt=,
drop_zeros=False)
paths = csgraph.dijkstra(csgraph=graph, indices=Ps[:, 0],
return_predecessors=True)[1]
pores = []
throats = []
for row in range(0, sp.shape(Ps)[0]):
j = Ps[row][1]
ans = []
while paths[row][j] > -9999:
ans.append(j)
j = paths[row][j]
ans.append(Ps[row][0])
ans.reverse()
pores.append(sp.array(ans, dtype=int))
Ts = network.find_neighbor_throats(pores=ans, mode=)
throats.append(sp.array(Ts, dtype=int))
pdict = PrintableDict
dict_ = pdict(**{: pores, : throats})
return dict_ | r"""
Find the shortest path between pairs of pores.
Parameters
----------
network : OpenPNM Network Object
The Network object on which the search should be performed
pore_pairs : array_like
An N x 2 array containing N pairs of pores for which the shortest
path is sought.
weights : array_like, optional
An Nt-long list of throat weights for the search. Typically this
would be the throat lengths, but could also be used to represent
the phase configuration. If no weights are given then the
standard topological connections of the Network are used.
Returns
-------
A dictionary containing both the pores and throats that define the
shortest path connecting each pair of input pores.
Notes
-----
The shortest path is found using Dijkstra's algorithm included in the
scipy.sparse.csgraph module
TODO: The returned throat path contains the correct values, but not
necessarily in the true order
Examples
--------
>>> import openpnm as op
>>> pn = op.network.Cubic(shape=[3, 3, 3])
>>> a = op.topotools.find_path(network=pn, pore_pairs=[[0, 4], [0, 10]])
>>> a['pores']
[array([0, 1, 4]), array([ 0, 1, 10])]
>>> a['throats']
[array([ 0, 19]), array([ 0, 37])] |
12,029 | def blob_services(self):
api_version = self._get_api_version()
if api_version == :
from .v2018_07_01.operations import BlobServicesOperations as OperationClass
else:
raise NotImplementedError("APIVersion {} is not available".format(api_version))
return OperationClass(self._client, self.config, Serializer(self._models_dict(api_version)), Deserializer(self._models_dict(api_version))) | Instance depends on the API version:
* 2018-07-01: :class:`BlobServicesOperations<azure.mgmt.storage.v2018_07_01.operations.BlobServicesOperations>` |
12,030 | def configure_interface(self, name, commands):
commands = make_iterable(commands)
commands.insert(0, % name)
return self.configure(commands) | Configures the specified interface with the commands
Args:
name (str): The interface name to configure
commands: The commands to configure in the interface
Returns:
True if the commands completed successfully |
12,031 | def _init_sbc_config(self, config):
if (config.channel_mode == SBCChannelMode.CHANNEL_MODE_MONO):
self.config.mode = self.codec.SBC_MODE_MONO
elif (config.channel_mode == SBCChannelMode.CHANNEL_MODE_STEREO):
self.config.mode = self.codec.SBC_MODE_STEREO
elif (config.channel_mode == SBCChannelMode.CHANNEL_MODE_DUAL):
self.config.mode = self.codec.SBC_MODE_DUAL_CHANNEL
elif (config.channel_mode == SBCChannelMode.CHANNEL_MODE_JOINT_STEREO):
self.config.mode = self.codec.SBC_MODE_JOINT_STEREO
if (config.frequency == SBCSamplingFrequency.FREQ_16KHZ):
self.config.frequency = self.codec.SBC_FREQ_16000
elif (config.frequency == SBCSamplingFrequency.FREQ_32KHZ):
self.config.frequency = self.codec.SBC_FREQ_32000
elif (config.frequency == SBCSamplingFrequency.FREQ_44_1KHZ):
self.config.frequency = self.codec.SBC_FREQ_44100
elif (config.frequency == SBCSamplingFrequency.FREQ_48KHZ):
self.config.frequency = self.codec.SBC_FREQ_48000
if (config.allocation_method == SBCAllocationMethod.LOUDNESS):
self.config.allocation = self.codec.SBC_AM_LOUDNESS
elif (config.allocation_method == SBCAllocationMethod.SNR):
self.config.allocation = self.codec.SBC_AM_SNR
if (config.subbands == SBCSubbands.SUBBANDS_4):
self.config.subbands = self.codec.SBC_SB_4
elif (config.subbands == SBCSubbands.SUBBANDS_8):
self.config.subbands = self.codec.SBC_SB_8
if (config.block_length == SBCBlocks.BLOCKS_4):
self.config.blocks = self.codec.SBC_BLK_4
elif (config.block_length == SBCBlocks.BLOCKS_8):
self.config.blocks = self.codec.SBC_BLK_8
elif (config.block_length == SBCBlocks.BLOCKS_12):
self.config.blocks = self.codec.SBC_BLK_12
elif (config.block_length == SBCBlocks.BLOCKS_16):
self.config.blocks = self.codec.SBC_BLK_16
self.config.bitpool = config.max_bitpool
self.config.endian = self.codec.SBC_LE | Translator from namedtuple config representation to
the sbc_t type.
:param namedtuple config: See :py:class:`.SBCCodecConfig`
:returns: |
12,032 | def last_or_default(self, default, predicate=None):
if self.closed():
raise ValueError("Attempt to call last_or_default() on a "
"closed Queryable.")
return self._last_or_default(default) if predicate is None else self._last_or_default_predicate(default, predicate) | The last element (optionally satisfying a predicate) or a default.
If the predicate is omitted or is None this query returns the last
element in the sequence; otherwise, it returns the last element in
the sequence for which the predicate evaluates to True. If there is no
such element the value of the default argument is returned.
Note: This method uses immediate execution.
Args:
default: The value which will be returned if either the sequence is
empty or there are no elements matching the predicate.
predicate: An optional unary predicate function, the only argument
to which is the element. The return value should be True for
matching elements, otherwise False. If the predicate is
omitted or None the last element of the source sequence will
be returned.
Returns:
The last element of the sequence if predicate is None, otherwise
the last element for which the predicate returns True. If there is
no such element, the default argument is returned.
Raises:
ValueError: If the Queryable is closed.
TypeError: If the predicate is not callable. |
12,033 | def lein(word, max_length=4, zero_pad=True):
return Lein().encode(word, max_length, zero_pad) | Return the Lein code for a word.
This is a wrapper for :py:meth:`Lein.encode`.
