Unnamed: 0
int64
0
389k
code
stringlengths
26
79.6k
docstring
stringlengths
1
46.9k
19,700
def set_meta_refresh_enabled(self, enabled): warn("Cluster.set_meta_refresh_enabled is deprecated and will be removed in 4.0. Set " "Cluster.schema_metadata_enabled and Cluster.token_metadata_enabled instead.", DeprecationWarning) self.schema_metadata_enabled = enabled self.token_metadata_enabled = enabled
*Deprecated:* set :attr:`~.Cluster.schema_metadata_enabled` :attr:`~.Cluster.token_metadata_enabled` instead Sets a flag to enable (True) or disable (False) all metadata refresh queries. This applies to both schema and node topology. Disabling this is useful to minimize refreshes during multiple changes. Meta refresh must be enabled for the driver to become aware of any cluster topology changes or schema updates.
19,701
def pivot_wavelength_ee(bpass): from scipy.integrate import simps return np.sqrt(simps(bpass.resp, bpass.wlen) / simps(bpass.resp / bpass.wlen**2, bpass.wlen))
Compute pivot wavelength assuming equal-energy convention. `bpass` should have two properties, `resp` and `wlen`. The units of `wlen` can be anything, and `resp` need not be normalized in any particular way.
19,702
def subdivide(self): r nodes_a, nodes_b, nodes_c, nodes_d = _surface_helpers.subdivide_nodes( self._nodes, self._degree ) return ( Surface(nodes_a, self._degree, _copy=False), Surface(nodes_b, self._degree, _copy=False), Surface(nodes_c, self._degree, _copy=False), Surface(nodes_d, self._degree, _copy=False), )
r"""Split the surface into four sub-surfaces. Does so by taking the unit triangle (i.e. the domain of the surface) and splitting it into four sub-triangles .. image:: ../../images/surface_subdivide1.png :align: center Then the surface is re-parameterized via the map to / from the given sub-triangles and the unit triangle. For example, when a degree two surface is subdivided: .. image:: ../../images/surface_subdivide2.png :align: center .. doctest:: surface-subdivide :options: +NORMALIZE_WHITESPACE >>> nodes = np.asfortranarray([ ... [-1.0, 0.5, 2.0, 0.25, 2.0, 0.0], ... [ 0.0, 0.5, 0.0, 1.75, 3.0, 4.0], ... ]) >>> surface = bezier.Surface(nodes, degree=2) >>> _, sub_surface_b, _, _ = surface.subdivide() >>> sub_surface_b <Surface (degree=2, dimension=2)> >>> sub_surface_b.nodes array([[ 1.5 , 0.6875, -0.125 , 1.1875, 0.4375, 0.5 ], [ 2.5 , 2.3125, 1.875 , 1.3125, 1.3125, 0.25 ]]) .. testcleanup:: surface-subdivide import make_images make_images.surface_subdivide1() make_images.surface_subdivide2(surface, sub_surface_b) Returns: Tuple[Surface, Surface, Surface, Surface]: The lower left, central, lower right and upper left sub-surfaces (in that order).
19,703
def uv_to_color(uv, image): if image is None or uv is None: return None uv = np.asanyarray(uv, dtype=np.float64) x = (uv[:, 0] * (image.width - 1)) y = ((1 - uv[:, 1]) * (image.height - 1)) x = x.round().astype(np.int64) % image.width y = y.round().astype(np.int64) % image.height colors = np.asanyarray(image.convert())[y, x] assert colors.ndim == 2 and colors.shape[1] == 4 return colors
Get the color in a texture image. Parameters ------------- uv : (n, 2) float UV coordinates on texture image image : PIL.Image Texture image Returns ---------- colors : (n, 4) float RGBA color at each of the UV coordinates
19,704
def coords_to_vec(lon, lat): phi = np.radians(lon) theta = (np.pi / 2) - np.radians(lat) sin_t = np.sin(theta) cos_t = np.cos(theta) xVals = sin_t * np.cos(phi) yVals = sin_t * np.sin(phi) zVals = cos_t out = np.vstack((xVals, yVals, zVals)).swapaxes(0, 1) return out
Converts longitute and latitude coordinates to a unit 3-vector return array(3,n) with v_x[i],v_y[i],v_z[i] = directional cosines
19,705
def urls_old(self, protocol=Resource.Protocol.http): url_patterns = [] for endpoint, resource_class in self._registry.items(): setattr(resource_class, , self.name) setattr(resource_class, , endpoint) nested = [] for route in resource_class.nested_routes( % (self.name, endpoint)): route = route._replace(handler=resource_class.wrap_handler(route.handler, protocol)) nested.append(route) url_patterns.extend(nested) url_patterns.append(Route( path= % (self.name, endpoint), handler=resource_class.as_list(protocol), methods=resource_class.route_methods(), name=.format(self.name, endpoint).replace(, ) )) url_patterns.append(Route( path= % (self.name, endpoint, resource_class.route_param()), handler=resource_class.as_detail(protocol), methods=resource_class.route_methods(), name=.format(self.name, endpoint).replace(, ) )) return url_patterns
Iterate through all resources registered with this router and create a list endpoint and a detail endpoint for each one. Uses the router name as prefix and endpoint name of the resource when registered, to assemble the url pattern. Uses the constructor-passed url method or class for generating urls
19,706
def write_to_buffer(self, buf): doc = self.to_dict() if config.rxt_as_yaml: content = dump_yaml(doc) else: content = json.dumps(doc, indent=4, separators=(",", ": ")) buf.write(content)
Save the context to a buffer.
19,707
def filter_entities(self, model, context=None): if model is None: return for property_name in self.entities: prop = self.entities[property_name] value = self.get(model, property_name) filtered_value = prop.filter( value=value, model=model, context=context ) if value != filtered_value: self.set(model, property_name, filtered_value) prop.filter_with_schema( model=value, context=context )
Filter entities Runs filters on entity properties changing them in place. :param model: object or dict :param context: object, dict or None :return: None
19,708
def get_common_properties(root): properties = {} for elem in root.iterfind(): name = elem.attrib[] if name == : properties[] = {: [], : None} for child in elem.iter(): spec = {} spec[] = child.find().attrib[] units = child.find().attrib[] try: spec[] = child.find().attrib[] except KeyError: warn( + spec[]) pass if units in [, , ]: spec[] = [float(child.find().text)] elif units == : warn() spec[] = [float(child.find().text)] units = elif units == : warn() spec[] = [float(child.find().text) * 1.e-6] units = elif units == : warn() spec[] = [float(child.find().text) * 1.e-9] units = else: raise KeywordError( ) properties[][].append(spec) if properties[][] is None: properties[][] = units elif properties[][] != units: raise KeywordError( + units + + properties[][] ) elif name in datagroup_properties: field = name.replace(, ) units = elem.attrib[] if units == : units = quantity = 1.0 * unit_registry(units) try: quantity.to(property_units[field]) except pint.DimensionalityError: raise KeywordError( + name) properties[field] = [.join([elem.find().text, units])] else: raise KeywordError( + name + ) return properties
Read common properties from root of ReSpecTh XML file. Args: root (`~xml.etree.ElementTree.Element`): Root of ReSpecTh XML file Returns: properties (`dict`): Dictionary with common properties
19,709
def model_fn(hparams, seed): rng = random.Random(seed) model = tf.keras.models.Sequential() model.add(tf.keras.layers.Input(INPUT_SHAPE)) model.add(tf.keras.layers.Reshape(INPUT_SHAPE + (1,))) conv_filters = 8 for _ in xrange(hparams[HP_CONV_LAYERS]): model.add(tf.keras.layers.Conv2D( filters=conv_filters, kernel_size=hparams[HP_CONV_KERNEL_SIZE], padding="same", activation="relu", )) model.add(tf.keras.layers.MaxPool2D(pool_size=2, padding="same")) conv_filters *= 2 model.add(tf.keras.layers.Flatten()) model.add(tf.keras.layers.Dropout(hparams[HP_DROPOUT], seed=rng.random())) dense_neurons = 32 for _ in xrange(hparams[HP_DENSE_LAYERS]): model.add(tf.keras.layers.Dense(dense_neurons, activation="relu")) dense_neurons *= 2 model.add(tf.keras.layers.Dense(OUTPUT_CLASSES, activation="softmax")) model.compile( loss="sparse_categorical_crossentropy", optimizer=hparams[HP_OPTIMIZER], metrics=["accuracy"], ) return model
Create a Keras model with the given hyperparameters. Args: hparams: A dict mapping hyperparameters in `HPARAMS` to values. seed: A hashable object to be used as a random seed (e.g., to construct dropout layers in the model). Returns: A compiled Keras model.
