Unnamed: 0
int64 0
389k
| code
stringlengths 26
79.6k
| docstring
stringlengths 1
46.9k
|
---|---|---|
19,800 | def init_app(self, app):
provider = app.config.get("STORAGE_PROVIDER", None)
key = app.config.get("STORAGE_KEY", None)
secret = app.config.get("STORAGE_SECRET", None)
container = app.config.get("STORAGE_CONTAINER", None)
allowed_extensions = app.config.get("STORAGE_ALLOWED_EXTENSIONS", None)
serve_files = app.config.get("STORAGE_SERVER", True)
serve_files_url = app.config.get("STORAGE_SERVER_URL", "files")
self.config["serve_files"] = serve_files
self.config["serve_files_url"] = serve_files_url
if not provider:
raise ValueError(" is missing")
if provider.upper() == "LOCAL":
if not os.path.isdir(container):
raise IOError("Local Container (directory) is not a "
"directory or doesn't exist for LOCAL provider" % container)
self.__init__(provider=provider,
key=key,
secret=secret,
container=container,
allowed_extensions=allowed_extensions)
self._register_file_server(app) | To initiate with Flask
:param app: Flask object
:return: |
19,801 | def add_watch_point(self, string, rating, importance=5):
d = {}
d[] = string
d[] = rating
d[] = importance
self.watch_points.append(d) | For a log session you can add as many watch points
which are used in the aggregation and extraction of
key things that happen.
Each watch point has a rating (up to you and can range
from success to total failure and an importance for
finer control of display |
19,802 | def temporarily_enabled(self):
old_setting = self.options.enabled
self.enable()
try:
yield
finally:
self.options.enabled = old_setting | Temporarily enable the cache (useful for testing) |
19,803 | def credential_delete(self, *ids):
return self.raw_query("credential", "delete", data={
"credentials": [{"id": str(id)} for id in ids]
}) | Delete one or more credentials.
:param ids: one or more credential ids |
19,804 | def add_house(self, complex: str, **kwargs):
self.check_complex(complex)
self.post(.format(developer=self.developer, complex=complex), data=kwargs) | Add a new house to the rumetr db |
19,805 | def guinieranalysis(samplenames, qranges=None, qmax_from_shanum=True, prfunctions_postfix=, dist=None,
plotguinier=True, graph_extension=, dmax=None, dmax_from_shanum=False):
figpr = plt.figure()
ip = get_ipython()
axpr = figpr.add_subplot(1, 1, 1)
if qranges is None:
qranges = {: (0, 1000000)}
if dmax is None:
dmax = {: None}
if not in qranges:
qranges[] = (0, 1000000)
if not in dmax:
dmax[] = None
table_autorg = [[, , ,
, ,
, , , ,
, ]]
table_gnom = [[, , ,
, ,
, , , ]]
results = {}
for sn in samplenames:
if sn not in qranges:
print(.format(sn))
qrange = qranges[]
else:
qrange = qranges[sn]
if sn not in dmax:
dmax_ = dmax[]
else:
dmax_ = dmax[sn]
print(.format(sn, qrange[0], qrange[1]))
curve = getsascurve(sn, dist)[0].trim(*qrange).sanitize()
curve.save(sn + )
try:
Rg, I0, qmin, qmax, quality, aggregation = autorg(sn + )
except ValueError:
print( % sn)
continue
dmax_shanum, nsh, nopt, qmaxopt = shanum(sn + )
if qmax_from_shanum:
curve_trim = curve.trim(qmin, qmaxopt)
else:
curve_trim = curve.trim(qmin, qrange[1])
if dmax_from_shanum:
dmax_ = dmax_from_shanum
curve_trim.save(sn + )
if dmax_ is None:
print(.format(
sn, Rg.val, curve_trim.q.min(), curve_trim.q.max()))
gnompr, metadata = datgnom(sn + , Rg=Rg.val, noprint=True)
else:
print(.format(
sn, dmax_, curve_trim.q.min(), curve_trim.q.max()))
gnompr, metadata = gnom(curve_trim, dmax_)
rg, i0, vporod = datporod(sn + )
axpr.errorbar(gnompr[:, 0], gnompr[:, 1], gnompr[:, 2], None, label=sn)
if plotguinier:
figsample = plt.figure()
axgnomfit = figsample.add_subplot(1, 2, 1)
curve.errorbar(, axes=axgnomfit, label=)
axgnomfit.errorbar(metadata[], metadata[], metadata[], None, , label=)
axgnomfit.loglog(metadata[], metadata[], , label=)
figsample.suptitle(sn)
axgnomfit.set_xlabel()
axgnomfit.set_ylabel()
axgnomfit.axvline(qmaxopt, 0, 1, linestyle=, color=, lw=2)
axgnomfit.grid(True, which=)
axgnomfit.axis()
axgnomfit.legend(loc=)
axguinier = figsample.add_subplot(1, 2, 2)
axguinier.errorbar(curve.q, curve.Intensity, curve.Error, curve.qError, , label=)
q = np.linspace(qmin, qmax, 100)
axguinier.plot(q, I0.val * np.exp(-q ** 2 * Rg.val ** 2 / 3), label=)
axguinier.plot(q, metadata[].val * np.exp(-q ** 2 * metadata[].val ** 2 / 3),
label=)
axguinier.set_xscale(, exponent=2)
axguinier.set_yscale()
axguinier.set_xlabel()
axguinier.set_ylabel()
axguinier.legend(loc=)
idxmin = np.arange(len(curve))[curve.q <= qmin].max()
idxmax = np.arange(len(curve))[curve.q >= qmax].min()
idxmin = max(0, idxmin - 5)
idxmax = min(len(curve) - 1, idxmax + 5)
if plotguinier:
curveguinier = curve.trim(curve.q[idxmin], curve.q[idxmax])
axguinier.axis(xmax=curve.q[idxmax], xmin=curve.q[idxmin], ymin=curveguinier.Intensity.min(),
ymax=curveguinier.Intensity.max())
axguinier.grid(True, which=)
table_gnom.append(
[sn, metadata[].tostring(extra_digits=2), metadata[].tostring(extra_digits=2),
metadata[], metadata[],
metadata[], metadata[], metadata[], vporod])
table_autorg.append([sn, Rg.tostring(extra_digits=2), I0, % qmin, % qmax, qmin * Rg, qmax * Rg,
% (quality * 100), aggregation, % dmax_shanum, % qmaxopt])
if plotguinier:
figsample.tight_layout()
figsample.savefig(os.path.join(ip.user_ns[], % (sn, graph_extension)),
dpi=600)
results[sn] = {
: Rg, : I0,
: qmin, : qmax,
: quality, : aggregation,
: dmax_shanum, : qmaxopt,
: metadata[],
: metadata[],
: metadata[],
: metadata[],
: metadata[],
: metadata[],
: vporod,
}
axpr.set_xlabel()
axpr.set_ylabel()
axpr.legend(loc=)
axpr.grid(True, which=)
writemarkdown()
tab = ipy_table.IpyTable(table_autorg)
tab.apply_theme()
display(tab)
writemarkdown()
tab = ipy_table.IpyTable(table_gnom)
tab.apply_theme()
if prfunctions_postfix and prfunctions_postfix[0] != :
prfunctions_postfix = + prfunctions_postfix
figpr.tight_layout()
figpr.savefig(os.path.join(ip.user_ns[], % (prfunctions_postfix, graph_extension)),
dpi=600)
display(tab)
return results | Perform Guinier analysis on the samples.
Inputs:
samplenames: list of sample names
qranges: dictionary of q ranges for each sample. The keys are sample names. The special '__default__' key
corresponds to all samples which do not have a key in the dict.
qmax_from_shanum: use the qmax determined by the shanum program for the GNOM input.
prfunctions_postfix: The figure showing the P(r) functions will be saved as
prfunctions_<prfunctions_postfix><graph_extension>
dist: the sample-to-detector distance to use.
plotguinier: if Guinier plots are needed.
graph_extension: the extension of the saved graph image files.
dmax: Dict of Dmax parameters. If not found or None, determine automatically using DATGNOM. If found,
GNOM is used. The special key '__default__' works in a similar fashion as for `qranges`. |
19,806 | def iter_packages(self, name, range_=None, paths=None):
for package in iter_packages(name, range_, paths):
if not self.excludes(package):
yield package | Same as iter_packages in packages.py, but also applies this filter.
Args:
name (str): Name of the package, eg 'maya'.
range_ (VersionRange or str): If provided, limits the versions returned
to those in `range_`.
paths (list of str, optional): paths to search for packages, defaults
to `config.packages_path`.
Returns:
`Package` iterator. |
19,807 | def bind(_self, **kwargs):
return Logger(
{**_self._extra, **kwargs},
_self._exception,
_self._record,
_self._lazy,
_self._ansi,
_self._raw,
_self._depth,
) | Bind attributes to the ``extra`` dict of each logged message record.
This is used to add custom context to each logging call.
Parameters
----------
**kwargs
Mapping between keys and values that will be added to the ``extra`` dict.
Returns
-------
:class:`~Logger`
A logger wrapping the core logger, but which sends record with the customized ``extra``
dict.
Examples
--------
>>> logger.add(sys.stderr, format="{extra[ip]} - {message}")
1
>>> class Server:
... def __init__(self, ip):
... self.ip = ip
... self.logger = logger.bind(ip=ip)
... def call(self, message):
... self.logger.info(message)
...
>>> instance_1 = Server("192.168.0.200")
>>> instance_2 = Server("127.0.0.1")
>>> instance_1.call("First instance")
192.168.0.200 - First instance
>>> instance_2.call("Second instance")
127.0.0.1 - Second instance |
19,808 | def create_record(self, type, name, data, priority=None, port=None,
weight=None, **kwargs):
api = self.doapi_manager
data = {
"type": type,
"name": name,
"data": data,
"priority": priority,
"port": port,
"weight": weight,
}
data.update(kwargs)
return self._record(api.request(self.record_url, method=,
data=data)["domain_record"]) | Add a new DNS record to the domain
:param str type: the type of DNS record to add (``"A"``, ``"CNAME"``,
etc.)