Parameters
----------
word : str
The word to transform
max_length : int
The length of the code returned (defaults to 4)
zero_pad : bool
Pad the end of the return value with 0s to achieve a max_length string
Returns
-------
str
The Lein code
Examples
--------
>>> lein('Christopher')
'C351'
>>> lein('Niall')
'N300'
>>> lein('Smith')
'S210'
>>> lein('Schmidt')
'S521' |
12,034 | def image_alias_delete(image,
alias,
remote_addr=None,
cert=None,
key=None,
verify_cert=True):
*
image = _verify_image(image, remote_addr, cert, key, verify_cert)
try:
image.delete_alias(alias)
except pylxd.exceptions.LXDAPIException:
return False
return True | Delete an alias (this is currently not restricted to the image)
image :
An image alias, a fingerprint or a image object
alias :
The alias to delete
remote_addr :
An URL to a remote Server, you also have to give cert and key if
you provide remote_addr and its a TCP Address!
Examples:
https://myserver.lan:8443
/var/lib/mysocket.sock
cert :
PEM Formatted SSL Certificate.
Examples:
~/.config/lxc/client.crt
key :
PEM Formatted SSL Key.
Examples:
~/.config/lxc/client.key
verify_cert : True
Wherever to verify the cert, this is by default True
but in the most cases you want to set it off as LXD
normaly uses self-signed certificates.
CLI Examples:
.. code-block:: bash
$ salt '*' lxd.image_alias_add xenial/amd64 x "Short version of xenial/amd64" |
12,035 | def move_entry(self, entry = None, group = None):
if entry is None or group is None or type(entry) is not v1Entry or \
type(group) is not v1Group:
raise KPError("Need an entry and a group.")
elif entry not in self.entries:
raise KPError("No entry found.")
elif group in self.groups:
entry.group.entries.remove(entry)
group.entries.append(entry)
entry.group_id = group.id_
entry.group = group
return True
else:
raise KPError("No group found.") | Move an entry to another group.
A v1Group group and a v1Entry entry are needed. |
12,036 | def style_node(self, additional_style_attrib=None):
style_attrib = {"style:name": self.name, "style:family": self.FAMILY}
if additional_style_attrib:
style_attrib.update(additional_style_attrib)
if self.PARENT_STYLE_DICT:
style_attrib.update(self.PARENT_STYLE_DICT)
node = el("style:style", attrib=style_attrib)
props = sub_el(node, self.STYLE_PROP, attrib=self.styles)
return node | generate a style node (for automatic-styles)
could specify additional attributes such as
'style:parent-style-name' or 'style:list-style-name' |
12,037 | def TryLink( self, text, extension ):
return self.TryBuild(self.env.Program, text, extension ) | Compiles the program given in text to an executable env.Program,
using extension as file extension (e.g. '.c'). Returns 1, if
compilation was successful, 0 otherwise. The target is saved in
self.lastTarget (for further processing). |
12,038 | def simplified(self):
if self._simplified is None:
self._simplified = SimplifiedChainTransform(self)
return self._simplified | A simplified representation of the same transformation. |
12,039 | def wnfild(small, window):
assert isinstance(window, stypes.SpiceCell)
assert window.dtype == 1
small = ctypes.c_double(small)
libspice.wnfild_c(small, ctypes.byref(window))
return window | Fill small gaps between adjacent intervals of a double precision window.
http://naif.jpl.nasa.gov/pub/naif/toolkit_docs/C/cspice/wnfild_c.html
:param small: Limiting measure of small gaps.
:type small: float
:param window: Window to be filled
:type window: spiceypy.utils.support_types.SpiceCell
:return: Filled Window.
:rtype: spiceypy.utils.support_types.SpiceCell |
12,040 | def pad_light(self, values):
while len(values) < 4:
values.append(0.)
return list(map(float, values)) | Accept an array of up to 4 values, and return an array of 4 values.
If the input array is less than length 4, pad it with zeroes until it
is length 4. Also ensure each value is a float |
12,041 | def vq_loss(x,
targets,
codebook_size,
beta=0.25,
decay=0.999,
epsilon=1e-5,
soft_em=False,
num_samples=10,
temperature=None,
do_update=True):
x_shape = common_layers.shape_list(x)
target_shape = common_layers.shape_list(targets)
hidden_size = x_shape[-1]
means, _, _ = get_vq_codebook(codebook_size, hidden_size)
x = tf.reshape(x, [-1, hidden_size])
targets = tf.reshape(targets, [-1])
one_hot_targets = tf.one_hot(targets, codebook_size)
target_means = tf.matmul(one_hot_targets, means)
discrete_x, code_loss, distances = vq_body(
x,
codebook_size,
beta=beta,
decay=decay,
epsilon=epsilon,
soft_em=soft_em,
num_samples=num_samples,
temperature=temperature,
do_update=do_update)
logits = -distances
targets_loss = tf.losses.sparse_softmax_cross_entropy(
logits=logits, labels=targets)
targets_loss = tf.reduce_mean(targets_loss)
x_means = tf.matmul(discrete_x, means)
x_means = x + tf.stop_gradient(x_means - x)
discrete_x = tf.reshape(discrete_x, x_shape[:-1] + [codebook_size])
target_means = tf.reshape(target_means, target_shape + [hidden_size])
return discrete_x, x_means, target_means, code_loss, targets_loss | Compute the loss of large vocab tensors using a VQAE codebook.
Args:
x: Tensor of inputs to be quantized to nearest code
targets: Tensor of target indices to target codes
codebook_size: Size of quantization codebook
beta: scalar float for moving averages
decay: scalar float for moving averages
epsilon: scalar float for moving averages
soft_em: boolean, whether to apply a soft sampling procedure
num_samples: if soft_em, number of samples to take
temperature: temperature if we want to sample nearest neighbors or None
do_update: whether to update the means; True by default, can be a Tensor
Returns:
discrete_x: one-hot Tensor indicating which codebook element is closest to x
x_means: Tensor, on the forward pass: closest codebook element to x, on the
backwards pass: soft convex-combination of codebook elements by proximity
to x
target_means: the codebook elements corresponding to the targets
code_loss: loss driving x closer to its nearest codebook element
targets_loss: cross-entropy loss driving x closer to code corresponding to
target |
12,042 | def get_form(self, request, obj=None, **kwargs):
parent_id = request.REQUEST.get(, None)
if parent_id:
return FolderForm
else:
folder_form = super(FolderAdmin, self).get_form(
request, obj=None, **kwargs)
def folder_form_clean(form_obj):
cleaned_data = form_obj.cleaned_data
folders_with_same_name = Folder.objects.filter(
parent=form_obj.instance.parent,
name=cleaned_data[])
if form_obj.instance.pk:
folders_with_same_name = folders_with_same_name.exclude(
pk=form_obj.instance.pk)
if folders_with_same_name.exists():
raise ValidationError(
)
return cleaned_data
folder_form.clean = folder_form_clean
return folder_form | Returns a Form class for use in the admin add view. This is used by
add_view and change_view. |
12,043 | def _parse_snapshot_share(response, name):
snapshot = response.headers.get()
return _parse_share(response, name, snapshot) | Extracts snapshot return header. |
12,044 | def pprint(sequence_file, annotation=None, annotation_file=None,
block_length=10, blocks_per_line=6):
annotations = []
if annotation:
annotations.append([(first - 1, last) for first, last in annotation])
try:
line = next(sequence_file)
if line.startswith():
_pprint_fasta(itertools.chain([line], sequence_file),
annotations=annotations,
annotation_file=annotation_file,
block_length=block_length,
blocks_per_line=blocks_per_line)
else:
_pprint_line(line.strip(), annotations=annotations,
annotation_file=annotation_file,
block_length=block_length,
blocks_per_line=blocks_per_line)
except StopIteration:
pass | Pretty-print sequence(s) from a file. |
12,045 | def detect_language(index_page):
dom = dhtmlparser.parseString(index_page)
clean_content = dhtmlparser.removeTags(dom)
lang = None
try:
lang = langdetect.detect(clean_content)
except UnicodeDecodeError:
lang = langdetect.detect(clean_content.decode("utf-8"))
return SourceString(
lang,
source="langdetect"
) | Detect `languages` using `langdetect` library.