19,710
def model_page(self, request, app_label, model_name, rest_of_url=None): try: model = get_model(app_label, model_name) except LookupError: model = None if model is None: raise http.Http404("App %r, model %r, not found." % (app_label, model_name)) try: databrowse_class = self.registry[model] except KeyError: raise http.Http404("This model exists but has not been registered " "with databrowse.") return databrowse_class(model, self).root(request, rest_of_url)
Handles the model-specific functionality of the databrowse site, delegating<to the appropriate ModelDatabrowse class.
19,711
def OnChar(self, event): key = event.GetKeyCode() entry = wx.TextCtrl.GetValue(self).strip() pos = wx.TextCtrl.GetSelection(self) if key == wx.WXK_RETURN: if not self.is_valid: wx.TextCtrl.SetValue(self, self.format % set_float(self.__bound_val)) else: self.SetValue(entry) return if (key < wx.WXK_SPACE or key == wx.WXK_DELETE or key > 255): event.Skip() return has_minus = in entry ckey = chr(key) if ((ckey == and (self.__prec == 0 or in entry) ) or (ckey == and (has_minus or pos[0] != 0)) or (ckey != and has_minus and pos[0] == 0)): return if chr(key) in self.__digits: event.Skip()
on Character event
19,712
def get_docargs(self, args=None, prt=None): docargs = self.objdoc.get_docargs(args, prt) self._chk_docopts(docargs) return docargs
Pare down docopt. Return a minimal dictionary and a set containing runtime arg values.
19,713
def clean_virtualenv(self): self.user_run_script( script=scripts.get_script_path(), args=[], rw_venv=True, )
Empty our virtualenv so that new (or older) dependencies may be installed
19,714
def get_session(account_info): s = getattr(CONN_CACHE, % account_info[], None) if s is not None: return s if account_info.get(): s = assumed_session(account_info[], SESSION_NAME) else: s = boto3.Session() setattr(CONN_CACHE, % account_info[], s) return s
Get a boto3 sesssion potentially cross account sts assumed assumed sessions are automatically refreshed.
19,715
def fitSphere(coords): coords = np.array(coords) n = len(coords) A = np.zeros((n, 4)) A[:, :-1] = coords * 2 A[:, 3] = 1 f = np.zeros((n, 1)) x = coords[:, 0] y = coords[:, 1] z = coords[:, 2] f[:, 0] = x * x + y * y + z * z C, residue, rank, sv = np.linalg.lstsq(A, f) if rank < 4: return None t = (C[0] * C[0]) + (C[1] * C[1]) + (C[2] * C[2]) + C[3] radius = np.sqrt(t)[0] center = np.array([C[0][0], C[1][0], C[2][0]]) if len(residue): residue = np.sqrt(residue[0]) / n else: residue = 0 s = vs.Sphere(center, radius, c="r", alpha=1).wire(1) s.info["radius"] = radius s.info["center"] = center s.info["residue"] = residue return s
Fits a sphere to a set of points. Extra info is stored in ``actor.info['radius']``, ``actor.info['center']``, ``actor.info['residue']``. .. hint:: Example: |fitspheres1.py|_ |fitspheres2| |fitspheres2.py|_
19,716
def setup(): l_mitogen = logging.getLogger() l_mitogen_io = logging.getLogger() l_ansible_mitogen = logging.getLogger() for logger in l_mitogen, l_mitogen_io, l_ansible_mitogen: logger.handlers = [Handler(display.vvv)] logger.propagate = False if display.verbosity > 2: l_ansible_mitogen.setLevel(logging.DEBUG) l_mitogen.setLevel(logging.DEBUG) else: l_mitogen.setLevel(logging.ERROR) l_ansible_mitogen.setLevel(logging.ERROR) if display.verbosity > 3: l_mitogen_io.setLevel(logging.DEBUG)
Install handlers for Mitogen loggers to redirect them into the Ansible display framework. Ansible installs its own logging framework handlers when C.DEFAULT_LOG_PATH is set, therefore disable propagation for our handlers.
19,717
def export_saved_model(sess, export_dir, tag_set, signatures): import tensorflow as tf g = sess.graph g._unsafe_unfinalize() builder = tf.saved_model.builder.SavedModelBuilder(export_dir) logging.info("===== signatures: {}".format(signatures)) signature_def_map = {} for key, sig in signatures.items(): signature_def_map[key] = tf.saved_model.signature_def_utils.build_signature_def( inputs={name: tf.saved_model.utils.build_tensor_info(tensor) for name, tensor in sig[].items()}, outputs={name: tf.saved_model.utils.build_tensor_info(tensor) for name, tensor in sig[].items()}, method_name=sig[] if in sig else key) logging.info("===== signature_def_map: {}".format(signature_def_map)) builder.add_meta_graph_and_variables( sess, tag_set.split(), signature_def_map=signature_def_map, clear_devices=True) g.finalize() builder.save()
Convenience function to export a saved_model using provided arguments The caller specifies the saved_model signatures in a simplified python dictionary form, as follows:: signatures = { 'signature_def_key': { 'inputs': { 'input_tensor_alias': input_tensor_name }, 'outputs': { 'output_tensor_alias': output_tensor_name }, 'method_name': 'method' } } And this function will generate the `signature_def_map` and export the saved_model. Args: :sess: a tf.Session instance :export_dir: path to save exported saved_model :tag_set: string tag_set to identify the exported graph :signatures: simplified dictionary representation of a TensorFlow signature_def_map Returns: A saved_model exported to disk at ``export_dir``.
19,718
def worker_wrapper(worker_instance, pid_path): def exit_handler(*args): if len(args) > 0: print("Exit py signal {signal}".format(signal=args[0])) remove(pid_path) atexit.register(exit_handler) signal.signal(signal.SIGINT, exit_handler) signal.signal(signal.SIGTERM, exit_handler) worker_instance.work() exit_handler(2)
A wrapper to start RQ worker as a new process. :param worker_instance: RQ's worker instance :param pid_path: A file to check if the worker is running or not
19,719
def require_instance(obj, types=None, name=None, type_name=None, truncate_at=80): if not isinstance(obj, types): obj_string = str(obj) if len(obj_string) > truncate_at: obj_string = obj_string[:truncate_at - 3] + "..." if type_name is None: try: type_name = "one of " + ", ".join(str(t) for t in types) except TypeError: type_name = str(types) name_string = ("%s: " % name) if name else "" error_message = "%sexpected %s. Got: of type " % ( name_string, type_name, obj_string, type(obj)) raise TypeError(error_message)
Raise an exception if obj is not an instance of one of the specified types. Similarly to isinstance, 'types' may be either a single type or a tuple of types. If name or type_name is provided, it is used in the exception message. The object's string representation is also included in the message, truncated to 'truncate_at' number of characters.
19,720
def hsv_to_rgb(hsv): h, s, v = hsv if s == 0: return (v, v, v) h /= 60.0 i = math.floor(h) f = h-i p = v*(1.0-s) q = v*(1.0-s*f) t = v*(1.0-s*(1.0-f)) if i == 0: return (v, t, p) elif i == 1: return (q, v, p) elif i == 2: return (p, v, t) elif i == 3: return (p, q, v) elif i == 4: return (t, p, v) else: return (v, p, q)
Converts a tuple of hue, saturation, value to a tuple of red, green blue. Hue should be an angle from 0.0 to 359.0. Saturation and value should be a value from 0.0 to 1.0, where saturation controls the intensity of the hue and value controls the brightness.