:param str name: the name (hostname, alias, etc.) of the new record
:param str data: the value of the new record
:param int priority: the priority of the new record (SRV and MX records
only)
:param int port: the port that the service is accessible on (SRV
records only)
:param int weight: the weight of records with the same priority (SRV
records only)
:param kwargs: additional fields to include in the API request
:return: the new domain record
:rtype: DomainRecord
:raises DOAPIError: if the API endpoint replies with an error |
19,809 | def _get_dimension_scales(self, dimension, preserve_domain=False):
if preserve_domain:
return [
self.scales[k] for k in self.scales if (
k in self.scales_metadata and
self.scales_metadata[k].get() == dimension and
not self.preserve_domain.get(k)
)
]
else:
return [
self.scales[k] for k in self.scales if (
k in self.scales_metadata and
self.scales_metadata[k].get() == dimension
)
] | Return the list of scales corresponding to a given dimension.
The preserve_domain optional argument specifies whether one should
filter out the scales for which preserve_domain is set to True. |
19,810 | def tool_classpath_from_products(products, key, scope):
callback_product_map = products.get_data() or {}
callback = callback_product_map.get(scope, {}).get(key)
if not callback:
raise TaskError(
.format(key=key, scope=scope))
return callback() | Get a classpath for the tool previously registered under key in the given scope.
:param products: The products of the current pants run.
:type products: :class:`pants.goal.products.Products`
:param string key: The key the tool configuration was registered under.
:param string scope: The scope the tool configuration was registered under.
:returns: A list of paths.
:rtype: list |
19,811 | def nvmlDeviceGetMultiGpuBoard(handle):
r
c_multiGpu = c_uint();
fn = _nvmlGetFunctionPointer("nvmlDeviceGetMultiGpuBoard")
ret = fn(handle, byref(c_multiGpu))
_nvmlCheckReturn(ret)
return bytes_to_str(c_multiGpu.value) | r"""
/**
* Retrieves whether the device is on a Multi-GPU Board
* Devices that are on multi-GPU boards will set \a multiGpuBool to a non-zero value.
*
* For Fermi &tm; or newer fully supported devices.
*
* @param device The identifier of the target device
* @param multiGpuBool Reference in which to return a zero or non-zero value
* to indicate whether the device is on a multi GPU board
*
* @return
* - \ref NVML_SUCCESS if \a multiGpuBool has been set
* - \ref NVML_ERROR_UNINITIALIZED if the library has not been successfully initialized
* - \ref NVML_ERROR_INVALID_ARGUMENT if \a device is invalid or \a multiGpuBool is NULL
* - \ref NVML_ERROR_NOT_SUPPORTED if the device does not support this feature
* - \ref NVML_ERROR_GPU_IS_LOST if the target GPU has fallen off the bus or is otherwise inaccessible
* - \ref NVML_ERROR_UNKNOWN on any unexpected error
*/
nvmlReturn_t DECLDIR nvmlDeviceGetMultiGpuBoard |
19,812 | def idle_send_acks_and_nacks(self):
max_blocks_to_send = 10
blocks_sent = 0
i = 0
now = time.time()
while (i < len(self.blocks_to_ack_and_nack) and
blocks_sent < max_blocks_to_send):
stuff = self.blocks_to_ack_and_nack[i]
[master, block, status, first_sent, last_sent] = stuff
if status == 1:
mavstatus = mavutil.mavlink.MAV_REMOTE_LOG_DATA_BLOCK_ACK
(target_sys, target_comp) = self.sender
self.master.mav.remote_log_block_status_send(target_sys,
target_comp,
block,
mavstatus)
blocks_sent += 1
del self.acking_blocks[block]
del self.blocks_to_ack_and_nack[i]
continue
if block not in self.missing_blocks:
del self.blocks_to_ack_and_nack[i]
continue
if (self.last_seqno - block > 200) or (now - first_sent > 60):
if self.log_settings.verbose:
print("DFLogger: Abandoning block (%d)" % (block,))
del self.blocks_to_ack_and_nack[i]
del self.missing_blocks[block]
self.abandoned += 1
continue
i += 1
if last_sent is not None:
if now - last_sent < 0.1:
continue
if self.log_settings.verbose:
print("DFLogger: Asking for block (%d)" % (block,))
mavstatus = mavutil.mavlink.MAV_REMOTE_LOG_DATA_BLOCK_NACK
(target_sys, target_comp) = self.sender
self.master.mav.remote_log_block_status_send(target_sys,
target_comp,
block,
mavstatus)
blocks_sent += 1
stuff[4] = now | Send packets to UAV in idle loop |
19,813 | def add_dashboard_panel(self, dashboard, name, panel_type, metrics, scope=None, sort_by=None, limit=None, layout=None):
panel_configuration = {
: name,
: None,
: None,
: [],
: {
: 1,
: 1,
: 12,
: 6
}
}
if panel_type == :
verify=self.ssl_verify)
return self._request_result(res) | **Description**
Adds a panel to the dashboard. A panel can be a time series, or a top chart (i.e. bar chart), or a number panel.
**Arguments**
- **dashboard**: dashboard to edit
- **name**: name of the new panel
- **panel_type**: type of the new panel. Valid values are: ``timeSeries``, ``top``, ``number``
- **metrics**: a list of dictionaries, specifying the metrics to show in the panel, and optionally, if there is only one metric, a grouping key to segment that metric by. A metric is any of the entries that can be found in the *Metrics* section of the Explore page in Sysdig Monitor. Metric entries require an *aggregations* section specifying how to aggregate the metric across time and groups of containers/hosts. A grouping key is any of the entries that can be found in the *Show* or *Segment By* sections of the Explore page in Sysdig Monitor. Refer to the examples section below for ready to use code snippets. Note, certain panels allow certain combinations of metrics and grouping keys:
- ``timeSeries``: 1 or more metrics OR 1 metric + 1 grouping key
- ``top``: 1 or more metrics OR 1 metric + 1 grouping key
- ``number``: 1 metric only
- **scope**: filter to apply to the panel; must be based on metadata available in Sysdig Monitor; Example: *kubernetes.namespace.name='production' and container.image='nginx'*.
- **sort_by**: Data sorting; The parameter is optional and it's a dictionary of ``metric`` and ``mode`` (it can be ``desc`` or ``asc``)
- **limit**: This parameter sets the limit on the number of lines/bars shown in a ``timeSeries`` or ``top`` panel. In the case of more entities being available than the limit, the top entities according to the sort will be shown. The default value is 10 for ``top`` panels (for ``timeSeries`` the default is defined by Sysdig Monitor itself). Note that increasing the limit above 10 is not officially supported and may cause performance and rendering issues
- **layout**: Size and position of the panel. The dashboard layout is defined by a grid of 12 columns, each row height is equal to the column height. For example, say you want to show 2 panels at the top: one panel might be 6 x 3 (half the width, 3 rows height) located in row 1 and column 1 (top-left corner of the viewport), the second panel might be 6 x 3 located in row 1 and position 7. The location is specified by a dictionary of ``row`` (row position), ``col`` (column position), ``size_x`` (width), ``size_y`` (height).
**Success Return Value**
A dictionary showing the details of the edited dashboard.
**Example**
`examples/dashboard.py <https://github.com/draios/python-sdc-client/blob/master/examples/dashboard.py>`_ |
19,814 | def get_build_output(self, process):
while True:
output = process.stdout.readline()
if output == b and process.poll() is not None:
if process.returncode > 0:
raise Exception("Compilation ended with an error"
".\nSTDERR\n%s\nSTDOUT\n%s" %
(process.stderr.read(),
process.stdout.read()))
return
if output:
matches = re.search(r,
output.strip().decode())
if matches is not None:
yield [int(matches.group(1)), int(matches.group(2))] | Parse the output of the ns-3 build process to extract the information
that is needed to draw the progress bar.
Args:
process: the subprocess instance to listen to. |
19,815 | def _mkOp(fn):
def op(*operands, key=None) -> RtlSignalBase:
assert operands, operands
top = None
if key is not None:
operands = map(key, operands)
for s in operands:
if top is None:
top = s
else:
top = fn(top, s)
return top
return op | Function to create variadic operator function
:param fn: function to perform binary operation |
19,816 | def main():
parser = argparse.ArgumentParser(description=)
parser.add_argument(, , type=int, help=, default=5556)
parser.add_argument(, , help=, nargs=)
parser.add_argument(, , type=str, help=)
args = parser.parse_args()
if args.config:
_add_devices_from_config(args)
if args.default and not add(, args.default):
exit()
app.run(host=, port=args.port) | Set up the server. |
19,817 | def _set_vni_any(self, v, load=False):
if hasattr(v, "_utype"):
v = v._utype(v)
try:
t = YANGDynClass(v,base=YANGBool, is_leaf=True, yang_name="vni-any", rest_name="vni-any", parent=self, choice=(u, u), path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u: {u: u, u: None}}, namespace=, defining_module=, yang_type=, is_config=True)
except (TypeError, ValueError):
raise ValueError({
: ,
: "empty",
: ,
})
self.__vni_any = t
if hasattr(self, ):
self._set() | Setter method for vni_any, mapped from YANG variable /overlay/access_list/type/vxlan/standard/seq/vni_any (empty)
If this variable is read-only (config: false) in the
source YANG file, then _set_vni_any is considered as a private
method. Backends looking to populate this variable should
do so via calling thisObj._set_vni_any() directly. |
19,818 | def transpose_func(classes, table):
transposed_table = table
for i, item1 in enumerate(classes):
for j, item2 in enumerate(classes):
if i > j:
temp = transposed_table[item1][item2]
transposed_table[item1][item2] = transposed_table[item2][item1]
transposed_table[item2][item1] = temp
return transposed_table | Transpose table.