Args:
index_page (str): HTML content of the page you wish to analyze.
Returns:
obj: One :class:`.SourceString` object. |
12,046 | def copy(self, key=None):
other = self.__class__(
redis=self.redis, key=key, writeback=self.writeback
)
other.extend(self)
return other | Return a new collection with the same items as this one.
If *key* is specified, create the new collection with the given
Redis key. |
12,047 | def list_space_systems(self, page_size=None):
params = {}
if page_size is not None:
params[] = page_size
return pagination.Iterator(
client=self._client,
path=.format(self._instance),
params=params,
response_class=mdb_pb2.ListSpaceSystemsResponse,
items_key=,
item_mapper=SpaceSystem,
) | Lists the space systems visible to this client.
Space systems are returned in lexicographical order.
:rtype: :class:`.SpaceSystem` iterator |
12,048 | def mutate(self, node, index):
assert index < len(OFFSETS),
assert isinstance(node, parso.python.tree.Number)
val = eval(node.value) + OFFSETS[index]
return parso.python.tree.Number( + str(val), node.start_pos) | Modify the numeric value on `node`. |
12,049 | def create_or_update_issue_remote_links(self, issue_key, link_url, title, global_id=None, relationship=None):
url = .format(issue_key=issue_key)
data = {: {: link_url, : title}}
if global_id:
data[] = global_id
if relationship:
data[] = relationship
return self.post(url, data=data) | Add Remote Link to Issue, update url if global_id is passed
:param issue_key: str
:param link_url: str
:param title: str
:param global_id: str, OPTIONAL:
:param relationship: str, OPTIONAL: Default by built-in method: 'Web Link' |
12,050 | def make_secure_stub(credentials, user_agent, stub_class, host, extra_options=()):
channel = make_secure_channel(
credentials, user_agent, host, extra_options=extra_options
)
return stub_class(channel) | Makes a secure stub for an RPC service.
Uses / depends on gRPC.
:type credentials: :class:`google.auth.credentials.Credentials`
:param credentials: The OAuth2 Credentials to use for creating
access tokens.
:type user_agent: str
:param user_agent: The user agent to be used with API requests.
:type stub_class: type
:param stub_class: A gRPC stub type for a given service.
:type host: str
:param host: The host for the service.
:type extra_options: tuple
:param extra_options: (Optional) Extra gRPC options passed when creating
the channel.
:rtype: object, instance of ``stub_class``
:returns: The stub object used to make gRPC requests to a given API. |
12,051 | def get_shell_history():
if in globals():
a = list(get_ipython().history_manager.input_hist_raw)
a.reverse()
return a
elif in _os.environ:
try:
p = _os.path.join(_settings.path_user, ".spyder2", "history.py")
a = read_lines(p)
a.reverse()
return a
except:
pass
else:
try:
import wx
for x in wx.GetTopLevelWindows():
if type(x) in [wx.py.shell.ShellFrame, wx.py.crust.CrustFrame]:
a = x.shell.GetText().split(">>>")
a.reverse()
return a
except:
pass
return [] | This only works with some shells. |
12,052 | def tag_secondary_structure(self, force=False):
for polymer in self._molecules:
if polymer.molecule_type == :
polymer.tag_secondary_structure(force=force)
return | Tags each `Monomer` in the `Assembly` with it's secondary structure.
Notes
-----
DSSP must be available to call. Check by running
`isambard.external_programs.dssp.test_dssp`. If DSSP is not
available, please follow instruction here to add it:
https://github.com/woolfson-group/isambard#external-programs
For more information on DSSP see [1].
References
----------
.. [1] Kabsch W, Sander C (1983) "Dictionary of protein
secondary structure: pattern recognition of hydrogen-bonded
and geometrical features", Biopolymers, 22, 2577-637.
Parameters
----------
force : bool, optional
If True the tag will be run even if `Monomers` are already tagged |
12,053 | def update_config(configclass: type(Config)):
config = configclass()
def print_list(ctx, param, value):
configclass.__config_path__, config_path = , configclass.__config_path__
| Command line function to update and the a config. |
12,054 | def list_all(dev: Device):
for name, service in dev.services.items():
click.echo(click.style("\nService %s" % name, bold=True))
for method in service.methods:
click.echo(" %s" % method.name) | List all available API calls. |
12,055 | def generate_labels_from_classifications(classifications, timestamps):
window_length = timestamps[1] - timestamps[0]
combo_list = [(classifications[k], timestamps[k]) for k in range(0, len(classifications))]
labels = []
for k, g in itertools.groupby(combo_list, lambda x: x[0]):
items = list(g)
start_time = items[0][1]
end_time = items[-1][1] + window_length
label_class = items[0][0]
labels.append(AudacityLabel(start_time, end_time, label_class))
return labels | This is to generate continuous segments out of classified small windows
:param classifications:
:param timestamps:
:return: |
12,056 | def get_client(self, initial_timeout=0.1, next_timeout=30):
try:
return self._test_client(self._q.get(True, initial_timeout))
except Empty:
try:
self._lock.acquire()
if self._clients_in_use >= self._max_clients:
raise _ClientUnavailableError("Too many clients in use")
return self._test_client(self._make_client())
except NetworkError:
if not self._tolerate_error:
raise
except _ClientUnavailableError as e:
try:
return self._test_client(self._q.get(True, next_timeout))
except Empty:
raise e
finally:
self._lock.release() | Wait until a client instance is available
:param float initial_timeout:
how long to wait initially for an existing client to complete
:param float next_timeout:
if the pool could not obtain a client during the initial timeout,
and we have allocated the maximum available number of clients, wait
this long until we can retrieve another one
:return: A connection object |
12,057 | def one_way(data, n):
term = data.astype()
no_term = n - term
t_exp = np.mean(term, 0)
t_exp = np.array([t_exp, ] * data.shape[0])
nt_exp = n - t_exp
t_mss = (term - t_exp) ** 2 / t_exp
nt_mss = (no_term - nt_exp) ** 2 / nt_exp
chi2 = t_mss + nt_mss
return special.chdtrc(1, chi2) | One-way chi-square test of independence.