19,721
def eigen(X, P, NSIG=None, method=, threshold=None, NFFT=default_NFFT, criteria=, verbose=False): r if method not in [, ]: raise ValueError("method must be or ") if NSIG != None and threshold != None: raise ValueError("NSIG and threshold cannot be provided together") if NSIG is not None: if NSIG < 0: raise ValueError() if NSIG >= P: raise ValueError("NSIG must be stricly less than IP") N = len(X) NP = N - P assert 2 * NP > P-1, if NP > 100: NP = 100 FB = np.zeros((2*NP, P), dtype=complex) Z = np.zeros(NFFT, dtype=complex) PSD = np.zeros(NFFT) for I in range(0, NP): for K in range(0, P): FB[I, K] = X[I-K+P-1] FB[I+NP, K] = X[I+K+1].conjugate() _U, S, V = svd (FB) V = -V.transpose() NSIG = _get_signal_space(S, 2*NP, verbose=verbose, threshold=threshold, NSIG=NSIG, criteria=criteria) for I in range(NSIG, P): Z[0:P] = V[0:P, I] Z[P:NFFT] = 0 Z = fft(Z, NFFT) if method == : PSD = PSD + abs(Z)**2. elif method == : PSD = PSD + abs(Z)**2. / S[I] PSD = 1./PSD nby2 = int(NFFT/2) newpsd = np.append(PSD[nby2:0:-1], PSD[nby2*2-1:nby2-1:-1]) return newpsd, S
r"""Pseudo spectrum using eigenvector method (EV or Music) This function computes either the Music or EigenValue (EV) noise subspace frequency estimator. First, an autocorrelation matrix of order `P` is computed from the data. Second, this matrix is separated into vector subspaces, one a signal subspace and the other a noise subspace using a SVD method to obtain the eigen values and vectors. From the eigen values :math:`\lambda_i`, and eigen vectors :math:`v_k`, the **pseudo spectrum** (see note below) is computed as follows: .. math:: P_{ev}(f) = \frac{1}{e^H(f)\left(\sum\limits_{k=M+1}^{p} \frac{1}{\lambda_k}v_kv_k^H\right)e(f)} The separation of the noise and signal subspaces requires expertise of the signal. However, AIC and MDL criteria may be used to automatically perform this task. You still need to provide the parameter `P` to indicate the maximum number of eigen values to be computed. The criteria will just select a subset to estimate the pseudo spectrum (see :func:`~spectrum.criteria.aic_eigen` and :func:`~spectrum.criteria.mdl_eigen` for details. .. note:: **pseudo spectrum**. func:`eigen` does not compute a PSD estimate. Indeed, the method does not preserve the measured process power. :param X: Array data samples :param int P: maximum number of eigen values to compute. NSIG (if specified) must therefore be less than P. :param str method: 'music' or 'ev'. :param int NSIG: If specified, the signal sub space uses NSIG eigen values. :param float threshold: If specified, the signal sub space is made of the eigen values larger than :math:`\rm{threshold} \times \lambda_{min}`, where :math:`\lambda_{min}` is the minimum eigen values. :param int NFFT: total length of the final data sets (padded with zero if needed; default is 4096) :return: * PSD: Array of real frequency estimator values (two sided for complex data and one sided for real data) * S, the eigen values .. plot:: :width: 80% :include-source: from spectrum import eigen, marple_data from pylab import plot, log10, linspace, legend, axis psd, ev = eigen(marple_data, 15, NSIG=11) f = linspace(-0.5, 0.5, len(psd)) plot(f, 10 * log10(psd/max(psd)), label='User defined') psd, ev = eigen(marple_data, 15, threshold=2) plot(f, 10 * log10(psd/max(psd)), label='threshold method (100)') psd, ev = eigen(marple_data, 15) plot(f, 10 * log10(psd/max(psd)), label='AIC method (8)') legend() axis([-0.5, 0.5, -120, 0]) .. seealso:: :func:`pev`, :func:`pmusic`, :func:`~spectrum.criteria.aic_eigen` :References: [Marple]_, Chap 13 .. todo:: for developers: * what should be the second argument of the criteria N, N-P, P...? * what should be the max value of NP
19,722
def needs_refresh(self, source): now = time.time() if source._tok in self: s0 = self[source._tok] if self[source._tok].metadata.get(, None): then = s0.metadata[] if s0.metadata[] < then - now: return True return False return True
Has the (persisted) source expired in the store Will return True if the source is not in the store at all, if it's TTL is set to None, or if more seconds have passed than the TTL.
19,723
def build(self, corpus, state_size): model = {} for run in corpus: items = ([ BEGIN ] * state_size) + run + [ END ] for i in range(len(run) + 1): state = tuple(items[i:i+state_size]) follow = items[i+state_size] if state not in model: model[state] = {} if follow not in model[state]: model[state][follow] = 0 model[state][follow] += 1 return model
Build a Python representation of the Markov model. Returns a dict of dicts where the keys of the outer dict represent all possible states, and point to the inner dicts. The inner dicts represent all possibilities for the "next" item in the chain, along with the count of times it appears.
19,724
def identify_triggers( cfg, sources, sinks, lattice, nosec_lines ): assignment_nodes = filter_cfg_nodes(cfg, AssignmentNode) tainted_nodes = filter_cfg_nodes(cfg, TaintedNode) tainted_trigger_nodes = [ TriggerNode( Source(), cfg_node=node ) for node in tainted_nodes ] sources_in_file = find_triggers(assignment_nodes, sources, nosec_lines) sources_in_file.extend(tainted_trigger_nodes) find_secondary_sources(assignment_nodes, sources_in_file, lattice) sinks_in_file = find_triggers(cfg.nodes, sinks, nosec_lines) sanitiser_node_dict = build_sanitiser_node_dict(cfg, sinks_in_file) return Triggers(sources_in_file, sinks_in_file, sanitiser_node_dict)
Identify sources, sinks and sanitisers in a CFG. Args: cfg(CFG): CFG to find sources, sinks and sanitisers in. sources(tuple): list of sources, a source is a (source, sanitiser) tuple. sinks(tuple): list of sources, a sink is a (sink, sanitiser) tuple. nosec_lines(set): lines with # nosec whitelisting Returns: Triggers tuple with sink and source nodes and a sanitiser node dict.
19,725
def est_propensity_s(self, lin_B=None, C_lin=1, C_qua=2.71): lin_basic = parse_lin_terms(self.raw_data[], lin_B) self.propensity = PropensitySelect(self.raw_data, lin_basic, C_lin, C_qua) self.raw_data._dict[] = self.propensity[] self._post_pscore_init()
Estimates the propensity score with covariates selected using the algorithm suggested by [1]_. The propensity score is the conditional probability of receiving the treatment given the observed covariates. Estimation is done via a logistic regression. The covariate selection algorithm is based on a sequence of likelihood ratio tests. Parameters ---------- lin_B: list, optional Column numbers (zero-based) of variables of the original covariate matrix X to include linearly. Defaults to empty list, meaning every column of X is subjected to the selection algorithm. C_lin: scalar, optional Critical value used in likelihood ratio tests to decide whether candidate linear terms should be included. Defaults to 1 as in [1]_. C_qua: scalar, optional Critical value used in likelihood ratio tests to decide whether candidate quadratic terms should be included. Defaults to 2.71 as in [1]_. References ---------- .. [1] Imbens, G. & Rubin, D. (2015). Causal Inference in Statistics, Social, and Biomedical Sciences: An Introduction.
19,726
def combined_download(accounts, days=60): client = Client(institution=None) out_file = StringIO() out_file.write(client.header()) out_file.write() for a in accounts: ofx = a.download(days=days).read() stripped = ofx.partition()[2].partition()[0] out_file.write(stripped) out_file.write("</OFX>") out_file.seek(0) return out_file
Download OFX files and combine them into one It expects an 'accounts' list of ofxclient.Account objects as well as an optional 'days' specifier which defaults to 60
19,727
def set_ioloop(self, ioloop=None): self._server.set_ioloop(ioloop) self.ioloop = self._server.ioloop
Set the tornado IOLoop to use. Sets the tornado.ioloop.IOLoop instance to use, defaulting to IOLoop.current(). If set_ioloop() is never called the IOLoop is started in a new thread, and will be stopped if self.stop() is called. Notes ----- Must be called before start() is called.
19,728
def add_samples(self, samples: Iterable[Sample]) -> None: for sample in samples: self.add_sample(sample)
Add samples in an iterable to this :class:`SampleSheet`.