:param classes: classes
:type classes : list
:param table: input matrix
:type table : dict
:return: transposed table as dict |
19,819 | def get_next_action(self, request, application, label, roles):
if label is not None:
return HttpResponseBadRequest("<h1>Bad Request</h1>")
actions = self.get_actions(request, application, roles)
if request.method == "GET":
context = self.context
context.update({
: application,
: actions,
: self.name,
: roles})
return render(
template_name=,
context=context,
request=request)
elif request.method == "POST":
for action in actions:
if action in request.POST:
return action
return HttpResponseBadRequest("<h1>Bad Request</h1>") | Django view method. We provide a default detail view for
applications. |
19,820 | def node_done(self, ssid=None):
if self.api_key is None:
raise exceptions.ApiKeyRequired
if ssid is None:
raise exceptions.SsidRequired
requested_hosts = dict()
for host in self.self_inventory:
if ssid == self.self_inventory[host][]:
requested_hosts[host] = self.full_inventory[host]
args = "key={key}&ssid={ssid}".format(key=self.api_key, ssid=ssid)
resp, body = self.get( % args)
return requested_hosts | Release the servers for the specified ssid.
The API doesn't provide any kind of output, try to be helpful by
providing the list of servers to be released.
:param ssid: ssid of the server pool
:return: [ requested_hosts ] |
19,821 | def rowsAboutToBeRemoved(self, parent, start, end):
self._viewIsDirty = True
super(StimulusView, self).rowsAboutToBeRemoved(parent, start, end) | Marks view for repaint. :qtdoc:`Re-implemented<QAbstractItemView.rowsAboutToBeRemoved>` |
19,822 | def _validate_tileset(self, tileset):
if not in tileset:
tileset = "{0}.{1}".format(self.username, tileset)
pattern =
if not re.match(pattern, tileset, flags=re.IGNORECASE):
raise ValidationError(
.format(
tileset, pattern))
return tileset | Validate the tileset name and
ensure that it includes the username |
19,823 | def take(self, obj):
cached = self._thread_local.cache[self._get_cache_key(obj)]
build_kwargs = {}
if in cached and in cached:
build_kwargs[] = cached[].objects.filter(pk__in=cached[])
elif in cached:
if cached[].__class__.objects.filter(pk=cached[].pk).exists():
build_kwargs[] = cached[]
else:
build_kwargs[] = cached[].__class__.objects.none()
self._clean_cache(obj)
return build_kwargs | Get cached value and clean cache. |
19,824 | def send(self, msg, timeout=None):
try:
timestamp = struct.pack(, int(msg.timestamp * 1000))
except struct.error:
raise ValueError()
try:
a_id = struct.pack(, msg.arbitration_id)
except struct.error:
raise ValueError()
byte_msg = bytearray()
byte_msg.append(0xAA)
for i in range(0, 4):
byte_msg.append(timestamp[i])
byte_msg.append(msg.dlc)
for i in range(0, 4):
byte_msg.append(a_id[i])
for i in range(0, msg.dlc):
byte_msg.append(msg.data[i])
byte_msg.append(0xBB)
self.ser.write(byte_msg) | Send a message over the serial device.
:param can.Message msg:
Message to send.
.. note:: Flags like ``extended_id``, ``is_remote_frame`` and
``is_error_frame`` will be ignored.
.. note:: If the timestamp is a float value it will be converted
to an integer.
:param timeout:
This parameter will be ignored. The timeout value of the channel is
used instead. |
19,825 | def has_mixture_channel(val: Any) -> bool:
mixture_getter = getattr(val, , None)
result = NotImplemented if mixture_getter is None else mixture_getter()
if result is not NotImplemented:
return result
result = has_unitary(val)
if result is not NotImplemented and result:
return result
return mixture_channel(val, None) is not None | Returns whether the value has a mixture channel representation.
In contrast to `has_mixture` this method falls back to checking whether
the value has a unitary representation via `has_channel`.
Returns:
If `val` has a `_has_mixture_` method and its result is not
NotImplemented, that result is returned. Otherwise, if `val` has a
`_has_unitary_` method and its results is not NotImplemented, that
result is returned. Otherwise, if the value has a `_mixture_` method
that is not a non-default value, True is returned. Returns False if none
of these functions. |
19,826 | def guess_xml_encoding(self, content):
r
matchobj = self.__regex[].match(content)
return matchobj and matchobj.group(1).lower() | r"""Guess encoding from xml header declaration.
:param content: xml content
:rtype: str or None |
19,827 | def clean(self):
if self.clean_level == :
idx, = np.where(self.data.altitude <= 550)
self.data = self[idx,:]
self.data.replace(-999999., np.nan, inplace=True)
if (self.clean_level == ) | (self.clean_level == ):
try:
idx, = np.where(np.abs(self.data.ionVelmeridional) < 10000.)
self.data = self[idx,:]
except AttributeError:
pass
if self.clean_level == :
idx, = np.where(self.data.RPAflag <= 1)
self.data = self[idx,:]
self.data = self.data[ (self.data.driftMeterflag<= 3) ]
else:
idx, = np.where(self.data.RPAflag <= 0)
self.data = self[idx,:]
self.data = self.data[ (self.data.driftMeterflag<= 0) ]
if self.clean_level == :
idx, = np.where(self.data.RPAflag <= 4)
self.data = self[idx,:]
self.data = self.data[ (self.data.driftMeterflag<= 6) ]
idx, = np.where(self.data.time <= 86400.)
self.data = self[idx,:]
idx, = np.where((self.data.mlt >= 0) & (self.data.mlt <= 24.))
self.data = self[idx,:]
return | Routine to return C/NOFS IVM data cleaned to the specified level
Parameters
-----------
inst : (pysat.Instrument)
Instrument class object, whose attribute clean_level is used to return
the desired level of data selectivity.
Returns
--------
Void : (NoneType)
data in inst is modified in-place.
Notes
--------
Supports 'clean', 'dusty', 'dirty' |
19,828 | def _filehandle(self):
if not self._fh or self._is_closed():
filename = self._rotated_logfile or self.filename
if filename.endswith():
self._fh = gzip.open(filename, )
else:
self._fh = open(filename, "r", 1)
if self.read_from_end and not exists(self._offset_file):
self._fh.seek(0, os.SEEK_END)
else:
self._fh.seek(self._offset)
return self._fh | Return a filehandle to the file being tailed, with the position set
to the current offset. |
19,829 | def isCompatible(self, other, cls):
if not isinstance(other, cls):
raise TypeError(
% (cls.__name__, other.__class__.__name__))
reporter = self.compatibilityReporterClass(self, other)
self._isCompatible(other, reporter)
return not reporter.fatal, reporter | Evaluate interpolation compatibility with other. |
19,830 | def saddr(address):
if isinstance(address, six.string_types):
return address
elif isinstance(address, tuple) and len(address) >= 2 and in address[0]:
return .format(address[0], address[1])
elif isinstance(address, tuple) and len(address) >= 2:
return .format(*address)
else:
raise TypeError(.format(type(address))) | Return a string representation for an address.
The *address* paramater can be a pipe name, an IP address tuple, or a
socket address.
The return value is always a ``str`` instance. |
19,831 | def _split_header(header):
params = {}
parts = header.split()
for param in parts:
if param.find() > -1:
continue
param = param.strip()
param_parts = param.split(, 1)
params[param_parts[0]] = unquote(param_parts[1].strip())
return params | Turn Authorization: header into parameters. |
19,832 | def solid_angle(center, coords):
r = [np.subtract(c, center) for c in coords]
r_norm = [np.linalg.norm(i) for i in r]
angle = 0
for i in range(1, len(r) - 1):
j = i + 1
tp = np.abs(np.dot(r[0], np.cross(r[i], r[j])))
de = r_norm[0] * r_norm[i] * r_norm[j] + \
r_norm[j] * np.dot(r[0], r[i]) + \
r_norm[i] * np.dot(r[0], r[j]) + \
r_norm[0] * np.dot(r[i], r[j])
if de == 0:
my_angle = 0.5 * pi if tp > 0 else -0.5 * pi
else:
my_angle = np.arctan(tp / de)
angle += (my_angle if my_angle > 0 else my_angle + np.pi) * 2
return angle | Helper method to calculate the solid angle of a set of coords from the
center.
Args:
center (3x1 array): Center to measure solid angle from.
coords (Nx3 array): List of coords to determine solid angle.
Returns:
The solid angle. |
19,833 | def create(parallel):
queue = {k: v for k, v in parallel.items() if k in ["queue", "cores_per_job", "mem"]}
yield queue | Create a queue based on the provided parallel arguments.
TODO Startup/tear-down. Currently using default queue for testing |
19,834 | def _set_show_firmware_option(self, v, load=False):
if hasattr(v, "_utype"):
v = v._utype(v)
try:
t = YANGDynClass(v,base=show_firmware_option.show_firmware_option, is_container=, presence=False, yang_name="show-firmware-option", rest_name="firmware", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u: {u: u, u: u, u: u}}, namespace=, defining_module=, yang_type=, is_config=True)
except (TypeError, ValueError):
raise ValueError({
: ,
: "container",
: ,
})
self.__show_firmware_option = t
if hasattr(self, ):
self._set() | Setter method for show_firmware_option, mapped from YANG variable /show/show_firmware_dummy/show_firmware_option (container)
If this variable is read-only (config: false) in the
source YANG file, then _set_show_firmware_option is considered as a private
method. Backends looking to populate this variable should
do so via calling thisObj._set_show_firmware_option() directly. |
19,835 | def check_docstring_sections(self, definition, docstring):
if not docstring:
return
lines = docstring.split("\n")
if len(lines) < 2:
return
lower_section_names = [s.lower() for s in self.SECTION_NAMES]
def _suspected_as_section(_line):
result = self._get_leading_words(_line.lower())
return result in lower_section_names
suspected_section_indices = [i for i, line in enumerate(lines) if
_suspected_as_section(line)]
SectionContext = namedtuple(, (,
,
,
,
,
))
contexts = (SectionContext(self._get_leading_words(lines[i].strip()),
lines[i - 1],
lines[i],
lines[i + 1:],
i,
False)
for i in suspected_section_indices)
contexts = (c for c in contexts if self._is_a_docstring_section(c))
for a, b in pairwise(contexts, None):
end = -1 if b is None else b.original_index
new_ctx = SectionContext(a.section_name,
a.previous_line,
a.line,
lines[a.original_index + 1:end],
a.original_index,
b is None)
for err in self._check_section(docstring, definition, new_ctx):
yield err | D21{4,5}, D4{05,06,07,08,09,10}: Docstring sections checks.