Takes a 1D array as input and compares activation at each voxel to
proportion expected under a uniform distribution throughout the array. Note
that if you're testing activation with this, make sure that only valid
voxels (e.g., in-mask gray matter voxels) are included in the array, or
results won't make any sense! |
12,058 | def _visit_for(self, cls, node, parent):
newnode = cls(node.lineno, node.col_offset, parent)
type_annotation = self.check_type_comment(node)
newnode.postinit(
target=self.visit(node.target, newnode),
iter=self.visit(node.iter, newnode),
body=[self.visit(child, newnode) for child in node.body],
orelse=[self.visit(child, newnode) for child in node.orelse],
type_annotation=type_annotation,
)
return newnode | visit a For node by returning a fresh instance of it |
12,059 | def multi_constructor_pkl(loader, tag_suffix, node):
mapping = loader.construct_yaml_str(node)
if tag_suffix != "" and tag_suffix != u"":
raise AssertionError(+tag_suffix+)
rval = ObjectProxy(None, {}, yaml.serialize(node))
rval.instance = serial.load(mapping)
return rval | Constructor function passed to PyYAML telling it how to load
objects from paths to .pkl files. See PyYAML documentation for
details on the call signature. |
12,060 | def run_inference(examples, serving_bundle):
batch_size = 64
if serving_bundle.estimator and serving_bundle.feature_spec:
preds = serving_bundle.estimator.predict(
lambda: tf.data.Dataset.from_tensor_slices(
tf.parse_example([ex.SerializeToString() for ex in examples],
serving_bundle.feature_spec)).batch(batch_size))
if serving_bundle.use_predict:
preds_key = serving_bundle.predict_output_tensor
elif serving_bundle.model_type == :
preds_key =
else:
preds_key =
values = []
for pred in preds:
values.append(pred[preds_key])
return common_utils.convert_prediction_values(values, serving_bundle)
elif serving_bundle.custom_predict_fn:
values = serving_bundle.custom_predict_fn(examples)
return common_utils.convert_prediction_values(values, serving_bundle)
else:
return platform_utils.call_servo(examples, serving_bundle) | Run inference on examples given model information
Args:
examples: A list of examples that matches the model spec.
serving_bundle: A `ServingBundle` object that contains the information to
make the inference request.
Returns:
A ClassificationResponse or RegressionResponse proto. |
12,061 | def K_separator_demister_York(P, horizontal=False):
r
P = P/psi
if P < 15:
if P < 1:
P = 1
K = 0.1821 + 0.0029*P + 0.0460*log(P)
elif P < 40:
K = 0.35
else:
if P > 5500:
P = 5500
K = 0.430 - 0.023*log(P)
K *= foot
if horizontal:
K *= 1.25
return K | r'''Calculates the Sounders Brown `K` factor as used in determining maximum
permissible gas velocity in a two-phase separator in either a horizontal or
vertical orientation, *with a demister*.
This function is a curve fit to [1]_ published in [2]_ and is widely used.
For 1 < P < 15 psia:
.. math::
K = 0.1821 + 0.0029P + 0.0460\ln P
For 15 <= P <= 40 psia:
.. math::
K = 0.35
For P < 5500 psia:
.. math::
K = 0.430 - 0.023\ln P
In the above equations, P is in units of psia.
Parameters
----------
P : float
Pressure of separator, [Pa]
horizontal : bool, optional
Whether to use the vertical or horizontal value; horizontal is 1.25
times higher, [-]
Returns
-------
K : float
Sounders Brown Horizontal or vertical `K` factor for two-phase
separator design with a demister, [m/s]
Notes
-----
If the input pressure is under 1 psia, 1 psia is used. If the
input pressure is over 5500 psia, 5500 psia is used.
Examples
--------
>>> K_separator_demister_York(975*psi)
0.08281536035331669
References
----------
.. [2] Otto H. York Company, "Mist Elimination in Gas Treatment Plants and
Refineries," Engineering, Parsippany, NJ.
.. [1] Svrcek, W. Y., and W. D. Monnery. "Design Two-Phase Separators
within the Right Limits" Chemical Engineering Progress, (October 1,
1993): 53-60. |
12,062 | def decree(cls, path, concrete_start=, **kwargs):
try:
return cls(_make_decree(path, concrete_start), **kwargs)
except KeyError:
raise Exception(f) | Constructor for Decree binary analysis.
:param str path: Path to binary to analyze
:param str concrete_start: Concrete stdin to use before symbolic input
:param kwargs: Forwarded to the Manticore constructor
:return: Manticore instance, initialized with a Decree State
:rtype: Manticore |
12,063 | def put_stream(self, rel_path, metadata=None, cb=None):
import Queue
import time
import threading
md5 = metadata.get(, None) if metadata else None
acl = ( if metadata.get(,
False) else metadata.get(,
)) if metadata else
path = self._prefix(self._rename(rel_path))
class ThreadUploader(threading.Thread):
def __init__(self, n, queue):
threading.Thread.__init__(self)
self.n = n
self.queue = queue
def run(self):
while True:
mp, part_number, buf = self.queue.get()
if mp is None:
logger.debug(
"put_stream: Thread {} exiting".format(
self.n))
self.queue.task_done()
return
logger.debug(
"put_stream: Thread {}: processing part: {}".format(
self.n,
part_number))
t1 = time.time()
try:
mp.upload_part_from_file(buf, part_number)
finally:
self.queue.task_done()
t2 = time.time()
logger.debug("put_stream: Thread {}, part {}. time = {} rate = {} b/s" .format(
self.n, part_number, round(t2 - t1, 3), round((float(buf.tell()) / (t2 - t1)), 2)))
if metadata is None:
metadata = {}
if md5:
metadata[] = md5
write() or writeline() calls on Schedules a buffer to be sent in a thread by queuing it'
logger.debug(
"_send_buffer: sending part {} to thread pool size: {}, total_size = {}" .format(
self.part_number,
self.buffer.tell(),
self.total_size))
self.buffer.seek(0)
thread_upload_queue.put(
(self.mp, self.part_number, self.buffer))
def write(self, d):
import io
self.buffer.write(d)
self.total_size += len(d)
if self.buffer.tell() > buffer_size:
self._send_buffer()
self.part_number += 1
self.buffer = io.BytesIO()
def writelines(self, lines):
raise NotImplemented()
def close(self):
if self.buffer.tell() > 0:
self._send_buffer()
thread_upload_queue.join()
for i in range(num_threads):
thread_upload_queue.put(
(None, None, None))
thread_upload_queue.join()
if self.total_size > 0:
self.mp.complete_upload()
this.bucket.set_acl(acl, path)
this.put_metadata(self.rel_path, metadata)
def __enter__(self):
return self
def __exit__(self, type_, value, traceback):
if type_:
return False
self.close()
return flo(rel_path) | Return a Flo object that can be written to to send data to S3.