19,729
def save_state(self): for key, check_box in list(self.boolean_settings.items()): self.save_boolean_setting(key, check_box) for key, line_edit in list(self.text_settings.items()): self.save_text_setting(key, line_edit) set_setting( , self.leNorthArrowPath.text(), self.settings) set_setting( , self.organisation_logo_path_line_edit.text(), self.settings) set_setting( , self.leReportTemplatePath.text(), self.settings) set_setting( , self.txtDisclaimer.toPlainText(), self.settings) set_setting( , self.leUserDirectoryPath.text(), self.settings) index = self.earthquake_function.currentIndex() value = self.earthquake_function.itemData(index) set_setting(, value, qsettings=self.settings) currency_index = self.currency_combo_box.currentIndex() currency_key = self.currency_combo_box.itemData(currency_index) set_setting(, currency_key, qsettings=self.settings) self.save_default_values() self.save_population_parameters()
Store the options into the user's stored session info.
19,730
def send_exception(self, code, exc_info=None, headers=None): "send an error response including a backtrace to the client" if headers is None: headers = {} if not exc_info: exc_info = sys.exc_info() self.send_error_msg(code, traceback.format_exception(*exc_info), headers)
send an error response including a backtrace to the client
19,731
def intersection(self,other): if self.everything: if other.everything: return DiscreteSet() else: return DiscreteSet(other.elements) else: if other.everything: return DiscreteSet(self.elements) else: return DiscreteSet(self.elements.intersection(other.elements))
Return a new DiscreteSet with the intersection of the two sets, i.e. all elements that are in both self and other. :param DiscreteSet other: Set to intersect with :rtype: DiscreteSet
19,732
def generate(self, dir_pattern, file_pattern, action_ch=, recursively=False, force=False): directories = [os.path.abspath(directory) for directory in glob.glob(os.path.join(self.__root_directory, dir_pattern)) if os.path.isdir(directory)] extensions = self.__extensions.keys() for directory in directories: for b, f in find_files(directory, file_pattern, recursively=recursively): file_basename, file_ext = os.path.splitext(f) if file_ext in extensions: rel_path = os.path.relpath(os.path.join(b,f), self.__root_directory) rel_basename, rel_filename = os.path.split(rel_path) rel_filename_without_ext, rel_ext = os.path.splitext(rel_filename) in_file_name = os.path.join(b, f) generator_action_container = self.__actions.retrieve_element_or_default(rel_basename, None) action = None if generator_action_container is not None: action = generator_action_container.get_compatible_generator_action(f) if action is None: action = self.__default_action if action: if action_ch == : print("Process file with function :" % (rel_path, action.action_function_name())) for filename_end, context in action.run(): out_file_name = os.path.join(b, rel_filename_without_ext + filename_end + self.__extensions[file_ext]) if action_ch == : self.__generate_file(template_filename=in_file_name, context=context, generated_filename=out_file_name, force=force) elif action_ch == : try: os.remove(out_file_name) self.log_info("Removed file " % out_file_name) except OSError: pass elif action_ch == : print(" -> %s" % os.path.join(rel_basename, rel_filename_without_ext + filename_end + self.__extensions[file_ext]))
Main method to generate (source code) files from templates. See documentation about the directory and file patterns and their possible combinations. Args: dir_pattern: ``glob`` pattern taken from the root directory. **Only** used for directories. file_pattern: ``fnmatch`` pattern taken from all matching directories. **Only** used for files. action (char): Denote action to be taken. Can be: - g: Generate all files that match both directory and file patterns. This is the default behavior. - d: Same as `g` but with doing anything, i.e. dry run. - c: Same as `g` but erasing the generated files instead, i.e. clean. recursively: Do we do the actions in the sub-directories? Note that in this case **only** the file pattern applies as **all** the subdirectories are visited. force (boolean): Do we force the generation or not?
19,733
def _parse_authors(html_chunk): authors = html_chunk.match( ["div", {"class": "comment"}], "h3", "a", ) if not authors: return [] authors = map( lambda x: Author( x.getContent().strip(), normalize_url(BASE_URL, x.params.get("href", None)) ), authors ) return filter(lambda x: x.name.strip(), authors)
Parse authors of the book. Args: html_chunk (obj): HTMLElement containing slice of the page with details. Returns: list: List of :class:`structures.Author` objects. Blank if no author \ found.
19,734
def build_from_queue(cls, input_queue, replay_size, batch_size): return cls( lambda: input_queue.dequeue_many(batch_size), replay_size, batch_size=batch_size)
Builds a `ReplayableQueue` that draws from a regular `input_queue`. Args: input_queue: The queue to draw from. replay_size: The size of the replay buffer. batch_size: The size of each batch. Returns: A ReplayableQueue.
19,735
def search_index_advanced(self, index, query): imchi request = self.session url = % (self.host, self.port, index) if self.params: content = dict(query=query, **self.params) else: content = dict(query=query) if self.verbose: print content response = request.post(url,content) return response
Advanced search query against an entire index > query = ElasticQuery().query_string(query='imchi') > search = ElasticSearch()
19,736
def readPopulations(inputFileName, requiredPopulation): populations = {} requiredPopulation = set(requiredPopulation) with open(inputFileName, "r") as inputFile: for line in inputFile: row = line.rstrip("\r\n").split("\t") famID = row[0] indID = row[1] pop = row[2] if (famID, indID) in populations: if pop != populations[(famID, indID)]: msg = ("{} {}: sample has multiple population ({} and " "{})".format(famID, indID, pop, populations[(famID, indID)])) raise ProgramError(msg) if pop in requiredPopulation: populations[(famID, indID)] = pop popMissing = requiredPopulation - set(populations.values()) if len(popMissing) != 0: msg = "Population that were asked for doesn't exists in " \ "population file: %s" % str(popMissing) raise ProgramError(msg) return populations
Reads a population file. :param inputFileName: the name of the population file. :param requiredPopulation: the required population. :type inputFileName: str :type requiredPopulation: list :returns: a :py:class:`dict` containing the population of each samples.
19,737
def reprcall(name, args=(), kwargs=(), keywords=, sep=, argfilter=repr): if keywords: keywords = (( if (args or kwargs) else ) + + keywords) argfilter = argfilter or repr return "{name}({args}{sep}{kwargs}{keywords})".format( name=name, args=reprargs(args, filter=argfilter), sep=(args and kwargs) and sep or "", kwargs=reprkwargs(kwargs, sep), keywords=keywords or )
Format a function call for display.
19,738
def get_account_invitation(self, account_id, invitation_id, **kwargs): kwargs[] = True if kwargs.get(): return self.get_account_invitation_with_http_info(account_id, invitation_id, **kwargs) else: (data) = self.get_account_invitation_with_http_info(account_id, invitation_id, **kwargs) return data
Details of a user invitation. # noqa: E501 An endpoint for retrieving the details of an active user invitation sent for a new or an existing user to join the account. **Example usage:** `curl https://api.us-east-1.mbedcloud.com/v3/accounts/{account-id}/user-invitations/{invitation-id} -H 'Authorization: Bearer API_KEY'` # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass asynchronous=True >>> thread = api.get_account_invitation(account_id, invitation_id, asynchronous=True) >>> result = thread.get() :param asynchronous bool :param str account_id: Account ID. (required) :param str invitation_id: The ID of the invitation to be retrieved. (required) :return: UserInvitationResp If the method is called asynchronously, returns the request thread.
19,739
def _to_array(value): if isinstance(value, (tuple, list)): return array(value) elif isinstance(value, (float, int)): return np.float64(value) else: return value
As a convenience, turn Python lists and tuples into NumPy arrays.