Check the general format of a sectioned docstring:
'''This is my one-liner.
Short Summary
-------------
This is my summary.
Returns
-------
None.
'''
Section names appear in `SECTION_NAMES`. |
19,836 | def import_key_pair(name, key, profile, key_type=None, **libcloud_kwargs):
s import_key_pair_from_xxx method
:type libcloud_kwargs: ``dict``
CLI Example:
.. code-block:: bash
salt myminion libcloud_compute.import_key_pair pair1 key_value_data123 profile1
salt myminion libcloud_compute.import_key_pair pair1 /path/to/key profile1
FILE':
return _simple_key_pair(conn.import_key_pair_from_file(name,
key,
**libcloud_kwargs))
else:
return _simple_key_pair(conn.import_key_pair_from_string(name,
key,
**libcloud_kwargs)) | Import a new public key from string or a file path
:param name: Key pair name.
:type name: ``str``
:param key: Public key material, the string or a path to a file
:type key: ``str`` or path ``str``
:param profile: The profile key
:type profile: ``str``
:param key_type: The key pair type, either `FILE` or `STRING`. Will detect if not provided
and assume that if the string is a path to an existing path it is a FILE, else STRING.
:type key_type: ``str``
:param libcloud_kwargs: Extra arguments for the driver's import_key_pair_from_xxx method
:type libcloud_kwargs: ``dict``
CLI Example:
.. code-block:: bash
salt myminion libcloud_compute.import_key_pair pair1 key_value_data123 profile1
salt myminion libcloud_compute.import_key_pair pair1 /path/to/key profile1 |
19,837 | def _skip_trampoline(handler):
data_event, self = (yield None)
delegate = handler
event = None
depth = 0
while True:
def pass_through():
_trans = delegate.send(Transition(data_event, delegate))
return _trans, _trans.delegate, _trans.event
if data_event is not None and data_event.type is ReadEventType.SKIP:
while True:
trans, delegate, event = pass_through()
if event is not None:
if event.event_type is IonEventType.CONTAINER_END and event.depth <= depth:
break
if event is None or event.event_type is IonEventType.INCOMPLETE:
data_event, _ = yield Transition(event, self)
else:
trans, delegate, event = pass_through()
if event is not None and (event.event_type is IonEventType.CONTAINER_START or
event.event_type is IonEventType.CONTAINER_END):
depth = event.depth
data_event, _ = yield Transition(event, self) | Intercepts events from container handlers, emitting them only if they should not be skipped. |
19,838 | def add_node(node, **kwds):
nodes._add_node_class_names([node.__name__])
for key, val in kwds.iteritems():
try:
visit, depart = val
except ValueError:
raise ValueError(
% key)
if key == :
from docutils.writers.html4css1 import HTMLTranslator as translator
elif key == :
from docutils.writers.latex2e import LaTeXTranslator as translator
else:
continue
setattr(translator, +node.__name__, visit)
if depart:
setattr(translator, +node.__name__, depart) | add_node from Sphinx |
19,839 | def is_quote_artifact(orig_text, span):
res = False
cursor = re.finditer(r)[^ .,:;?!()*+-].*?("|\, orig_text)
for item in cursor:
if item.span()[1] == span[1]:
res = True
return res | Distinguish between quotes and units. |
19,840 | def process_raw_data(cls, raw_data):
properties = raw_data.get("properties", {})
raw_content = properties.get("ipConfiguration", None)
if raw_content is not None:
resource = Resource.from_raw_data(raw_content)
properties["ipConfiguration"] = resource
return super(PublicIPAddresses, cls).process_raw_data(raw_data) | Create a new model using raw API response. |
19,841 | def maybe_timeout_options(self):
if self._exit_timeout_start_time:
return NailgunProtocol.TimeoutOptions(self._exit_timeout_start_time, self._exit_timeout)
else:
return None | Implements the NailgunProtocol.TimeoutProvider interface. |
19,842 | def timestamp_datetime(self, timestamp):
format =
timestamp = time.localtime(timestamp)
return time.strftime(format, timestamp) | 将uninx时间戳转换为可读性的时间 |
19,843 | def get_memory_annotations(cls, exclude=None):
result = set()
annotations_in_memory = Annotation.__ANNOTATIONS_IN_MEMORY__
exclude = () if exclude is None else exclude
for annotation_cls in annotations_in_memory:
if issubclass(annotation_cls, exclude):
continue
if issubclass(annotation_cls, cls):
result |= annotations_in_memory[annotation_cls]
return result | Get annotations in memory which inherits from cls.
:param tuple/type exclude: annotation type(s) to exclude from search.
:return: found annotations which inherits from cls.
:rtype: set |
19,844 | def load_data_split(proc_data_dir):
ds_train = Dataset.load(path.join(proc_data_dir, ))
ds_val = Dataset.load(path.join(proc_data_dir, ))
ds_test = Dataset.load(path.join(proc_data_dir, ))
return ds_train, ds_val, ds_test | Loads a split dataset
Args:
proc_data_dir: Directory with the split and processed data
Returns:
(Training Data, Validation Data, Test Data) |
19,845 | def _build(self, inputs, is_training):
input_shape = tf.shape(inputs)
with tf.control_dependencies([
tf.Assert(tf.equal(input_shape[-1], self._embedding_dim),
[input_shape])]):
flat_inputs = tf.reshape(inputs, [-1, self._embedding_dim])
distances = (tf.reduce_sum(flat_inputs**2, 1, keepdims=True)
- 2 * tf.matmul(flat_inputs, self._w)
+ tf.reduce_sum(self._w ** 2, 0, keepdims=True))
encoding_indices = tf.argmax(- distances, 1)
encodings = tf.one_hot(encoding_indices, self._num_embeddings)
encoding_indices = tf.reshape(encoding_indices, tf.shape(inputs)[:-1])
quantized = self.quantize(encoding_indices)
e_latent_loss = tf.reduce_mean((tf.stop_gradient(quantized) - inputs) ** 2)
q_latent_loss = tf.reduce_mean((quantized - tf.stop_gradient(inputs)) ** 2)
loss = q_latent_loss + self._commitment_cost * e_latent_loss
quantized = inputs + tf.stop_gradient(quantized - inputs)
avg_probs = tf.reduce_mean(encodings, 0)
perplexity = tf.exp(- tf.reduce_sum(avg_probs * tf.log(avg_probs + 1e-10)))
return {: quantized,
: loss,
: perplexity,
: encodings,
: encoding_indices,} | Connects the module to some inputs.
Args:
inputs: Tensor, final dimension must be equal to embedding_dim. All other
leading dimensions will be flattened and treated as a large batch.
is_training: boolean, whether this connection is to training data.
Returns:
dict containing the following keys and values:
quantize: Tensor containing the quantized version of the input.
loss: Tensor containing the loss to optimize.
perplexity: Tensor containing the perplexity of the encodings.
encodings: Tensor containing the discrete encodings, ie which element
of the quantized space each input element was mapped to.
encoding_indices: Tensor containing the discrete encoding indices, ie
which element of the quantized space each input element was mapped to. |
19,846 | def compute(self):
for varname in self.tendencies:
self.tendencies[varname] *= 0.
if not self.has_process_type_list:
self._build_process_type_list()
tendencies = {}
ignored = self._compute_type()
tendencies[] = self._compute_type()
for name, var in self.state.items():
var += tendencies[][name] * self.timestep
tendencies[] = self._compute_type()
for name, var in self.state.items():
var += tendencies[][name] * self.timestep
tendencies[] = self._compute_type()
for name, var in self.state.items():
var -= ( (tendencies[][name] + tendencies[][name]) *
self.timestep)
for proctype in [, , ]:
for varname, tend in tendencies[proctype].items():
self.tendencies[varname] += tend
self_tend = self._compute()
if self.time_type is :
for varname, adj in self_tend.items():
self_tend[varname] /= self.timestep
for varname, tend in self_tend.items():
self.tendencies[varname] += tend
return self.tendencies | Computes the tendencies for all state variables given current state
and specified input.
The function first computes all diagnostic processes. They don't produce
any tendencies directly but they may affect the other processes (such as
change in solar distribution). Subsequently, all tendencies and
diagnostics for all explicit processes are computed.
Tendencies due to implicit and adjustment processes need to be
calculated from a state that is already adjusted after explicit
alteration. For that reason the explicit tendencies are applied to the
states temporarily. Now all tendencies from implicit processes are
calculated by matrix inversions and similar to the explicit tendencies,
the implicit ones are applied to the states temporarily. Subsequently,
all instantaneous adjustments are computed.
Then the changes that were made to the states from explicit and implicit
processes are removed again as this
:class:`~climlab.process.time_dependent_process.TimeDependentProcess.compute()`
function is supposed to calculate only tendencies and not apply them
to the states.
Finally, all calculated tendencies from all processes are collected
for each state, summed up and stored in the dictionary
``self.tendencies``, which is an attribute of the time-dependent-process
object, for which the
:class:`~climlab.process.time_dependent_process.TimeDependentProcess.compute()`
method has been called.
**Object attributes** \n
During method execution following object attributes are modified:
:ivar dict tendencies: dictionary that holds tendencies for all states
is calculated for current timestep through
adding up tendencies from explicit, implicit and
adjustment processes.
:ivar dict diagnostics: process diagnostic dictionary is updated
by diagnostic dictionaries of subprocesses
after computation of tendencies. |
19,847 | def multiline_merge(lines, current_event, re_after, re_before):
events = []
for line in lines:
if re_before and re_before.match(line):
current_event.append(line)
elif re_after and current_event and re_after.match(current_event[-1]):
current_event.append(line)
else:
if current_event:
events.append(.join(current_event))
current_event.clear()
current_event.append(line)
return events | Merge multi-line events based.
Some event (like Python trackback or Java stracktrace) spawn
on multiple line. This method will merge them using two
regular expression: regex_after and regex_before.
If a line match re_after, it will be merged with next line.
If a line match re_before, it will be merged with previous line.