This will result in a multi-part upload, possibly with each part
being sent in its own thread |
12,064 | def get_next(self):
while self.stack:
if self.stack[-1].wkids:
node = self.stack[-1].wkids.pop(0)
if not self.stack[-1].wkids:
self.stack[-1].wkids = None
if node in self.history:
self.cycle_func(node, self.stack)
else:
node.wkids = copy.copy(self.kids_func(node, self.stack[-1]))
self.stack.append(node)
self.history[node] = None
else:
node = self.stack.pop()
del self.history[node]
if node:
if self.stack:
parent = self.stack[-1]
else:
parent = None
self.eval_func(node, parent)
return node
return None | Return the next node for this walk of the tree.
This function is intentionally iterative, not recursive,
to sidestep any issues of stack size limitations. |
12,065 | def get_matrix_index(graph: BELGraph) -> Set[str]:
return {
node.name
for node in graph
if isinstance(node, CentralDogma) and node.namespace.upper() ==
} | Return set of HGNC names from Proteins/Rnas/Genes/miRNA, nodes that can be used by SPIA. |
12,066 | def update_commands(self, commands_str):
commands = dict(parse_qsl(commands_str, keep_blank_values=True))
_if = commands.get("if", self._if)
if _if:
self._if = Condition(_if)
self._set_int(commands, "max_length")
self._set_int(commands, "min_length")
self.color = self._check_color(commands.get("color"))
self.not_zero = "not_zero" in commands or self.not_zero
self.show = "show" in commands or self.show
self.soft = "soft" in commands or self.soft | update with commands from the block |
12,067 | def check_trytes_codec(encoding):
if encoding == AsciiTrytesCodec.name:
return AsciiTrytesCodec.get_codec_info()
elif encoding == AsciiTrytesCodec.compat_name:
warn(
.format(
new_codec=AsciiTrytesCodec.name,
old_codec=AsciiTrytesCodec.compat_name,
),
DeprecationWarning,
)
return AsciiTrytesCodec.get_codec_info()
return None | Determines which codec to use for the specified encoding.
References:
- https://docs.python.org/3/library/codecs.html#codecs.register |
12,068 | def merge_intervals(intervals):
if intervals is None:
return None
intervals.sort(key=lambda i: i[0])
out = [intervals.pop(0)]
for i in intervals:
if out[-1][-1] >= i[0]:
out[-1][-1] = max(out[-1][-1], i[-1])
else:
out.append(i)
return out | Merge intervals in the form of a list. |
12,069 | def serialize_to_xml_str(obj_pyxb, pretty=True, strip_prolog=False, xslt_url=None):
return serialize_gen(obj_pyxb, None, pretty, strip_prolog, xslt_url) | Serialize PyXB object to pretty printed XML ``str`` for display.
Args:
obj_pyxb: PyXB object
PyXB object to serialize.
pretty: bool
False: Disable pretty print formatting. XML will not have line breaks.
strip_prolog:
True: remove any XML prolog (e.g., ``<?xml version="1.0" encoding="utf-8"?>``),
from the resulting XML doc.
xslt_url: str
If specified, add a processing instruction to the XML doc that specifies the
download location for an XSLT stylesheet.
Returns:
str: Pretty printed XML document |
12,070 | def get_optimized_molecule(self):
opt_coor = self.get_optimization_coordinates()
if len(opt_coor) == 0:
return None
else:
return Molecule(
self.molecule.numbers,
opt_coor[-1],
) | Return a molecule object of the optimal geometry |
12,071 | def sample_from_distribution(self, distribution, k, proportions=False):
dist = self._get_column(distribution)
total = sum(dist)
assert total > 0 and np.all(dist >= 0),
dist = dist/sum(dist)
sample = np.random.multinomial(k, dist)
if proportions:
sample = sample / sum(sample)
label = self._unused_label(self._as_label(distribution) + )
return self.with_column(label, sample) | Return a new table with the same number of rows and a new column.
The values in the distribution column are define a multinomial.
They are replaced by sample counts/proportions in the output.
>>> sizes = Table(['size', 'count']).with_rows([
... ['small', 50],
... ['medium', 100],
... ['big', 50],
... ])
>>> sizes.sample_from_distribution('count', 1000) # doctest: +SKIP
size | count | count sample
small | 50 | 239
medium | 100 | 496
big | 50 | 265
>>> sizes.sample_from_distribution('count', 1000, True) # doctest: +SKIP
size | count | count sample
small | 50 | 0.24
medium | 100 | 0.51
big | 50 | 0.25 |
12,072 | def _drop_duplicate_ij(self):
self.network[] = list(map(lambda x: tuple(sorted(x)), list(
zip(*[self.network[].values, self.network[].values]))))
self.network.drop_duplicates([, ], inplace=True)
self.network.reset_index(inplace=True, drop=True)
self.network.drop(, inplace=True, axis=1) | Drops duplicate entries from the network dataframe. |
12,073 | def create_many(self, statements):
create_statements = []
for statement in statements:
statement_data = statement.serialize()
tag_data = list(set(statement_data.pop(, [])))
statement_data[] = tag_data
if not statement.search_text:
statement_data[] = self.tagger.get_bigram_pair_string(statement.text)
if not statement.search_in_response_to and statement.in_response_to:
statement_data[] = self.tagger.get_bigram_pair_string(statement.in_response_to)
create_statements.append(statement_data)
self.statements.insert_many(create_statements) | Creates multiple statement entries. |
12,074 | async def execute(self, query: str, *args, timeout: float=None) -> str:
async with self.acquire() as con:
return await con.execute(query, *args, timeout=timeout) | Execute an SQL command (or commands).