19,740
def _set_igmp_snooping_state(self, v, load=False): if hasattr(v, "_utype"): v = v._utype(v) try: t = YANGDynClass(v,base=igmp_snooping_state.igmp_snooping_state, is_container=, presence=False, yang_name="igmp-snooping-state", rest_name="igmp-snooping-state", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u: {u: u, u: None}}, namespace=, defining_module=, yang_type=, is_config=True) except (TypeError, ValueError): raise ValueError({ : , : "container", : , }) self.__igmp_snooping_state = t if hasattr(self, ): self._set()
Setter method for igmp_snooping_state, mapped from YANG variable /igmp_snooping_state (container) If this variable is read-only (config: false) in the source YANG file, then _set_igmp_snooping_state is considered as a private method. Backends looking to populate this variable should do so via calling thisObj._set_igmp_snooping_state() directly. YANG Description: IGMP Snooping Root MO
19,741
def kitchen_delete(backend, kitchen): click.secho( % (get_datetime(), kitchen), fg=) master = if kitchen.lower() != master.lower(): check_and_print(DKCloudCommandRunner.delete_kitchen(backend.dki, kitchen)) else: raise click.ClickException( % master)
Provide the name of the kitchen to delete
19,742
def ToPhotlam(self, wave, flux, **kwargs): if hasattr(flux,): return flux.copy() else: return flux
Convert to ``photlam``. Since there is no real conversion necessary, this returns a copy of input flux (if array) or just the input (if scalar). An input array is copied to avoid modifying the input in subsequent **pysynphot** processing. Parameters ---------- wave, flux : number or array_like Wavelength (not used) and flux values to be used for conversion. kwargs : dict Extra keywords (not used). Returns ------- result : number or array_like Converted values.
19,743
def from_rest(model, props): req = goldman.sess.req _from_rest_blank(model, props) _from_rest_hide(model, props) _from_rest_ignore(model, props) _from_rest_lower(model, props) if req.is_posting: _from_rest_on_create(model, props) elif req.is_patching: _from_rest_on_update(model, props) model.merge(props, validate=True) if req.is_patching: _from_rest_reject_update(model)
Map the REST data onto the model Additionally, perform the following tasks: * set all blank strings to None where needed * purge all fields not allowed as incoming data * purge all unknown fields from the incoming data * lowercase certain fields that need it * merge new data with existing & validate * mutate the existing model * abort on validation errors * coerce all the values
19,744
def function(self, x, y, amp, alpha, beta, center_x, center_y): x_shift = x - center_x y_shift = y - center_y return amp * (1. + (x_shift**2+y_shift**2)/alpha**2)**(-beta)
returns Moffat profile
19,745
def add_input_stream(self, datastream, data_type, options, data): url = self.get_add_input_data_url(datastream, options) form_data = { : { : ( Utils.random_string(10)+( if data_type == else ), data, , {: } ) } } response = self.http.upstream(url, form_data) return response
To add data stream to a Datastream :param datastream: string :param data_type: string :param options: dict :param data: Stream
19,746
def __check_mapping(self, landmarks): sc_udiff = numpy.asarray(self.__sc_umaxs)[1:] - numpy.asarray(self.__sc_umins)[:-1] l_diff = numpy.asarray(landmarks)[1:] - numpy.asarray(landmarks)[:-1] return numpy.all(sc_udiff > numpy.asarray(l_diff))
Checks whether the image, from which the supplied landmarks were extracted, can be transformed to the learned standard intensity space without loss of information.
19,747
def libvlc_media_set_user_data(p_md, p_new_user_data): s user_data. user_data is specialized data accessed by the host application, VLC.framework uses it as a pointer to an native object that references a L{Media} pointer. @param p_md: media descriptor object. @param p_new_user_data: pointer to user data. libvlc_media_set_user_datalibvlc_media_set_user_data', ((1,), (1,),), None, None, Media, ctypes.c_void_p) return f(p_md, p_new_user_data)
Sets media descriptor's user_data. user_data is specialized data accessed by the host application, VLC.framework uses it as a pointer to an native object that references a L{Media} pointer. @param p_md: media descriptor object. @param p_new_user_data: pointer to user data.
19,748
def remove_dataset_from_collection(dataset_id, collection_id, **kwargs): collection_i = _get_collection(collection_id) collection_item = _get_collection_item(collection_id, dataset_id) if collection_item is None: raise HydraError("Dataset %s is not in collection %s.", dataset_id, collection_id) db.DBSession.delete(collection_item) db.DBSession.flush() db.DBSession.expunge_all() return
Add a single dataset to a dataset collection.
19,749
def address(cls, address, bits = None): if bits is None: address_size = cls.address_size bits = win32.bits else: address_size = bits / 4 if address < 0: address = ((2 ** bits) - 1) ^ ~address return ( % address_size) % address
@type address: int @param address: Memory address. @type bits: int @param bits: (Optional) Number of bits of the target architecture. The default is platform dependent. See: L{HexDump.address_size} @rtype: str @return: Text output.
19,750
def open_readable(self, name): assert compat.is_native(name) out = SpooledTemporaryFile(max_size=self.MAX_SPOOL_MEM, mode="w+b") self.ftp.retrbinary( "RETR {}".format(name), out.write, FtpTarget.DEFAULT_BLOCKSIZE ) out.seek(0) return out
Open cur_dir/name for reading. Note: we read everything into a buffer that supports .read(). Args: name (str): file name, located in self.curdir Returns: file-like (must support read() method)
19,751
def post_event_access_code(self, id, access_code_id, **data): return self.post("/events/{0}/access_codes/{0}/".format(id,access_code_id), data=data)
POST /events/:id/access_codes/:access_code_id/ Updates an access code; returns the result as a :format:`access_code` as the key ``access_code``.
19,752
def _udf_cell(args, js): variable_name = args[] if not variable_name: raise Exception() spec_pattern = r spec_part_pattern = r specs = re.findall(spec_pattern, js) if len(specs) < 2: raise Exception( ) inputs = [] input_spec_parts = re.findall(spec_part_pattern, specs[0], flags=re.IGNORECASE) if len(input_spec_parts) % 2 != 0: raise Exception( ) for n, t in zip(input_spec_parts[0::2], input_spec_parts[1::2]): inputs.append((n, t)) outputs = [] output_spec_parts = re.findall(spec_part_pattern, specs[1], flags=re.IGNORECASE) if len(output_spec_parts) % 2 != 0: raise Exception( ) for n, t in zip(output_spec_parts[0::2], output_spec_parts[1::2]): outputs.append((n, t)) import_pattern = r imports = re.findall(import_pattern, js) split_pattern = r parts = re.match(split_pattern, js, re.MULTILINE | re.DOTALL) support_code = if parts: support_code = (parts.group(1) + parts.group(3)).strip() if len(support_code): js = parts.group(2) udf = datalab.bigquery.UDF(inputs, outputs, variable_name, js, support_code, imports) datalab.utils.commands.notebook_environment()[variable_name] = udf
Implements the bigquery_udf cell magic for ipython notebooks. The supported syntax is: %%bigquery udf --module <var> <js function> Args: args: the optional arguments following '%%bigquery udf'. js: the UDF declaration (inputs and outputs) and implementation in javascript. Returns: The results of executing the UDF converted to a dataframe if no variable was specified. None otherwise.
19,753
def load_json_file(json_file): with io.open(json_file, encoding=) as data_file: try: json_content = json.load(data_file) except exceptions.JSONDecodeError: err_msg = u"JSONDecodeError: JSON file format error: {}".format(json_file) logger.log_error(err_msg) raise exceptions.FileFormatError(err_msg) _check_format(json_file, json_content) return json_content
load json file and check file content format
19,754
def select_all(self, table, limit=MAX_ROWS_PER_QUERY, execute=True): num_rows = self.count_rows(table) if num_rows > limit: return self._select_batched(table, , num_rows, limit, execute=execute) else: return self.select(table, , execute=execute)
Query all rows and columns from a table.
19,755
def intervalSum(self, a, b): return self.prefixSum(b) - self.prefixSum(a-1)
:param int a b: with 1 <= a <= b :returns: t[a] + ... + t[b]
19,756
def _build(self, leaves): new, odd = [], None if len(leaves) % 2 == 1: odd = leaves.pop(-1) for i in range(0, len(leaves), 2): newnode = Node(leaves[i].val + leaves[i + 1].val) newnode.l, newnode.r = leaves[i], leaves[i + 1] leaves[i].side, leaves[i + 1].side, leaves[i].p, leaves[i + 1].p = , , newnode, newnode leaves[i].sib, leaves[i + 1].sib = leaves[i + 1], leaves[i] new.append(newnode) if odd: new.append(odd) return new
Private helper function to create the next aggregation level and put all references in place.
