Unnamed: 0
int64 0
389k
| code
stringlengths 26
79.6k
| docstring
stringlengths 1
46.9k
|
---|---|---|
28,500 |
def iterate(self, max_iter=150):
r
self._run_alg(max_iter)
self.retrieve_outputs()
self.x_final = self._x_new
|
r"""Iterate
This method calls update until either convergence criteria is met or
the maximum number of iterations is reached
Parameters
----------
max_iter : int, optional
Maximum number of iterations (default is ``150``)
|
28,501 |
def build_masked_loss(loss_function, mask_value):
def masked_loss_function(y_true, y_pred):
mask = K.cast(K.not_equal(y_true, mask_value), K.floatx())
return loss_function(y_true * mask, y_pred * mask)
return masked_loss_function
|
Builds a loss function that masks based on targets
Args:
loss_function: The loss function to mask
mask_value: The value to mask in the targets
Returns:
function: a loss function that acts like loss_function with masked inputs
|
28,502 |
async def identity_of(client: Client, search: str) -> dict:
return await client.get(MODULE + % search, schema=IDENTITY_OF_SCHEMA)
|
GET Identity data written in the blockchain
:param client: Client to connect to the api
:param search: UID or public key
:return:
|
28,503 |
def decipher(self,string,keep_punct=False):
if self.invkey == :
for i in :
self.invkey += self.i2a(self.key.index(i))
if not keep_punct: string = self.remove_punctuation(string)
ret =
for c in string.upper():
if c.isalpha(): ret += self.invkey[self.a2i(c)]
else: ret += c
return ret
|
Decipher string using Simple Substitution cipher according to initialised key.
Example::
plaintext = SimpleSubstitution('AJPCZWRLFBDKOTYUQGENHXMIVS').decipher(ciphertext)
:param string: The string to decipher.
:param keep_punct: if true, punctuation and spacing are retained. If false, it is all removed. Default is False.
:returns: The deciphered string.
|
28,504 |
def get_meta_type_by_dir(dir_name):
parent_data = get_default_metadata_data()
child_data = get_child_metadata_data()
data = parent_data[] + child_data
for item in data:
if in item and item[].lower() == dir_name.lower():
return item
elif in item and item[].lower() == dir_name.lower():
return item
s use that to detect metadata types
config.describeconfig.describemetadataObjectsdirectoryNamedirectoryNametagNametagName'].lower() == dir_name.lower():
return item
except:
pass
|
> quick and dirty fix for users experiencing issues with "newer" metadata types not properly tested by mm
> if the project has a cached .describe, let's use that to detect metadata types
|
28,505 |
def image_shift(xshift=0, yshift=0, axes="gca"):
if axes=="gca": axes = _pylab.gca()
e = axes.images[0].get_extent()
e[0] = e[0] + xshift
e[1] = e[1] + xshift
e[2] = e[2] + yshift
e[3] = e[3] + yshift
axes.images[0].set_extent(e)
_pylab.draw()
|
This will shift an image to a new location on x and y.
|
28,506 |
def drop(self):
api = self._instance._client.database_admin_api
metadata = _metadata_with_prefix(self.name)
api.drop_database(self.name, metadata=metadata)
|
Drop this database.
See
https://cloud.google.com/spanner/reference/rpc/google.spanner.admin.database.v1#google.spanner.admin.database.v1.DatabaseAdmin.DropDatabase
|
28,507 |
def reset(self):
self.clean_cache_upstream()
self.set_mode_train()
for step_obj in self.all_upstream_steps.values():
step_obj.is_fittable = DEFAULT_TRAINING_SETUP[]
step_obj.force_fitting = DEFAULT_TRAINING_SETUP[]
step_obj.persist_output = DEFAULT_TRAINING_SETUP[]
step_obj.cache_output = DEFAULT_TRAINING_SETUP[]
step_obj.load_persisted_output = DEFAULT_TRAINING_SETUP[]
logger.info(
.format(self.name))
return self
|
Reset all upstream Steps to the default training parameters and
cleans cache for all upstream Steps including this Step.
Defaults are:
'mode': 'train',
'is_fittable': True,
'force_fitting': True,
'persist_output': False,
'cache_output': False,
'load_persisted_output': False
|
28,508 |
def _set_allowed_ouis(self, v, load=False):
if hasattr(v, "_utype"):
v = v._utype(v)
try:
t = YANGDynClass(v,base=YANGListType("oui",allowed_ouis.allowed_ouis, yang_name="allowed-ouis", rest_name="allowed-ouis", parent=self, is_container=, user_ordered=False, path_helper=self._path_helper, yang_keys=, extensions={u: {u: u, u: None, u: None, u: u, u: None}}), is_container=, yang_name="allowed-ouis", rest_name="allowed-ouis", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u: {u: u, u: None, u: None, u: u, u: None}}, namespace=, defining_module=, yang_type=, is_config=True)
except (TypeError, ValueError):
raise ValueError({
: ,
: "list",
: ,
})
self.__allowed_ouis = t
if hasattr(self, ):
self._set()
|
Setter method for allowed_ouis, mapped from YANG variable /interface/port_channel/switchport/port_security/allowed_ouis (list)
If this variable is read-only (config: false) in the
source YANG file, then _set_allowed_ouis is considered as a private
method. Backends looking to populate this variable should
do so via calling thisObj._set_allowed_ouis() directly.