Pool performs this operation using one of its connections. Other than
that, it behaves identically to
:meth:`Connection.execute() <connection.Connection.execute>`.
.. versionadded:: 0.10.0 |
12,075 | def setBaudrate(self, baudrate):
from . import mavutil
if self.baudrate == baudrate:
return
self.baudrate = baudrate
self.mav.mav.serial_control_send(self.port,
mavutil.mavlink.SERIAL_CONTROL_FLAG_EXCLUSIVE,
0,
self.baudrate,
0, [0]*70)
self.flushInput()
self.debug("Changed baudrate %u" % self.baudrate) | set baudrate |
12,076 | def PopEvent(self):
try:
macb_group_identifier, content_identifier, event = heapq.heappop(
self._heap)
if macb_group_identifier == :
macb_group_identifier = None
return macb_group_identifier, content_identifier, event
except IndexError:
return None | Pops an event from the heap.
Returns:
tuple: containing:
str: identifier of the event MACB group or None if the event cannot
be grouped.
str: identifier of the event content.
EventObject: event. |
12,077 | def op(
name,
labels,
predictions,
num_thresholds=None,
weights=None,
display_name=None,
description=None,
collections=None):
import tensorflow.compat.v1 as tf
if num_thresholds is None:
num_thresholds = _DEFAULT_NUM_THRESHOLDS
if weights is None:
weights = 1.0
dtype = predictions.dtype
with tf.name_scope(name, values=[labels, predictions, weights]):
tf.assert_type(labels, tf.bool)
f_labels = tf.cast(labels, dtype)
predictions = tf.minimum(1.0, tf.maximum(0.0, predictions))
true_labels = f_labels * weights
false_labels = (1.0 - f_labels) * weights
predictions = tf.reshape(predictions, [-1])
true_labels = tf.reshape(true_labels, [-1, 1])
false_labels = tf.reshape(false_labels, [-1, 1])
bucket_indices = tf.cast(
tf.floor(predictions * (num_thresholds - 1)), tf.int32)
tp_buckets = tf.reduce_sum(
input_tensor=tf.one_hot(bucket_indices, depth=num_thresholds) * true_labels,
axis=0)
fp_buckets = tf.reduce_sum(
input_tensor=tf.one_hot(bucket_indices, depth=num_thresholds) * false_labels,
axis=0)
tp = tf.cumsum(tp_buckets, reverse=True, name=)
fp = tf.cumsum(fp_buckets, reverse=True, name=)
tn = fp[0] - fp
fn = tp[0] - tp
precision = tp / tf.maximum(_MINIMUM_COUNT, tp + fp)
recall = tp / tf.maximum(_MINIMUM_COUNT, tp + fn)
return _create_tensor_summary(
name,
tp,
fp,
tn,
fn,
precision,
recall,
num_thresholds,
display_name,
description,
collections) | Create a PR curve summary op for a single binary classifier.
Computes true/false positive/negative values for the given `predictions`
against the ground truth `labels`, against a list of evenly distributed
threshold values in `[0, 1]` of length `num_thresholds`.
Each number in `predictions`, a float in `[0, 1]`, is compared with its
corresponding boolean label in `labels`, and counts as a single tp/fp/tn/fn
value at each threshold. This is then multiplied with `weights` which can be
used to reweight certain values, or more commonly used for masking values.
Args:
name: A tag attached to the summary. Used by TensorBoard for organization.
labels: The ground truth values. A Tensor of `bool` values with arbitrary
shape.
predictions: A float32 `Tensor` whose values are in the range `[0, 1]`.
Dimensions must match those of `labels`.
num_thresholds: Number of thresholds, evenly distributed in `[0, 1]`, to
compute PR metrics for. Should be `>= 2`. This value should be a
constant integer value, not a Tensor that stores an integer.
weights: Optional float32 `Tensor`. Individual counts are multiplied by this
value. This tensor must be either the same shape as or broadcastable to
the `labels` tensor.
display_name: Optional name for this summary in TensorBoard, as a
constant `str`. Defaults to `name`.
description: Optional long-form description for this summary, as a
constant `str`. Markdown is supported. Defaults to empty.
collections: Optional list of graph collections keys. The new
summary op is added to these collections. Defaults to
`[Graph Keys.SUMMARIES]`.
Returns:
A summary operation for use in a TensorFlow graph. The float32 tensor
produced by the summary operation is of dimension (6, num_thresholds). The
first dimension (of length 6) is of the order: true positives,
false positives, true negatives, false negatives, precision, recall. |
12,078 | def add_template(self, tpl):
objcls = self.inner_class.my_type
name = getattr(tpl, , )
sdesc = getattr(tpl, , )
hname = getattr(tpl, , )
logger.debug("Adding a %s template: host_name: %s, name: %s, service_description: %s",
objcls, hname, name, sdesc)
if not name and not hname:
msg = "a %s template has been defined without name nor host_name. from: %s" \
% (objcls, tpl.imported_from)
tpl.add_error(msg)
elif not name and not sdesc:
msg = "a %s template has been defined without name nor service_description. from: %s" \
% (objcls, tpl.imported_from)
tpl.add_error(msg)
elif not name:
setattr(tpl, , "%s_%s" % (hname, sdesc))
tpl = self.index_template(tpl)
elif name:
tpl = self.index_template(tpl)
self.templates[tpl.uuid] = tpl
logger.debug(, len(self.templates), tpl) | Adds and index a template into the `templates` container.
This implementation takes into account that a service has two naming
attribute: `host_name` and `service_description`.
:param tpl: The template to add
:type tpl:
:return: None |
12,079 | def _send(self, data):
try:
self._sock.sendto(data.encode(), self._addr)
except (socket.error, RuntimeError):
pass | Send data to statsd. |
12,080 | def display_name(self):
for k in self._NAME_KEYS:
if self._raw.get(k):
return self._raw[k]
if "profile" in self._raw and self._raw["profile"].get(k):
return self._raw["profile"][k]
return self._raw["name"] | Find the most appropriate display name for a user: look for a "display_name", then
a "real_name", and finally fall back to the always-present "name". |
12,081 | def hash(self):
hashed = super(Compare, self).hash()
return khash(hashed, self._comp_value, self._comp_type) | :rtype: int
:return: hash of the condition |
12,082 | def _get_bq_service(credentials=None, service_url=None):
assert credentials,
http = credentials.authorize(Http())
service = build(
,
,
http=http,
discoveryServiceUrl=service_url,
cache_discovery=False
)
return service | Construct an authorized BigQuery service object. |
12,083 | def list_():
*
ret = []
states_path = _states_path()
if not os.path.isdir(states_path):
return ret
for state in os.listdir(states_path):
if state.endswith((, )):
ret.append(state[:-9])
return sorted(set(ret)) | Return the list of frozen states.