19,757
def pypackable(name, pytype, format): size, items = _formatinfo(format) return type(Packable)(name, (pytype, Packable), { : format, : size, : items, })
Create a "mix-in" class with a python type and a Packable with the given struct format
19,758
def get_python_json(scala_json): def convert_node(node): if node.__class__.__name__ in (, ): values_raw = get_python_dict(node.values()) values = {} for k, v in values_raw.items(): values[k] = convert_node(v) return values elif node.__class__.__name__.startswith() or \ node.__class__.__name__ == \ : values_raw = get_python_dict(node) values = {} for k, v in values_raw.items(): values[k] = convert_node(v) return values elif node.__class__.__name__ == : entries_raw = get_python_list(node.values()) entries = [] for entry in entries_raw: entries.append(convert_node(entry)) return entries elif node.__class__.__name__ == : entries_raw = get_python_list(node) entries = [] for entry in entries_raw: entries.append(convert_node(entry)) return entries elif node.__class__.__name__ == : return node.intValue() elif node.__class__.__name__ == : return None elif node.__class__.__name__ == : return [] elif isinstance(node, (str, int, float)): return node else: logger.error( % node.__class__.__name__) return node.__class__.__name__ python_json = convert_node(scala_json) return python_json
Return a JSON dict from a org.json4s.JsonAST
19,759
def acoustic_similarity_mapping(path_mapping, analysis_function, distance_function, stop_check=None, call_back=None, multiprocessing=True): num_cores = int((3 * cpu_count()) / 4) segments = set() for x in path_mapping: segments.update(x) if multiprocessing: cache = generate_cache_mp(segments, analysis_function, num_cores, call_back, stop_check) asim = calculate_distances_mp(path_mapping, cache, distance_function, num_cores, call_back, stop_check) else: cache = generate_cache_th(segments, analysis_function, num_cores, call_back, stop_check) asim = calculate_distances_th(path_mapping, cache, distance_function, num_cores, call_back, stop_check) return asim
Takes in an explicit mapping of full paths to .wav files to have acoustic similarity computed. Parameters ---------- path_mapping : iterable of iterables Explicit mapping of full paths of .wav files, in the form of a list of tuples to be compared. Returns ------- dict Returns a list of tuples corresponding to the `path_mapping` input, with a new final element in the tuple being the similarity/distance score for that mapping.
19,760
def export_table(datatable_code, **kwargs): if in kwargs: raise InvalidRequestError(Message.ERROR_AUTHTOKEN_NOT_SUPPORTED) ApiKeyUtil.init_api_key_from_args(kwargs) filename = kwargs.pop(, ) return Datatable(datatable_code).download_file(filename, **kwargs)
Downloads an entire table as a zip file. :param str datatable_code: The datatable code to download, such as MER/F1 :param str filename: The filename for the download. \ If not specified, will download to the current working directory :param str api_key: Most databases require api_key for bulk download
19,761
def data_to_df(self, sysbase=False): p_dict_comp = self.data_to_dict(sysbase=sysbase) self._check_pd() self.param_df = pd.DataFrame(data=p_dict_comp).set_index() return self.param_df
Return a pandas.DataFrame of device parameters. :param sysbase: save per unit values in system base
19,762
def to_char(token): if ord(token) in _range(9216, 9229 + 1): token = _unichr(ord(token) - 9216) return token
Transforms the ASCII control character symbols to their real char. Note: If the token is not an ASCII control character symbol, just return the token. Keyword arguments: token -- the token to transform
19,763
def p_throttling(p): throttling = NoThrottlingSettings() if len(p) == 7: throttling = TailDropSettings(int(p[5])) p[0] = {"throttling": throttling}
throttling : THROTTLING COLON NONE | THROTTLING COLON TAIL_DROP OPEN_BRACKET NUMBER CLOSE_BRACKET
19,764
async def _get_response(self, msg): try: protocol = await self._get_protocol() pr = protocol.request(msg) r = await pr.response return pr, r except ConstructionRenderableError as e: raise ClientError("There was an error with the request.", e) except RequestTimedOut as e: await self._reset_protocol(e) raise RequestTimeout(, e) except (OSError, socket.gaierror, Error) as e: await self._reset_protocol(e) raise ServerError("There was an error with the request.", e) except asyncio.CancelledError as e: await self._reset_protocol(e) raise e
Perform the request, get the response.
19,765
def draw_step(self): ostep = self.ordering_step() for s in ostep: self.setxy() self.draw_edges() yield s
iterator that computes all vertices coordinates and edge routing after just one step (one layer after the other from top to bottom to top). Purely inefficient ! Use it only for "animation" or debugging purpose.
19,766
def json(self): data = super(CalTRACKHourlyModel, self).json() data.update( { "occupancy_lookup": self.occupancy_lookup.to_json(orient="split"), "temperature_bins": self.temperature_bins.to_json(orient="split"), } ) return data
Return a JSON-serializable representation of this result. The output of this function can be converted to a serialized string with :any:`json.dumps`.
19,767
def p(self, path): if path.startswith("/"): path = path[1:] p = os.path.join(self.mount_point, path) logger.debug("path = %s", p) return p
provide absolute path within the container :param path: path with container :return: str
19,768
def set_pixel(self,x,y,state): self.send_cmd("P"+str(x+1)+","+str(y+1)+","+state)
Set pixel at "x,y" to "state" where state can be one of "ON", "OFF" or "TOGGLE"
19,769
def binary_size(self): return ( 1 + 2 + 1 + len(self.name.encode()) + 1 + 1 + len(self.dimensions) + self.total_bytes + 1 + len(self.desc.encode()) )
Return the number of bytes needed to store this parameter.
19,770
def acknowledged_by(self): if (self.is_acknowledged and self._proto.acknowledgeInfo.HasField()): return self._proto.acknowledgeInfo.acknowledgedBy return None
Username of the acknowledger.
19,771
def update_iteration(self): iteration_config = self.get_iteration_config() if not iteration_config: return experiments_metrics = self.experiment_group.get_experiments_metrics( experiment_ids=iteration_config.experiment_ids, metric=self.get_metric_name() ) experiments_configs = self.experiment_group.get_experiments_declarations( experiment_ids=iteration_config.experiment_ids ) iteration_config.experiments_configs = list(experiments_configs) iteration_config.experiments_metrics = [m for m in experiments_metrics if m[1] is not None] self._update_config(iteration_config)
Update the last experiment group's iteration with experiment performance.
19,772
def apply(self, dir_or_plan=None, input=False, skip_plan=False, no_color=IsFlagged, **kwargs): default = kwargs default[] = input default[] = no_color default[] = (skip_plan == True) option_dict = self._generate_default_options(default) args = self._generate_default_args(dir_or_plan) return self.cmd(, *args, **option_dict)
refer to https://terraform.io/docs/commands/apply.html no-color is flagged by default :param no_color: disable color of stdout :param input: disable prompt for a missing variable :param dir_or_plan: folder relative to working folder :param skip_plan: force apply without plan (default: false) :param kwargs: same as kwags in method 'cmd' :returns return_code, stdout, stderr
19,773
def calculate_output(self, variable_name, period): variable = self.tax_benefit_system.get_variable(variable_name, check_existence = True) if variable.calculate_output is None: return self.calculate(variable_name, period) return variable.calculate_output(self, variable_name, period)
Calculate the value of a variable using the ``calculate_output`` attribute of the variable.
19,774
def get_event_q(self, event_name): self.lock.acquire() if not event_name in self.event_dict or self.event_dict[ event_name] is None: self.event_dict[event_name] = queue.Queue() self.lock.release() event_queue = self.event_dict[event_name] return event_queue
Obtain the queue storing events of the specified name. If no event of this name has been polled, wait for one to. Returns: A queue storing all the events of the specified name. None if timed out. Raises: queue.Empty: Raised if the queue does not exist and timeout has passed.