This function return a list of complet event. Note that because
we don't know if an event is complet before another new event
start, the last event will not be returned but stored in
current_event. You should pass the same current_event to
successive call to multiline_merge. current_event is a list
of lines whose belong to the same event. |
19,848 | def from_dict(input_dict, data=None):
import GPy
m = GPy.core.model.Model.from_dict(input_dict, data)
from copy import deepcopy
sparse_gp = deepcopy(m)
return SparseGPClassification(sparse_gp.X, sparse_gp.Y, sparse_gp.Z, sparse_gp.kern, sparse_gp.likelihood, sparse_gp.inference_method, sparse_gp.mean_function, name=) | Instantiate an SparseGPClassification object using the information
in input_dict (built by the to_dict method).
:param data: It is used to provide X and Y for the case when the model
was saved using save_data=False in to_dict method.
:type data: tuple(:class:`np.ndarray`, :class:`np.ndarray`) |
19,849 | def apply_new_global_variable_name(self, path, new_gv_name):
gv_name = self.list_store[path][self.NAME_STORAGE_ID]
if gv_name == new_gv_name or not self.global_variable_is_editable(gv_name, ):
return
data_value = self.model.global_variable_manager.get_representation(gv_name)
data_type = self.model.global_variable_manager.get_data_type(gv_name)
try:
self.model.global_variable_manager.delete_variable(gv_name)
self.model.global_variable_manager.set_variable(new_gv_name, data_value, data_type=data_type)
gv_name = new_gv_name
except (AttributeError, RuntimeError, TypeError) as e:
logger.warning("Can not apply new name ".format(e))
self.update_global_variables_list_store()
self.select_entry(gv_name)
if hasattr(self.tree_view_keypress_callback.__func__, "core_element_id"):
self.tree_view_keypress_callback.__func__.core_element_id = gv_name | Change global variable name/key according handed string
Updates the global variable name only if different and already in list store.
:param path: The path identifying the edited global variable tree view row, can be str, int or tuple.
:param str new_gv_name: New global variable name |
19,850 | def get_template(self, context, **kwargs):
if in kwargs[]:
self.template = kwargs[][]
return super(GoscaleTemplateInclusionTag, self).get_template(context, **kwargs) | Returns the template to be used for the current context and arguments. |
19,851 | def capture_message(sock, get_channel=False):
try:
if get_channel:
if HAS_NATIVE_SUPPORT:
cf, addr = sock.recvfrom(CANFD_MTU)
channel = addr[0] if isinstance(addr, tuple) else addr
else:
data = ctypes.create_string_buffer(CANFD_MTU)
addr = ctypes.create_string_buffer(32)
addrlen = ctypes.c_int(len(addr))
received = libc.recvfrom(sock.fileno(), data, len(data), 0,
addr, ctypes.byref(addrlen))
cf = data.raw[:received]
family, ifindex = struct.unpack_from("Hi", addr.raw)
assert family == AF_CAN
data = struct.pack("16xi", ifindex)
res = fcntl.ioctl(sock, SIOCGIFNAME, data)
channel = ctypes.create_string_buffer(res).value.decode()
else:
cf = sock.recv(CANFD_MTU)
channel = None
except socket.error as exc:
raise can.CanError("Error receiving: %s" % exc)
can_id, can_dlc, flags, data = dissect_can_frame(cf)
binary_structure = "@LL"
res = fcntl.ioctl(sock, SIOCGSTAMP, struct.pack(binary_structure, 0, 0))
seconds, microseconds = struct.unpack(binary_structure, res)
timestamp = seconds + microseconds * 1e-6
is_extended_frame_format = bool(can_id & CAN_EFF_FLAG)
is_remote_transmission_request = bool(can_id & CAN_RTR_FLAG)
is_error_frame = bool(can_id & CAN_ERR_FLAG)
is_fd = len(cf) == CANFD_MTU
bitrate_switch = bool(flags & CANFD_BRS)
error_state_indicator = bool(flags & CANFD_ESI)
if is_extended_frame_format:
arbitration_id = can_id & 0x1FFFFFFF
else:
arbitration_id = can_id & 0x000007FF
msg = Message(timestamp=timestamp,
channel=channel,
arbitration_id=arbitration_id,
is_extended_id=is_extended_frame_format,
is_remote_frame=is_remote_transmission_request,
is_error_frame=is_error_frame,
is_fd=is_fd,
bitrate_switch=bitrate_switch,
error_state_indicator=error_state_indicator,
dlc=can_dlc,
data=data)
return msg | Captures a message from given socket.
:param socket.socket sock:
The socket to read a message from.
:param bool get_channel:
Find out which channel the message comes from.
:return: The received message, or None on failure. |
19,852 | def on_connected(self, headers, body):
if in headers:
self.heartbeats = utils.calculate_heartbeats(
headers[].replace(, ).split(), self.heartbeats)
if self.heartbeats != (0, 0):
self.send_sleep = self.heartbeats[0] / 1000
self.receive_sleep = (self.heartbeats[1] / 1000) * self.heart_beat_receive_scale
log.debug("Setting receive_sleep to %s", self.receive_sleep)
self.received_heartbeat = monotonic() + self.receive_sleep
self.running = True
if self.heartbeat_thread is None:
self.heartbeat_thread = utils.default_create_thread(
self.__heartbeat_loop)
self.heartbeat_thread.name = "StompHeartbeat%s" % \
getattr(self.heartbeat_thread, "name", "Thread") | Once the connection is established, and 'heart-beat' is found in the headers, we calculate the real
heartbeat numbers (based on what the server sent and what was specified by the client) - if the heartbeats
are not 0, we start up the heartbeat loop accordingly.
:param dict headers: headers in the connection message
:param body: the message body |
19,853 | def merge_segments(filename, scan, cleanup=True, sizelimit=0):
workdir = os.path.dirname(filename)
fileroot = os.path.basename(filename)
candslist = glob.glob(os.path.join(workdir, + fileroot + + str(scan) + ))
noiselist = glob.glob(os.path.join(workdir, + fileroot + + str(scan) + ))
candssegs = sorted([candsfile.rstrip().split()[1] for candsfile in candslist])
noisesegs = sorted([noisefile.rstrip().split()[1] for noisefile in noiselist])
if not candslist and not noiselist:
logger.warn()
return
if not os.path.exists(os.path.join(workdir, + fileroot + + str(scan) + )):
logger.info( % (str(candssegs), fileroot, scan))
logger.debug( % candslist)
cands = {}
for candsfile in candslist:
with open(candsfile, ) as pkl:
state = pickle.load(pkl)
result = pickle.load(pkl)
for kk in result.keys():
cands[kk] = result[kk]
segment = state.pop()
if sizelimit and len(cands):
logger.debug()
if in state[]:
snrcol = state[].index()
elif in state[]:
snrcol = state[].index()
candsize = sys.getsizeof(cands[cands.keys()[0]])/1e6
maxlen = int(sizelimit/candsize)
if len(cands) > maxlen:
logger.info( % (len(cands), sizelimit, maxlen))
snrs = [abs(cands[k][snrcol]) for k in cands.iterkeys()]
snrsort = sorted(snrs, reverse=True)
snrmax = snrsort[maxlen]
cands = {k: v for k,v in cands.items() if abs(v[snrcol]) > snrmax}
with open(os.path.join(workdir, + fileroot + + str(scan) + ), ) as pkl:
pickle.dump(state, pkl, protocol=2)
pickle.dump( (np.array(cands.keys()), np.array(cands.values())), pkl, protocol=2)
if cleanup:
if os.path.exists(os.path.join(workdir, + fileroot + + str(scan) + )):
for candsfile in candslist:
os.remove(candsfile)
else:
logger.warn( % scan)
if not os.path.exists(os.path.join(workdir, + fileroot + + str(scan) + )):
logger.info( % (str(noisesegs), fileroot, scan))
logger.debug( % noiselist)
noise = []
for noisefile in noiselist:
with open(noisefile, ) as pkl:
result = pickle.load(pkl)
noise += result
if len(noise):
with open(os.path.join(workdir, + fileroot + + str(scan) + ), ) as pkl:
pickle.dump(noise, pkl, protocol=2)
if cleanup:
if os.path.exists(os.path.join(workdir, + fileroot + + str(scan) + )):
for noisefile in noiselist:
os.remove(noisefile)
else:
logger.warn( % scan) | Merges cands/noise pkl files from multiple segments to single cands/noise file.
Expects segment cands pkls with have (1) state dict and (2) cands dict.
Writes tuple state dict and duple of numpy arrays
A single pkl written per scan using root name fileroot.
if cleanup, it will remove segments after merging.
if sizelimit, it will reduce the output file to be less than this many MB. |
19,854 | def one_of(s):
@Parser
def one_of_parser(text, index=0):
if index < len(text) and text[index] in s:
return Value.success(index + 1, text[index])
else:
return Value.failure(index, .format(s))
return one_of_parser | Parser a char from specified string. |
19,855 | def get_access_token(client_id, client_secret):
headers = {: }
payload = {
: client_id,
: client_secret
}
request = requests.post(token_url, data=payload, headers=headers)
if request.status_code == 200:
token = request.json()
return token
return {: request.status_code, "message": request.text} | Name: token
Parameters: client_id, client_secret
Return: dictionary |
19,856 | def type(self):
properties = {self.is_code: "code",
self.is_data: "data",
self.is_string: "string",
self.is_tail: "tail",
self.is_unknown: "unknown"}
for k, v in properties.items():
if k: return v | return the type of the Line |
19,857 | def get_standard_form(self, data):
if self.synonym_map is None:
return data
from indic_transliteration import sanscript
return sanscript.transliterate(data=sanscript.transliterate(_from=self.name, _to=sanscript.DEVANAGARI, data=data), _from=sanscript.DEVANAGARI, _to=self.name) | Roman schemes define multiple representations of the same devanAgarI character. This method gets a library-standard representation.
data : a text in the given scheme. |
19,858 | def currencyFormat(_context, code, symbol, format,
currency_digits=True, decimal_quantization=True,
name=):
_context.action(
discriminator=(, name, code),
callable=_register_currency,
args=(name, code, symbol, format, currency_digits,
decimal_quantization)
) | Handle currencyFormat subdirectives. |
19,859 | def is_locked(self):
if self.provider.lock_manager is None:
return False
return self.provider.lock_manager.is_url_locked(self.get_ref_url()) | Return True, if URI is locked. |
19,860 | def send_static_file(self, filename):
if self.config[] == :
abort(404)
theme_static_folder = getattr(self, , None)
if theme_static_folder:
try:
return send_from_directory(theme_static_folder, filename)
except NotFound:
pass
return super(CustomFlask, self).send_static_file(filename) | Send static files from the static folder
in the current selected theme prior to the global static folder.