CLI Example:
.. code-block:: bash
salt '*' freezer.list |
12,084 | def numberOfXTilesAtZoom(self, zoom):
"Returns the number of tiles over x at a given zoom level"
[minRow, minCol, maxRow, maxCol] = self.getExtentAddress(zoom)
return maxCol - minCol + 1 | Returns the number of tiles over x at a given zoom level |
12,085 | def get_last_weeks(number_of_weeks):
time_now = datetime.now()
year = time_now.isocalendar()[0]
week = time_now.isocalendar()[1]
weeks = []
for i in range(0, number_of_weeks):
start = get_week_dates(year, week - i, as_timestamp=True)[0]
n_year, n_week = get_year_week(start)
weeks.append((n_year, n_week))
return weeks | Get the last weeks. |
12,086 | def from_pubkey(cls, pubkey, compressed=True, version=56, prefix=None):
pubkey = PublicKey(pubkey, prefix=prefix or Prefix.prefix)
if compressed:
pubkey_plain = pubkey.compressed()
else:
pubkey_plain = pubkey.uncompressed()
addressbin = ripemd160(hashlib.sha512(unhexlify(pubkey_plain)).hexdigest())
result = Base58(hexlify(addressbin).decode("ascii"))
return cls(result, prefix=pubkey.prefix) | Derive address using ``RIPEMD160(SHA512(x))`` |
12,087 | def save_model(model, output_file=None, output_dir=None, output_prefix=):
if output_file:
mzn_file = output_file
output_file = open(output_file, , buffering=1)
else:
output_prefix +=
output_file = NamedTemporaryFile(
dir=output_dir, prefix=output_prefix, suffix=, delete=False,
mode=, buffering=1
)
mzn_file = output_file.name
output_file.write(model)
output_file.close()
logger.info(.format(mzn_file))
return mzn_file | Save a model to file.
Parameters
----------
model : str
The minizinc model (i.e. the content of a ``.mzn`` file).
output_file : str
The path to the output file. If this parameter is ``None`` (default), a
temporary file is created with the given model in the specified output
directory, using the specified prefix.
output_dir : str
The directory where to create the file in case ``output_file`` is None.
Default is ``None``, which creates a file in the system temporary directory.
output_prefix : str
The prefix for the output file if created. Default is ``'pymzn'``.
Returns
-------
str
The path to the newly created ``.mzn`` file. |
12,088 | def get_point(self, *position):
array = _ffi.new(self._arrayType, position)
if self._useOctaves:
return (self._noiseFunc(self._noise, array, self._octaves) + 1) * 0.5
return (self._noiseFunc(self._noise, array) + 1) * 0.5 | Return the noise value of a specific position.
Example usage: value = noise.getPoint(x, y, z)
Args:
position (Tuple[float, ...]): The point to sample at.
Returns:
float: The noise value at position.
This will be a floating point in the 0.0-1.0 range. |
12,089 | def set_boolean(self, option, value):
if not isinstance(value, bool):
raise TypeError("%s must be a boolean" % option)
self.options[option] = str(value).lower() | Set a boolean option.
Args:
option (str): name of option.
value (bool): value of the option.
Raises:
TypeError: Value must be a boolean. |
12,090 | def plot(self, format=, bits=None, **kwargs):
if format == :
return super(StateVector, self).plot(**kwargs)
if format == :
from ..plot import Plot
kwargs.setdefault(, )
return Plot(*self.to_dqflags(bits=bits).values(),
projection=, **kwargs)
raise ValueError(" argument must be one of: or "
"") | Plot the data for this `StateVector`
Parameters
----------
format : `str`, optional, default: ``'segments'``
The type of plot to make, either 'segments' to plot the
SegmentList for each bit, or 'timeseries' to plot the raw
data for this `StateVector`
bits : `list`, optional
A list of bit indices or bit names, defaults to
`~StateVector.bits`. This argument is ignored if ``format`` is
not ``'segments'``
**kwargs
Other keyword arguments to be passed to either
`~gwpy.plot.SegmentAxes.plot` or
`~gwpy.plot.Axes.plot`, depending
on ``format``.
Returns
-------
plot : `~gwpy.plot.Plot`
output plot object
See Also
--------
matplotlib.pyplot.figure
for documentation of keyword arguments used to create the
figure
matplotlib.figure.Figure.add_subplot
for documentation of keyword arguments used to create the
axes
gwpy.plot.SegmentAxes.plot_flag
for documentation of keyword arguments used in rendering each
statevector flag. |
12,091 | def idxmax(self, axis=0, skipna=True, *args, **kwargs):
skipna = nv.validate_argmax_with_skipna(skipna, args, kwargs)
i = nanops.nanargmax(com.values_from_object(self), skipna=skipna)
if i == -1:
return np.nan
return self.index[i] | Return the row label of the maximum value.
If multiple values equal the maximum, the first row label with that
value is returned.
Parameters
----------
skipna : bool, default True
Exclude NA/null values. If the entire Series is NA, the result
will be NA.
axis : int, default 0
For compatibility with DataFrame.idxmax. Redundant for application
on Series.
*args, **kwargs
Additional keywords have no effect but might be accepted
for compatibility with NumPy.
Returns
-------
Index
Label of the maximum value.
Raises
------
ValueError
If the Series is empty.
See Also
--------
numpy.argmax : Return indices of the maximum values
along the given axis.
DataFrame.idxmax : Return index of first occurrence of maximum
over requested axis.
Series.idxmin : Return index *label* of the first occurrence
of minimum of values.
Notes
-----
This method is the Series version of ``ndarray.argmax``. This method
returns the label of the maximum, while ``ndarray.argmax`` returns
the position. To get the position, use ``series.values.argmax()``.
Examples
--------
>>> s = pd.Series(data=[1, None, 4, 3, 4],
... index=['A', 'B', 'C', 'D', 'E'])
>>> s
A 1.0
B NaN
C 4.0
D 3.0
E 4.0
dtype: float64
>>> s.idxmax()
'C'
If `skipna` is False and there is an NA value in the data,
the function returns ``nan``.