19,775
def build_columns(self, X, verbose=False): splines = self._terms[0].build_columns(X, verbose=verbose) for term in self._terms[1:]: marginal_splines = term.build_columns(X, verbose=verbose) splines = tensor_product(splines, marginal_splines) if self.by is not None: splines *= X[:, self.by][:, np.newaxis] return sp.sparse.csc_matrix(splines)
construct the model matrix columns for the term Parameters ---------- X : array-like Input dataset with n rows verbose : bool whether to show warnings Returns ------- scipy sparse array with n rows
19,776
def retcode_pillar(pillar_name): * groups = __salt__[](pillar_name) check = {} data = {} for group in groups: commands = groups[group] for command in commands: if isinstance(command, dict): plugin = next(six.iterkeys(command)) args = command[plugin] else: plugin = command args = check.update(retcode(plugin, args, group)) current_value = 0 new_value = int(check[group][]) if group in data: current_value = int(data[group][]) if (new_value > current_value) or (group not in data): if group not in data: data[group] = {} data[group][] = new_value return data
Run one or more nagios plugins from pillar data and get the result of cmd.retcode The pillar have to be in this format:: ------ webserver: Ping_google: - check_icmp: 8.8.8.8 - check_icmp: google.com Load: - check_load: -w 0.8 -c 1 APT: - check_apt ------- webserver is the role to check, the next keys are the group and the items the check with the arguments if needed You must to group different checks(one o more) and always it will return the highest value of all the checks CLI Example: .. code-block:: bash salt '*' nagios.retcode webserver
19,777
def send_media_file(self, filename): cache_timeout = self.get_send_file_max_age(filename) return send_from_directory(self.config[], filename, cache_timeout=cache_timeout)
Function used to send media files from the media folder to the browser.
19,778
def accept(self, addr): ip_addr = _parse_ip(addr) if ip_addr is None: LOG.warn("Cannot add address %r to proxy %s: " "invalid address" % (addr, self.address)) else: self.accepted.add(addr)
Add an address to the set of addresses this proxy is permitted to introduce. :param addr: The address to add.
19,779
def line_line(origins, directions, plane_normal=None): origins, is_2D = stack_3D(origins, return_2D=True) directions, is_2D = stack_3D(directions, return_2D=True) directions /= np.linalg.norm(directions, axis=1).reshape((-1, 1)) if np.sum(np.abs(np.diff(directions, axis=0))) < tol.zero: return False, None q_0, p_0 = origins v, u = directions w = p_0 - q_0 if plane_normal is None: plane_normal = np.cross(u, v) plane_normal /= np.linalg.norm(plane_normal) v_perp = np.cross(v, plane_normal) v_perp /= np.linalg.norm(v_perp) coplanar = abs(np.dot(plane_normal, w)) < tol.zero if not coplanar: return False, None s_I = (np.dot(-v_perp, w) / np.dot(v_perp, u)) intersection = p_0 + s_I * u return True, intersection[:(3 - is_2D)]
Find the intersection between two lines. Uses terminology from: http://geomalgorithms.com/a05-_intersect-1.html line 1: P(s) = p_0 + sU line 2: Q(t) = q_0 + tV Parameters --------- origins: (2, d) float, points on lines (d in [2,3]) directions: (2, d) float, direction vectors plane_normal: (3, ) float, if not passed computed from cross Returns --------- intersects: boolean, whether the lines intersect. In 2D, false if the lines are parallel In 3D, false if lines are not coplanar intersection: if intersects: (d) length point of intersection else: None
19,780
def removeCMSPadding(str, blocksize=AES_blocksize): try: pad_len = ord(str[-1]) except TypeError: pad_len = str[-1] assert pad_len <= blocksize, assert pad_len <= len(str), return str[:-pad_len]
CMS padding: Remove padding with bytes containing the number of padding bytes
19,781
def drawRect(self, x1, y1, x2, y2, angle=0): vertices = [[x1,y1],[x2,y1],[x2,y2],[x1,y2],] rotatedVertices = rotateMatrix(vertices, (x1+x2)*0.5, (y1+y2)*0.5, angle) self.drawClosedPath(rotatedVertices)
Draws a rectangle on the current :py:class:`Layer` with the current :py:class:`Brush`. Coordinates are relative to the original layer size WITHOUT downsampling applied. :param x1: The X of the top-left corner of the rectangle. :param y1: The Y of the top-left corner of the rectangle. :param x2: The X of the bottom-right corner of the rectangle. :param y2: The Y of the bottom-right corner of the rectangle. :param angle: An angle (in degrees) of rotation around the center of the rectangle. :rtype: Nothing.
19,782
def drop_network_by_id(self, network_id: int) -> None: network = self.session.query(Network).get(network_id) self.drop_network(network)
Drop a network by its database identifier.
19,783
def append_copy(self, elem): return XMLElement(lib.lsl_append_copy(self.e, elem.e))
Append a copy of the specified element as a child.
19,784
def _put(self, item: SQLBaseObject): if item._dto_type in self._expirations and self._expirations[item._dto_type] == 0: return item.updated() self._session().merge(item)
Puts a item into the database. Updates lastUpdate column
19,785
def save_to_file(self, filename, format=None, **kwargs): if format is None: format = format_from_extension(filename) with file(filename, ) as fp: self.save_to_file_like(fp, format, **kwargs)
Save the object to file given by filename.
19,786
def incr(self, name, amount=1): return self.client.incr(name, amount=amount)
自增key的对应的值,当key不存在时则为默认值,否则在基础上自增整数amount :param name: key :param amount: 默认值 :return: 返回自增后的值
19,787
def divide_prefixes(prefixes: List[str], seed:int=0) -> Tuple[List[str], List[str], List[str]]: if len(prefixes) < 3: raise PersephoneException( "{} cannot be split into 3 groups as it only has {} items".format(prefixes, len(prefixes)) ) Ratios = namedtuple("Ratios", ["train", "valid", "test"]) ratios=Ratios(.90, .05, .05) train_end = int(ratios.train*len(prefixes)) valid_end = int(train_end + ratios.valid*len(prefixes)) if valid_end == len(prefixes): valid_end -= 1 if train_end == valid_end: train_end -= 1 random.seed(seed) random.shuffle(prefixes) train_prefixes = prefixes[:train_end] valid_prefixes = prefixes[train_end:valid_end] test_prefixes = prefixes[valid_end:] assert train_prefixes, "Got empty set for training data" assert valid_prefixes, "Got empty set for validation data" assert test_prefixes, "Got empty set for testing data" return train_prefixes, valid_prefixes, test_prefixes
Divide data into training, validation and test subsets
19,788
def show_vcs_output_vcs_nodes_vcs_node_info_node_switch_mac(self, **kwargs): config = ET.Element("config") show_vcs = ET.Element("show_vcs") config = show_vcs output = ET.SubElement(show_vcs, "output") vcs_nodes = ET.SubElement(output, "vcs-nodes") vcs_node_info = ET.SubElement(vcs_nodes, "vcs-node-info") node_switch_mac = ET.SubElement(vcs_node_info, "node-switch-mac") node_switch_mac.text = kwargs.pop() callback = kwargs.pop(, self._callback) return callback(config)
Auto Generated Code
19,789
def get_octets(self, octets=None, timeout=1.0): if octets is None: octets = b if not self.socket: try: self.connect() except nfc.llcp.ConnectRefused: return None else: self.release_connection = True else: self.release_connection = False try: request = struct.pack(, 0x10, 0x01, 4 + len(octets), self.acceptable_length) + octets if not send_request(self.socket, request, self.send_miu): return None response = recv_response( self.socket, self.acceptable_length, timeout) if response is not None: if response[1] != 0x81: raise SnepError(response[1]) return response[6:] finally: if self.release_connection: self.close()
Get NDEF message octets from a SNEP Server. .. versionadded:: 0.13 If the client has not yet a data link connection with a SNEP Server, it temporarily connects to the default SNEP Server, sends the message octets, disconnects after the server response, and returns the received message octets.
19,790
def make_pdb(self, alt_states=False, inc_ligands=True): if any([False if x.id else True for x in self._monomers]): self.relabel_monomers() if self.ligands and inc_ligands: monomers = self._monomers + self.ligands._monomers else: monomers = self._monomers pdb_str = write_pdb(monomers, self.id, alt_states=alt_states) return pdb_str
Generates a PDB string for the `Polymer`. Parameters ---------- alt_states : bool, optional Include alternate conformations for `Monomers` in PDB. inc_ligands : bool, optional Includes `Ligands` in PDB. Returns ------- pdb_str : str String of the pdb for the `Polymer`. Generated using information from the component `Monomers`.