:param filename: static filename
:return: response object |
19,861 | def collect_hunt_results(self, hunt):
if not os.path.isdir(self.output_path):
os.makedirs(self.output_path)
output_file_path = os.path.join(
self.output_path, .join((self.hunt_id, )))
if os.path.exists(output_file_path):
print(.format(output_file_path))
return None
self._check_approval_wrapper(
hunt, self._get_and_write_archive, hunt, output_file_path)
results = self._extract_hunt_results(output_file_path)
print(.format(
hunt.hunt_id, output_file_path))
return results | Download current set of files in results.
Args:
hunt: The GRR hunt object to download files from.
Returns:
list: tuples containing:
str: human-readable description of the source of the collection. For
example, the name of the source host.
str: path to the collected data.
Raises:
ValueError: if approval is needed and approvers were not specified. |
19,862 | def _read_vector(ctx: ReaderContext) -> vector.Vector:
start = ctx.reader.advance()
assert start == "["
return _read_coll(ctx, vector.vector, "]", "vector") | Read a vector element from the input stream. |
19,863 | def make_tmp_name(name):
path, base = os.path.split(name)
tmp_base = ".tmp-%s-%s" % (base, uuid4().hex)
tmp_name = os.path.join(path, tmp_base)
try:
yield tmp_name
finally:
safe_remove(tmp_name) | Generates a tmp name for a file or dir.
This is a tempname that sits in the same dir as `name`. If it exists on
disk at context exit time, it is deleted. |
19,864 | def spendables_for_address(address, netcode, format=None):
if format:
method = "as_%s" % format
for m in service_provider_methods("spendables_for_address", get_default_providers_for_netcode(netcode)):
try:
spendables = m(address)
if format:
spendables = [getattr(s, method)() for s in spendables]
return spendables
except Exception:
pass
return [] | Return a list of Spendable objects for the
given bitcoin address.
Set format to "text" or "dict" to transform return value
from an object to a string or dict.
This is intended to be a convenience function. There is no way to know that
the list returned is a complete list of spendables for the address in question.
You can verify that they really do come from the existing transaction
by calling tx_utils.validate_unspents. |
19,865 | def _write_cdx_field(self, record, raw_file_record_size, raw_file_offset):
if record.fields[WARCRecord.WARC_TYPE] != WARCRecord.RESPONSE \
or not re.match(r,
record.fields[WARCRecord.CONTENT_TYPE]):
return
url = record.fields[]
_logger.debug(, url)
http_header = record.get_http_header()
if http_header:
mime_type = self.parse_mimetype(
http_header.fields.get(, )
) or
response_code = str(http_header.status_code)
else:
mime_type =
response_code =
timestamp = str(int(
wpull.util.parse_iso8601_str(record.fields[WARCRecord.WARC_DATE])
))
checksum = record.fields.get(, )
if checksum.startswith():
checksum = checksum.replace(, , 1)
else:
checksum =
raw_file_record_size_str = str(raw_file_record_size)
raw_file_offset_str = str(raw_file_offset)
filename = os.path.basename(self._warc_filename)
record_id = record.fields[WARCRecord.WARC_RECORD_ID]
fields_strs = (
url,
timestamp,
mime_type,
response_code,
checksum,
raw_file_record_size_str,
raw_file_offset_str,
filename,
record_id
)
with open(self._cdx_filename, mode=, encoding=) as out_file:
out_file.write(self.CDX_DELIMINATOR.join(fields_strs))
out_file.write() | Write the CDX field if needed. |
19,866 | def ptmsiReallocationComplete():
a = TpPd(pd=0x3)
b = MessageType(mesType=0x11)
packet = a / b
return packet | P-TMSI REALLOCATION COMPLETE Section 9.4.8 |
19,867 | def sprand(m, n, density, format=):
m, n = int(m), int(n)
A = _rand_sparse(m, n, density, format=)
A.data = sp.rand(A.nnz)
return A.asformat(format) | Return a random sparse matrix.
Parameters
----------
m, n : int
shape of the result
density : float
target a matrix with nnz(A) = m*n*density, 0<=density<=1
format : string
sparse matrix format to return, e.g. 'csr', 'coo', etc.
Return
------
A : sparse matrix
m x n sparse matrix
Examples
--------
>>> from pyamg.gallery import sprand
>>> A = sprand(5,5,3/5.0) |
19,868 | def _verifyHostKey(self, hostKey, fingerprint):
if fingerprint in self.knownHosts:
return defer.succeed(True)
return defer.fail(UnknownHostKey(hostKey, fingerprint)) | Called when ssh transport requests us to verify a given host key.
Return a deferred that callback if we accept the key or errback if we
decide to reject it. |
19,869 | def add_extra_headers(self, sample_names):
if not sample_names:
return []
full_headers = list(self.orient_data[sample_names[0]].keys())
add_ons = []
for head in full_headers:
if head not in self.header_names:
add_ons.append((head, head))
return add_ons | If there are samples, add any additional keys they might use
to supplement the default headers.
Return the headers headers for adding, with the format:
[(header_name, header_display_name), ....] |
19,870 | def get_elb_names(self, region, config):
region_dict = config.get(, {}).get(region, {})
if not in region_dict:
elb_conn = boto.ec2.elb.connect_to_region(region,
**self.auth_kwargs)
full_elb_names = \
[elb.name for elb in elb_conn.get_all_load_balancers()]
matchers = \
[re.compile(regex) for regex in config.get(, [])]
return elb_names | :param region: name of a region
:param config: Collector config dict
:return: list of elb names to query in the given region |
19,871 | def send_login_code(self, code, context, **kwargs):
from_number = self.from_number or getattr(settings, )
sms_content = render_to_string(self.template_name, context)
self.twilio_client.messages.create(
to=code.user.phone_number,
from_=from_number,
body=sms_content
) | Send a login code via SMS |
19,872 | def prune(self, root):
max_entries_per_target = self._max_entries_per_target
if os.path.isdir(root) and max_entries_per_target:
safe_rm_oldest_items_in_dir(root, max_entries_per_target) | Prune stale cache files
If the option --cache-target-max-entry is greater than zero, then prune will remove all but n
old cache files for each target/task.
:param str root: The path under which cacheable artifacts will be cleaned |
19,873 | def _decode_response(response):
content_type = response.headers.get(, )
logger.debug("status[%s] content_type[%s] encoding[%s]" %
(response.status_code, content_type, response.encoding))
response.raise_for_status()
content = response.content.strip()
if response.encoding:
content = content.decode(response.encoding)
if not content:
logger.debug("no content in response")
return content
if content_type.split()[0] != :
return content
if content.startswith(GERRIT_MAGIC_JSON_PREFIX):
content = content[len(GERRIT_MAGIC_JSON_PREFIX):]
try:
return json.loads(content)
except ValueError:
logger.error(, content)
raise | Strip off Gerrit's magic prefix and decode a response.
:returns:
Decoded JSON content as a dict, or raw text if content could not be
decoded as JSON.
:raises:
requests.HTTPError if the response contains an HTTP error status code. |
19,874 | def command_drop_tables(self, meta_name=None):
answer = six.moves.input(u)
if answer.strip().lower()!=:
sys.exit()
def _drop_metadata_tables(metadata):
table = next(six.itervalues(metadata.tables), None)
if table is None:
print()
else:
engine = self.session.get_bind(clause=table)
drop_everything(engine)
print()
if isinstance(self.metadata, MetaData):
print(, end=)
_drop_metadata_tables(self.metadata)
else:
for current_meta_name, metadata in self.metadata.items():
if meta_name not in (current_meta_name, None):
continue
print(.format(current_meta_name),
end=)
_drop_metadata_tables(metadata) | Drops all tables without dropping a database::
./manage.py sqla:drop_tables [meta_name] |
19,875 | def rewrite_return_as_assignments(func_node, interface):
func_node = _RewriteReturn(interface).visit(func_node)
ast.fix_missing_locations(func_node)
return func_node | Modify FunctionDef node to directly assign instead of return. |
19,876 | def _peer_get_bfd(self, tx, rx, multiplier):
tx = self._callback(tx, handler=)
rx = self._callback(rx, handler=)
multiplier = self._callback(multiplier, handler=)
tx = pynos.utilities.return_xml(str(tx))
rx = pynos.utilities.return_xml(str(rx))
multiplier = pynos.utilities.return_xml(str(multiplier))
config = pynos.utilities.merge_xml(tx, rx)
return pynos.utilities.merge_xml(config, multiplier) | Get and merge the `bfd` config from global BGP.
You should not use this method.
You probably want `BGP.bfd`.
Args:
tx: XML document with the XML to get the transmit interval.
rx: XML document with the XML to get the receive interval.
multiplier: XML document with the XML to get the interval
multiplier.
Returns:
Merged XML document.