>>> s.idxmax(skipna=False)
nan |
12,092 | def from_df(cls, df, **kwargs):
tree = cls(**kwargs)
for (n,b), g in df.groupby([,]):
sources = [Source(**s[[,,,,]])
for _,s in g.iterrows()]
obs = Observation(n, b, g.resolution.mean(),
sources=sources, relative=g.relative.any())
tree.add_observation(obs)
return tree | DataFrame must have the right columns.
these are: name, band, resolution, mag, e_mag, separation, pa |
12,093 | def to_json(self):
json_dict = self.to_json_basic()
json_dict[] = self.channel
json_dict[] = self.disable_inhibit_forced
json_dict[] = self.status
json_dict[] = self.led_status
json_dict[] = self.delay_time
return json.dumps(json_dict) | :return: str |
12,094 | def _doBottomUpCompute(self, rfInput, resetSignal):
self._conditionalBreak()
self._spatialPoolerInput = rfInput.reshape(-1)
assert(rfInput.shape[0] == 1)
inputVector = numpy.array(rfInput[0]).astype()
outputVector = numpy.zeros(self._sfdr.getNumColumns()).astype()
self._sfdr.compute(inputVector, self.learningMode, outputVector)
self._spatialPoolerOutput[:] = outputVector[:]
if self._fpLogSP:
output = self._spatialPoolerOutput.reshape(-1)
outputNZ = output.nonzero()[0]
outStr = " ".join(["%d" % int(token) for token in outputNZ])
print >>self._fpLogSP, output.size, outStr
if self._fpLogSPInput:
output = rfInput.reshape(-1)
outputNZ = output.nonzero()[0]
outStr = " ".join(["%d" % int(token) for token in outputNZ])
print >>self._fpLogSPInput, output.size, outStr
return self._spatialPoolerOutput | Do one iteration of inference and/or learning and return the result
Parameters:
--------------------------------------------
rfInput: Input vector. Shape is: (1, inputVectorLen).
resetSignal: True if reset is asserted |
12,095 | def get_value_from_handle(self, handle, key, handlerecord_json=None):
LOGGER.debug()
handlerecord_json = self.__get_handle_record_if_necessary(handle, handlerecord_json)
if handlerecord_json is None:
raise HandleNotFoundException(handle=handle)
list_of_entries = handlerecord_json[]
indices = []
for i in xrange(len(list_of_entries)):
if list_of_entries[i][] == key:
indices.append(i)
if len(indices) == 0:
return None
else:
if len(indices) > 1:
LOGGER.debug( + handle + \
+ key + \
)
return list_of_entries[indices[0]][][] | Retrieve a single value from a single Handle. If several entries with
this key exist, the methods returns the first one. If the handle
does not exist, the method will raise a HandleNotFoundException.
:param handle: The handle to take the value from.
:param key: The key.
:return: A string containing the value or None if the Handle record
does not contain the key.
:raises: :exc:`~b2handle.handleexceptions.HandleSyntaxError`
:raises: :exc:`~b2handle.handleexceptions.HandleNotFoundException` |
12,096 | def assign_valence(mol):
for u, v, bond in mol.bonds_iter():
if bond.order == 2:
mol.atom(u).pi = 1
mol.atom(v).pi = 1
if mol.atom(u).symbol == "O" and not mol.atom(u).charge:
mol.atom(v).carbonyl_C = 1
if mol.atom(v).symbol == "O" and not mol.atom(v).charge:
mol.atom(u).carbonyl_C = 1
elif bond.order == 3:
mol.atom(u).pi = mol.atom(v).pi = 2
max_nbr = {"C": 4, "Si": 4, "N": 3, "P": 3, "As": 3,
"O": 2, "S": 2, "Se": 2, "F": 1, "Cl": 1, "Br": 1, "I": 1}
for i, nbrs in mol.neighbors_iter():
atom = mol.atom(i)
if len(nbrs) == 2 and all(bond.order == 2 for bond in nbrs.values()):
atom.pi = 2
if atom.symbol in max_nbr:
h_cnt = max_nbr[atom.symbol] - len(nbrs) - atom.pi + atom.charge
if h_cnt > 0:
mol.atom(i).add_hydrogen(h_cnt)
mol.descriptors.add("Valence") | Assign pi electron and hydrogens |
12,097 | def get_curline():
if Frame:
frame = Frame.get_selected_python_frame()
if frame:
line =
f = frame.get_pyop()
if f and not f.is_optimized_out():
cwd = os.path.join(os.getcwd(), )
fname = f.filename()
if cwd in fname:
fname = fname[len(cwd):]
try:
line = f.current_line()
except IOError:
pass
if line:
line = repr(line).strip("\n-> %s(%s): %s' | Return the current python source line. |
12,098 | def setUp(self, mfd_conf):
TypeFirstSecondThirdModel_WeightMFD_spacingMinimum_Magnitudeb_valueMaximum_MagnitudeMaximum_Magnitude_Uncertainty
self.mfd_type = mfd_conf[]
self.mfd_model = + self.mfd_type
self.mfd_weight = mfd_conf[]
self.bin_width = mfd_conf[]
self.mmin = mfd_conf[]
self.mmax = None
self.mmax_sigma = None
self.b_value = mfd_conf[][0]
self.b_value_sigma = mfd_conf[][1]
self.occurrence_rate = None | Input core configuration parameters as specified in the
configuration file
:param dict mfd_conf:
Configuration file containing the following attributes:
* 'Type' - Choose between the 1st, 2nd or 3rd type of recurrence
model {'First' | 'Second' | 'Third'}
* 'Model_Weight' - Logic tree weight of model type (float)
* 'MFD_spacing' - Width of MFD bin (float)
* 'Minimum_Magnitude' - Minimum magnitude of activity rates (float)
* 'b_value' - Tuple of (b-value, b-value uncertainty)
* 'Maximum_Magnitude' - Maximum magnitude on fault (if not defined
will use scaling relation)
* 'Maximum_Magnitude_Uncertainty' - Uncertainty on maximum
magnitude (If not defined and the MSR has a sigma term then this
will be taken from sigma) |
12,099 | def deploy(stage, lambda_package, no_lambda, rebuild_deps, config_file):
config = _load_config(config_file)
if stage is None:
stage = config[]
s3 = boto3.client()
cfn = boto3.client()
region = _get_aws_region()
previous_deployment = None
try:
previous_deployment = cfn.describe_stacks(
StackName=config[])[][0]
except botocore.exceptions.ClientError:
pass
built_package = False
new_package = True
if lambda_package is None and not no_lambda:
print("Building lambda package...")
lambda_package = _build(config, rebuild_deps=rebuild_deps)
built_package = True
elif lambda_package is None:
new_package = False
lambda_package = _get_from_stack(previous_deployment, ,
)
s3.delete_object(Bucket=bucket, Key=old_pkg)
_print_status(config) | Deploy the project to the development stage. |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.