19,791
def _convert_to_config(self): for k, v in vars(self.parsed_data).iteritems(): exec "self.config.%s = v"%k in locals(), globals()
self.parsed_data->self.config
19,792
def on_to_position(self, speed, position, brake=True, block=True): speed = self._speed_native_units(speed) self.speed_sp = int(round(speed)) self.position_sp = position self._set_brake(brake) self.run_to_abs_pos() if block: self.wait_until(, timeout=WAIT_RUNNING_TIMEOUT) self.wait_until_not_moving()
Rotate the motor at ``speed`` to ``position`` ``speed`` can be a percentage or a :class:`ev3dev2.motor.SpeedValue` object, enabling use of other units.
19,793
def list_role_binding_for_all_namespaces(self, **kwargs): kwargs[] = True if kwargs.get(): return self.list_role_binding_for_all_namespaces_with_http_info(**kwargs) else: (data) = self.list_role_binding_for_all_namespaces_with_http_info(**kwargs) return data
list or watch objects of kind RoleBinding This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.list_role_binding_for_all_namespaces(async_req=True) >>> result = thread.get() :param async_req bool :param str _continue: The continue option should be set when retrieving more results from the server. Since this value is server defined, clients may only use the continue value from a previous query result with identical query parameters (except for the value of continue) and the server may reject a continue value it does not recognize. If the specified continue value is no longer valid whether due to expiration (generally five to fifteen minutes) or a configuration change on the server, the server will respond with a 410 ResourceExpired error together with a continue token. If the client needs a consistent list, it must restart their list without the continue field. Otherwise, the client may send another list request with the token received with the 410 error, the server will respond with a list starting from the next key, but from the latest snapshot, which is inconsistent from the previous list results - objects that are created, modified, or deleted after the first list request will be included in the response, as long as their keys are after the \"next key\". This field is not supported when watch is true. Clients may start a watch from the last resourceVersion value returned by the server and not miss any modifications. :param str field_selector: A selector to restrict the list of returned objects by their fields. Defaults to everything. :param str label_selector: A selector to restrict the list of returned objects by their labels. Defaults to everything. :param int limit: limit is a maximum number of responses to return for a list call. If more items exist, the server will set the `continue` field on the list metadata to a value that can be used with the same initial query to retrieve the next set of results. Setting a limit may return fewer than the requested amount of items (up to zero items) in the event all requested objects are filtered out and clients should only use the presence of the continue field to determine whether more results are available. Servers may choose not to support the limit argument and will return all of the available results. If limit is specified and the continue field is empty, clients may assume that no more results are available. This field is not supported if watch is true. The server guarantees that the objects returned when using continue will be identical to issuing a single list call without a limit - that is, no objects created, modified, or deleted after the first request is issued will be included in any subsequent continued requests. This is sometimes referred to as a consistent snapshot, and ensures that a client that is using limit to receive smaller chunks of a very large result can ensure they see all possible objects. If objects are updated during a chunked list the version of the object that was present at the time the first list result was calculated is returned. :param str pretty: If 'true', then the output is pretty printed. :param str resource_version: When specified with a watch call, shows changes that occur after that particular version of a resource. Defaults to changes from the beginning of history. When specified for list: - if unset, then the result is returned from remote storage based on quorum-read flag; - if it's 0, then we simply return what we currently have in cache, no guarantee; - if set to non zero, then the result is at least as fresh as given rv. :param int timeout_seconds: Timeout for the list/watch call. This limits the duration of the call, regardless of any activity or inactivity. :param bool watch: Watch for changes to the described resources and return them as a stream of add, update, and remove notifications. Specify resourceVersion. :return: V1RoleBindingList If the method is called asynchronously, returns the request thread.
19,794
def clean_value(self): result = [] for mdl in self: result.append(super(ListNode, mdl).clean_value()) return result
Populates json serialization ready data. This is the method used to serialize and store the object data in to DB Returns: List of dicts.
19,795
def download_document(self, document: Document, overwrite=True, path=None): if not path: path = os.path.join(os.path.expanduser(c["base_path"]), document.path) if (self.modified(document) and overwrite) or not os.path.exists(join(path, document.title)): log.info("Downloading %s" % join(path, document.title)) file = self._get( % document.id, stream=True) os.makedirs(path, exist_ok=True) with open(join(path, document.title), ) as f: shutil.copyfileobj(file.raw, f)
Download a document to the given path. if no path is provided the path is constructed frome the base_url + stud.ip path + filename. If overwrite is set the local version will be overwritten if the file was changed on studip since the last check
19,796
def before_export(self): try: csm_info = self.datastore[] except KeyError: csm_info = self.datastore[] = self.csm.info for sm in csm_info.source_models: for sg in sm.src_groups: assert sg.eff_ruptures != -1, sg for key in self.datastore: self.datastore.set_nbytes(key) self.datastore.flush()
Set the attributes nbytes
19,797
def compressBWTPoolProcess(tup): inputFN = tup[0] startIndex = tup[1] endIndex = tup[2] tempFN = tup[3] whereSol = np.add(startIndex+1, np.where(bwt[startIndex:endIndex-1] != bwt[startIndex+1:endIndex])[0]) deltas = np.zeros(dtype=, shape=(whereSol.shape[0]+1,)) if whereSol.shape[0] == 0: deltas[0] = endIndex-startIndex else: deltas[0] = whereSol[0]-startIndex deltas[1:-1] = np.subtract(whereSol[1:], whereSol[0:-1]) deltas[-1] = endIndex - whereSol[-1] size = 0 byteCount = 0 lastCount = 1 while lastCount > 0: lastCount = np.where(deltas >= 2**(numberBits*byteCount))[0].shape[0] size += lastCount byteCount += 1 ret = np.lib.format.open_memmap(tempFN, , , (size,)) retIndex = 0 c = bwt[startIndex] startChar = c delta = deltas[0] while delta > 0: ret[retIndex] = ((delta & mask) << letterBits)+c delta /= numPower retIndex += 1 for i in xrange(0, whereSol.shape[0]): c = bwt[whereSol[i]] delta = deltas[i+1] while delta > 0: ret[retIndex] = ((delta & mask) << letterBits)+c delta /= numPower retIndex += 1 endChar = c return (size, startChar, deltas[0], endChar, deltas[-1], tempFN)
During compression, each available process will calculate a subportion of the BWT independently using this function. This process takes the chunk and rewrites it into a given filename using the technique described in the compressBWT(...) function header
19,798
def get_foreign_key(self, name): name = self._normalize_identifier(name) if not self.has_foreign_key(name): raise ForeignKeyDoesNotExist(name, self._name) return self._fk_constraints[name]
Returns the foreign key constraint with the given name. :param name: The constraint name :type name: str :rtype: ForeignKeyConstraint
19,799
def style_from_dict(style_dict, include_defaults=True): assert isinstance(style_dict, Mapping) if include_defaults: s2 = {} s2.update(DEFAULT_STYLE_EXTENSIONS) s2.update(style_dict) style_dict = s2 token_to_attrs = {} for ttype, styledef in sorted(style_dict.items()): attrs = DEFAULT_ATTRS if not in styledef: for i in range(1, len(ttype) + 1): try: attrs = token_to_attrs[ttype[:-i]] except KeyError: pass else: break for part in styledef.split(): if part == : pass elif part == : attrs = attrs._replace(bold=True) elif part == : attrs = attrs._replace(bold=False) elif part == : attrs = attrs._replace(italic=True) elif part == : attrs = attrs._replace(italic=False) elif part == : attrs = attrs._replace(underline=True) elif part == : attrs = attrs._replace(underline=False) elif part == : attrs = attrs._replace(blink=True) elif part == : attrs = attrs._replace(blink=False) elif part == : attrs = attrs._replace(reverse=True) elif part == : attrs = attrs._replace(reverse=False) elif part in (, , ): pass elif part.startswith(): pass elif part.startswith(): attrs = attrs._replace(bgcolor=_colorformat(part[3:])) else: attrs = attrs._replace(color=_colorformat(part)) token_to_attrs[ttype] = attrs return _StyleFromDict(token_to_attrs)
Create a ``Style`` instance from a dictionary or other mapping. The dictionary is equivalent to the ``Style.styles`` dictionary from pygments, with a few additions: it supports 'reverse' and 'blink'. Usage:: style_from_dict({ Token: '#ff0000 bold underline', Token.Title: 'blink', Token.SomethingElse: 'reverse', }) :param include_defaults: Include the defaults (built-in) styling for selected text, etc...)