Raises:
None |
19,877 | def enable_performance_data(self):
if not self.my_conf.process_performance_data:
self.my_conf.modified_attributes |= \
DICT_MODATTR["MODATTR_PERFORMANCE_DATA_ENABLED"].value
self.my_conf.process_performance_data = True
self.my_conf.explode_global_conf()
self.daemon.update_program_status() | Enable performance data processing (globally)
Format of the line that triggers function call::
ENABLE_PERFORMANCE_DATA
:return: None |
19,878 | def wait(self, seconds=None, **kw):
self._heartbeat_thread.hurry()
self._transport.set_timeout(seconds=1)
warning_screen = self._yield_warning_screen(seconds)
for elapsed_time in warning_screen:
if self._should_stop_waiting(**kw):
break
try:
try:
self._process_packets()
except TimeoutError:
pass
except KeyboardInterrupt:
self._close()
raise
except ConnectionError as e:
self._opened = False
try:
warning = Exception( % e)
warning_screen.throw(warning)
except StopIteration:
self._warn(warning)
try:
namespace = self.get_namespace()
namespace._find_packet_callback()()
except PacketError:
pass
self._heartbeat_thread.relax()
self._transport.set_timeout() | Wait in a loop and react to events as defined in the namespaces |
19,879 | def _align_orthologous_gene_pairwise(self, g_id, gapopen=10, gapextend=0.5, engine=, parse=True, force_rerun=False):
protein_seqs_aln_pickle_path = op.join(self.sequences_by_gene_dir, .format(g_id))
if ssbio.utils.force_rerun(flag=force_rerun, outfile=protein_seqs_aln_pickle_path):
protein_seqs_pickle_path = self.gene_protein_pickles[g_id]
protein_pickle = ssbio.io.load_pickle(protein_seqs_pickle_path)
if not protein_pickle.representative_sequence:
log.error(.format(g_id))
return
if len(protein_pickle.sequences) < 1:
log.error(.format(g_id))
return
alignment_dir = op.join(self.sequences_by_gene_dir, g_id)
ssbio.utils.make_dir(alignment_dir)
protein_pickle.pairwise_align_sequences_to_representative(gapopen=gapopen, gapextend=gapextend,
engine=engine, outdir=alignment_dir,
parse=parse, force_rerun=force_rerun)
protein_pickle.save_pickle(outfile=protein_seqs_aln_pickle_path)
return g_id, protein_seqs_aln_pickle_path | Align orthologous strain sequences to representative Protein sequence, save as new pickle |
19,880 | def next_requests(self):
use_set = self.settings.getbool(, defaults.START_URLS_AS_SET)
fetch_one = self.server.spop if use_set else self.server.lpop
found = 0
while found < self.redis_batch_size:
data = fetch_one(self.redis_key)
if not data:
break
req = self.make_request_from_data(data)
if req:
yield req
found += 1
else:
self.logger.debug("Request not made from data: %r", data)
if found:
self.logger.debug("Read %s requests from ", found, self.redis_key) | Returns a request to be scheduled or none. |
19,881 | def return_rri(self, begsam, endsam):
interval = endsam - begsam
dat = empty(interval)
k = 0
with open(self.filename, ) as f:
[next(f) for x in range(12)]
for j, datum in enumerate(f):
if begsam <= j < endsam:
dat[k] = float64(datum[:datum.index()])
k += 1
if k == interval:
break
return dat | Return raw, irregularly-timed RRI. |
19,882 | def dumps(self, msg, use_bin_type=False):
strbytes
def ext_type_encoder(obj):
if isinstance(obj, six.integer_types):
return msgpack.ExtType(78, salt.utils.stringutils.to_bytes(
obj.strftime()))
elif isinstance(obj, immutabletypes.ImmutableDict):
return dict(obj)
elif isinstance(obj, immutabletypes.ImmutableList):
return list(obj)
elif isinstance(obj, (set, immutabletypes.ImmutableSet)):
return obj
try:
if msgpack.version >= (0, 4, 0):
return salt.utils.msgpack.dumps(msg, default=ext_type_encoder,
use_bin_type=use_bin_type,
_msgpack_module=msgpack)
else:
return salt.utils.msgpack.dumps(msg, default=ext_type_encoder,
_msgpack_module=msgpack)
except (OverflowError, msgpack.exceptions.PackValueError):
context.add(objid)
if isinstance(obj, dict):
for key, value in six.iteritems(obj.copy()):
obj[key] = verylong_encoder(value, context)
return dict(obj)
elif isinstance(obj, (list, tuple)):
obj = list(obj)
for idx, entry in enumerate(obj):
obj[idx] = verylong_encoder(entry, context)
return obj
if isinstance(obj, six.integer_types) and obj >= pow(2, 64):
return six.text_type(obj)
else:
return obj
msg = verylong_encoder(msg, set())
if msgpack.version >= (0, 4, 0):
return salt.utils.msgpack.dumps(msg, default=ext_type_encoder,
use_bin_type=use_bin_type,
_msgpack_module=msgpack)
else:
return salt.utils.msgpack.dumps(msg, default=ext_type_encoder,
_msgpack_module=msgpack) | Run the correct dumps serialization format
:param use_bin_type: Useful for Python 3 support. Tells msgpack to
differentiate between 'str' and 'bytes' types
by encoding them differently.
Since this changes the wire protocol, this
option should not be used outside of IPC. |
19,883 | def convert_meas_df_thellier_gui(meas_df_in, output):
output = int(output)
meas_mapping = get_thellier_gui_meas_mapping(meas_df_in, output)
meas_df_out = meas_df_in.rename(columns=meas_mapping)
if not in meas_df_out.columns:
meas_df_out[] = meas_df_in[]
return meas_df_out | Take a measurement dataframe and convert column names
from MagIC 2 --> 3 or vice versa.
Use treat_step_num --> measurement_number if available,
otherwise measurement --> measurement_number.
Parameters
----------
meas_df_in : pandas DataFrame
input dataframe with measurement data
output : int
output to MagIC 2 or MagIC 3 |
19,884 | def _ScheduleTasks(self, storage_writer):
logger.debug()
self._status = definitions.STATUS_INDICATOR_RUNNING
event_source_heap = _EventSourceHeap()
self._FillEventSourceHeap(
storage_writer, event_source_heap, start_with_first=True)
event_source = event_source_heap.PopEventSource()
task = None
while event_source or self._task_manager.HasPendingTasks():
if self._abort:
break
try:
if not task:
task = self._task_manager.CreateRetryTask()
if not task and event_source:
task = self._task_manager.CreateTask(self._session_identifier)
task.file_entry_type = event_source.file_entry_type
task.path_spec = event_source.path_spec
event_source = None
self._number_of_consumed_sources += 1
if self._guppy_memory_profiler:
self._guppy_memory_profiler.Sample()
if task:
if self._ScheduleTask(task):
logger.debug(
.format(
task.identifier, task.path_spec.comparable))
self._task_manager.SampleTaskStatus(task, )
task = None
else:
self._task_manager.SampleTaskStatus(task, )
self._MergeTaskStorage(storage_writer)
if not event_source_heap.IsFull():
self._FillEventSourceHeap(storage_writer, event_source_heap)
if not task and not event_source:
event_source = event_source_heap.PopEventSource()
except KeyboardInterrupt:
self._abort = True
self._processing_status.aborted = True
if self._status_update_callback:
self._status_update_callback(self._processing_status)
for task in self._task_manager.GetFailedTasks():
warning = warnings.ExtractionWarning(
message=,
path_spec=task.path_spec)
self._storage_writer.AddWarning(warning)
self._processing_status.error_path_specs.append(task.path_spec)
self._status = definitions.STATUS_INDICATOR_IDLE
if self._abort:
logger.debug()
else:
logger.debug() | Schedules tasks.
Args:
storage_writer (StorageWriter): storage writer for a session storage. |
19,885 | def set_order(self, order):
m = gtk.ListStore(bool, str)
for item in order:
m.append(
(item[], item[])
)
self.set_model(m) | Takes a list of dictionaries. Those correspond to the arguments of
`list.sort` and must contain the keys 'key' and 'reverse' (a boolean).
You must call `set_labels` before this! |
19,886 | def index(self, x, x_link=None):
if x is None:
raise ValueError("provide at least one dataframe")
elif x_link is not None:
x = (x, x_link)
elif isinstance(x, (list, tuple)):
x = tuple(x)
else:
x = (x,)
if self.verify_integrity:
for df in x:
self._verify_integrety(df)
if not self._deduplication(x):
pairs = self._link_index(*x)
names = self._make_index_names(x[0].index.name, x[1].index.name)
else:
pairs = self._dedup_index(*x)
names = self._make_index_names(x[0].index.name, x[0].index.name)
pairs.rename(names, inplace=True)
return pairs | Make an index of record pairs.
Use a custom function to make record pairs of one or two dataframes.
Each function should return a pandas.MultiIndex with record pairs.
Parameters
----------
x: pandas.DataFrame
A pandas DataFrame. When `x_link` is None, the algorithm makes
record pairs within the DataFrame. When `x_link` is not empty,
the algorithm makes pairs between `x` and `x_link`.
x_link: pandas.DataFrame, optional
A second DataFrame to link with the DataFrame x.
Returns
-------
pandas.MultiIndex
A pandas.MultiIndex with record pairs. Each record pair contains
the index labels of two records. |
19,887 | def eval_objfn(self):
dfd = self.obfn_dfd()
reg = self.obfn_reg()
obj = dfd + reg[0]
return (obj, dfd) + reg[1:] | Compute components of objective function as well as total
contribution to objective function. |
19,888 | def compare_baselines(old_baseline_filename, new_baseline_filename):
if old_baseline_filename == new_baseline_filename:
raise RedundantComparisonError
old_baseline = _get_baseline_from_file(old_baseline_filename)
new_baseline = _get_baseline_from_file(new_baseline_filename)
_remove_nonexistent_files_from_baseline(old_baseline)
_remove_nonexistent_files_from_baseline(new_baseline)
secrets_to_compare = _get_secrets_to_compare(old_baseline, new_baseline)
total_reviews = len(secrets_to_compare)
current_index = 0
secret_iterator = BidirectionalIterator(secrets_to_compare)
for filename, secret, is_removed in secret_iterator:
_clear_screen()
current_index += 1
header =
if is_removed:
plugins_used = old_baseline[]
header = header.format(
colorize(, AnsiColor.BOLD),
.format(
colorize(, AnsiColor.RED),
),
)
else:
plugins_used = new_baseline[]
header = header.format(
colorize(, AnsiColor.BOLD),
.format(
colorize(, AnsiColor.LIGHT_GREEN),
),
)
try:
_print_context(
filename,
secret,
current_index,
total_reviews,
plugins_used,
additional_header_lines=header,
force=is_removed,
)
decision = _get_user_decision(
can_step_back=secret_iterator.can_step_back(),
prompt_secret_decision=False,
)
except SecretNotFoundOnSpecifiedLineError:
decision = _get_user_decision(prompt_secret_decision=False)
if decision == :
print()
break
if decision == :
current_index -= 2
secret_iterator.step_back_on_next_iteration() | This function enables developers to more easily configure plugin
settings, by comparing two generated baselines and highlighting
their differences.
For effective use, a few assumptions are made:
1. Baselines are sorted by (filename, line_number, hash).
This allows for a deterministic order, when doing a side-by-side
comparison.
2. Baselines are generated for the same codebase snapshot.
This means that we won't have cases where secrets are moved around;
only added or removed.
NOTE: We don't want to do a version check, because we want to be able to
use this functionality across versions (to see how the new version fares
compared to the old one). |
19,889 | def get_tablenames(cur):
cur.execute("SELECT name FROM sqlite_master WHERE type=")
tablename_list_ = cur.fetchall()
tablename_list = [str(tablename[0]) for tablename in tablename_list_ ]
return tablename_list | Conveinience: |
19,890 | def changeLocalUserPassword(self, login, user, password):
self.send_changeLocalUserPassword(login, user, password)
self.recv_changeLocalUserPassword() | Parameters:
- login
- user
- password |
19,891 | def text_fd_to_metric_families(fd):
name = None
allowed_names = []
eof = False
seen_metrics = set()
def build_metric(name, documentation, typ, unit, samples):
if name in seen_metrics:
raise ValueError("Duplicate metric: " + name)
seen_metrics.add(name)
if typ is None:
typ =
if documentation is None:
documentation =
if unit is None:
unit =
if unit and not name.endswith("_" + unit):
raise ValueError("Unit does not match metric name: " + name)
if unit and typ in [, ]:
raise ValueError("Units not allowed for this metric type: " + name)
if typ in [, ]:
_check_histogram(samples, name)
metric = Metric(name, documentation, typ, unit)
metric.samples = samples
return metric
for line in fd:
if line[-1] == :
line = line[:-1]
if eof:
raise ValueError("Received line after
if line == :
eof = True
elif line.startswith():
parts = line.split(, 3)
if len(parts) < 4:
raise ValueError("Invalid line: " + line)
if parts[2] == name and samples:
raise ValueError("Received metadata after samples: " + line)
if parts[2] != name:
if name is not None:
yield build_metric(name, documentation, typ, unit, samples)
name = parts[2]
unit = None
typ = None
documentation = None
group = None
seen_groups = set()
group_timestamp = None
group_timestamp_samples = set()
samples = []
allowed_names = [parts[2]]
if parts[1] == :
if documentation is not None:
raise ValueError("More than one HELP for metric: " + line)
if len(parts) == 4:
documentation = _unescape_help(parts[3])
elif len(parts) == 3:
raise ValueError("Invalid line: " + line)
elif parts[1] == :
if typ is not None:
raise ValueError("More than one TYPE for metric: " + line)
typ = parts[3]
if typ == :
raise ValueError("Invalid TYPE for metric: " + line)
allowed_names = {
: [, ],
: [, , , ],
: [, , , ],
: [, , ],
: [],
}.get(typ, [])
allowed_names = [name + n for n in allowed_names]
elif parts[1] == :
if unit is not None:
raise ValueError("More than one UNIT for metric: " + line)
unit = parts[3]
else:
raise ValueError("Invalid line: " + line)
else:
sample = _parse_sample(line)
if sample.name not in allowed_names:
if name is not None:
yield build_metric(name, documentation, typ, unit, samples)
name = sample.name
documentation = None
unit = None
typ =
samples = []
group = None
group_timestamp = None
group_timestamp_samples = set()
seen_groups = set()
allowed_names = [sample.name]
if typ == and name not in sample.labels:
raise ValueError("Stateset missing label: " + line)
if (typ in [, ] and name + == sample.name
and (float(sample.labels.get(, -1)) < 0
or sample.labels[] != floatToGoString(sample.labels[]))):
raise ValueError("Invalid le label: " + line)
if (typ == and name == sample.name
and (not (0 <= float(sample.labels.get(, -1)) <= 1)
or sample.labels[] != floatToGoString(sample.labels[]))):
raise ValueError("Invalid quantile label: " + line)
g = tuple(sorted(_group_for_sample(sample, name, typ).items()))
if group is not None and g != group and g in seen_groups:
raise ValueError("Invalid metric grouping: " + line)
if group is not None and g == group:
if (sample.timestamp is None) != (group_timestamp is None):
raise ValueError("Mix of timestamp presence within a group: " + line)
if group_timestamp is not None and group_timestamp > sample.timestamp and typ != :
raise ValueError("Timestamps went backwards within a group: " + line)
else:
group_timestamp_samples = set()
series_id = (sample.name, tuple(sorted(sample.labels.items())))
if sample.timestamp != group_timestamp or series_id not in group_timestamp_samples:
samples.append(sample)
group_timestamp_samples.add(series_id)
group = g
group_timestamp = sample.timestamp
seen_groups.add(g)
if typ == and sample.value not in [0, 1]:
raise ValueError("Stateset samples can only have values zero and one: " + line)
if typ == and sample.value != 1:
raise ValueError("Info samples can only have value one: " + line)
if typ == and name == sample.name and sample.value < 0:
raise ValueError("Quantile values cannot be negative: " + line)
if sample.name[len(name):] in [, , , , , ] and math.isnan(
sample.value):
raise ValueError("Counter-like samples cannot be NaN: " + line)
if sample.name[len(name):] in [, , , , ,
] and sample.value < 0:
raise ValueError("Counter-like samples cannot be negative: " + line)
if sample.exemplar and not (
typ in [, ]
and sample.name.endswith()):
raise ValueError("Invalid line only histogram/gaugehistogram buckets can have exemplars: " + line)
if name is not None:
yield build_metric(name, documentation, typ, unit, samples)
if not eof:
raise ValueError("Missing | Parse Prometheus text format from a file descriptor.
This is a laxer parser than the main Go parser,
so successful parsing does not imply that the parsed
text meets the specification.
Yields Metric's. |
19,892 | def schedule_host_check(self, host, check_time):
host.schedule(self.daemon.hosts, self.daemon.services,
self.daemon.timeperiods, self.daemon.macromodulations,
self.daemon.checkmodulations, self.daemon.checks,
force=False, force_time=check_time)
self.send_an_element(host.get_update_status_brok()) | Schedule a check on a host
Format of the line that triggers function call::
SCHEDULE_HOST_CHECK;<host_name>;<check_time>
:param host: host to check
:type host: alignak.object.host.Host
:param check_time: time to check
:type check_time:
:return: None |
19,893 | def delete_quick(self, get_count=False):
query = + self.full_table_name + self.where_clause
self.connection.query(query)
count = self.connection.query("SELECT ROW_COUNT()").fetchone()[0] if get_count else None
self._log(query[:255])
return count | Deletes the table without cascading and without user prompt.
If this table has populated dependent tables, this will fail. |
19,894 | def convert_coord(coord_from,matrix_file,base_to_aligned=True):
with open(matrix_file) as f:
try:
values = [float(y) for y in .join([x for x in f.readlines() if x.strip()[0]!=]).strip().split()]
except:
nl.notify( % matrix_file, level=nl.level.error)
return False
if len(values)!=12:
nl.notify( % (len(values),matrix_file), level=nl.level.error)
return False
matrix = np.vstack((np.array(values).reshape((3,-1)),[0,0,0,1]))
if not base_to_aligned:
matrix = np.linalg.inv(matrix)
return np.dot(matrix,list(coord_from) + [1])[:3] | Takes an XYZ array (in DICOM coordinates) and uses the matrix file produced by 3dAllineate to transform it. By default, the 3dAllineate
matrix transforms from base to aligned space; to get the inverse transform set ``base_to_aligned`` to ``False`` |
19,895 | def query(self, query_dict: Dict[str, Any]) -> None:
self.parse_url.query = cast(Any, query_dict) | 重写 query |
19,896 | async def list(self, *, filters: Mapping = None) -> List[Mapping]:
params = {"filters": clean_filters(filters)}
response = await self.docker._query_json(
"services", method="GET", params=params
)
return response | Return a list of services
Args:
filters: a dict with a list of filters
Available filters:
id=<service id>
label=<service label>
mode=["replicated"|"global"]
name=<service name> |
19,897 | def create_project(type, schema, server, name, output, verbose):
if verbose:
log("Entity Matching Server: {}".format(server))
if schema is not None:
schema_json = json.load(schema)
clkhash.schema.validate_schema_dict(schema_json)
else:
raise ValueError("Schema must be provided when creating new linkage project")
name = name if name is not None else
try:
project_creation_reply = project_create(server, schema_json, type, name)
except ServiceError as e:
log("Unexpected response - {}".format(e.status_code))
log(e.text)
raise SystemExit
else:
log("Project created")
json.dump(project_creation_reply, output) | Create a new project on an entity matching server.
See entity matching service documentation for details on mapping type and schema
Returns authentication details for the created project. |
19,898 | def create_weather(self, **kwargs):
weather = predix.admin.weather.WeatherForecast(**kwargs)
weather.create()
client_id = self.get_client_id()
if client_id:
weather.grant_client(client_id)
weather.grant_client(client_id)
weather.add_to_manifest(self)
return weather | Creates an instance of the Asset Service. |
19,899 | def DownloadFile(file_obj, target_path, buffer_size=BUFFER_SIZE):
logging.info(u"Downloading: %s to: %s", file_obj.urn, target_path)
target_file = open(target_path, "wb")
file_obj.Seek(0)
count = 0
data_buffer = file_obj.Read(buffer_size)
while data_buffer:
target_file.write(data_buffer)
data_buffer = file_obj.Read(buffer_size)
count += 1
if not count % 3:
logging.debug(u"Downloading: %s: %s done", file_obj.urn,
utils.FormatNumberAsString(count * buffer_size))
target_file.close() | Download an aff4 file to the local filesystem overwriting it if it exists.
Args:
file_obj: An aff4 object that supports the file interface (Read, Seek)
target_path: Full path of file to write to.
buffer_size: Read in chunks this size. |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.