YANG Description: List of allowed OUIs
|
28,509 |
def add_timing(self, label, secs, is_tool=False):
self._timings_by_path[label] += secs
if is_tool:
self._tool_labels.add(label)
if self._path and os.path.exists(os.path.dirname(self._path)):
with open(self._path, ) as f:
for x in self.get_all():
f.write(.format(**x))
|
Aggregate timings by label.
secs - a double, so fractional seconds are allowed.
is_tool - whether this label represents a tool invocation.
|
28,510 |
def nvmlDeviceGetComputeMode(handle):
r
c_mode = _nvmlComputeMode_t()
fn = _nvmlGetFunctionPointer("nvmlDeviceGetComputeMode")
ret = fn(handle, byref(c_mode))
_nvmlCheckReturn(ret)
return bytes_to_str(c_mode.value)
|
r"""
/**
* Retrieves the current compute mode for the device.
*
* For all products.
*
* See \ref nvmlComputeMode_t for details on allowed compute modes.
*
* @param device The identifier of the target device
* @param mode Reference in which to return the current compute mode
*
* @return
* - \ref NVML_SUCCESS if \a mode has been set
* - \ref NVML_ERROR_UNINITIALIZED if the library has not been successfully initialized
* - \ref NVML_ERROR_INVALID_ARGUMENT if \a device is invalid or \a mode is NULL
* - \ref NVML_ERROR_NOT_SUPPORTED if the device does not support this feature
* - \ref NVML_ERROR_GPU_IS_LOST if the target GPU has fallen off the bus or is otherwise inaccessible
* - \ref NVML_ERROR_UNKNOWN on any unexpected error
*
* @see nvmlDeviceSetComputeMode()
*/
nvmlReturn_t DECLDIR nvmlDeviceGetComputeMode
|
28,511 |
def retry(f, exc_classes=DEFAULT_EXC_CLASSES, logger=None,
retry_log_level=logging.INFO,
retry_log_message="Connection broken in (error: ); "
"retrying with new connection.",
max_failures=None, interval=0,
max_failure_log_level=logging.ERROR,
max_failure_log_message="Max retries reached for . Aborting."):
exc_classes = tuple(exc_classes)
@wraps(f)
def deco(*args, **kwargs):
failures = 0
while True:
try:
return f(*args, **kwargs)
except exc_classes as e:
if logger is not None:
logger.log(retry_log_level,
retry_log_message.format(f=f.func_name, e=e))
gevent.sleep(interval)
failures += 1
if max_failures is not None \
and failures > max_failures:
if logger is not None:
logger.log(max_failure_log_level,
max_failure_log_message.format(
f=f.func_name, e=e))
raise
return deco
|
Decorator to automatically reexecute a function if the connection is
broken for any reason.
|
28,512 |
def league(page):
soup = BeautifulSoup(page)
try:
return soup.find().text.split()[0].split()[0]
except:
return None
|
Return the league name
|
28,513 |
def register_work_from_cbk(self, cbk_name, cbk_data, deps, work_class, manager=None):
work_workdir = os.path.join(self.workdir, "w" + str(len(self)))
work = work_class(workdir=work_workdir, manager=manager)
self._works.append(work)
deps = [Dependency(node, exts) for node, exts in deps.items()]
if not deps:
raise ValueError("A callback must have deps!")
work.add_deps(deps)
cbk = FlowCallback(cbk_name, self, deps=deps, cbk_data=cbk_data)
self._callbacks.append(cbk)
return work
|
Registers a callback function that will generate the :class:`Task` of the :class:`Work`.
Args:
cbk_name: Name of the callback function (must be a bound method of self)
cbk_data: Additional data passed to the callback function.
deps: List of :class:`Dependency` objects specifying the dependency of the work.
work_class: :class:`Work` class to instantiate.
manager: The :class:`TaskManager` responsible for the submission of the task.
If manager is None, we use the `TaskManager` specified during the creation of the :class:`Flow`.
Returns:
The :class:`Work` that will be finalized by the callback.
|
28,514 |
def update(self, value, tys=None, override=True):
if isinstance(value, WeldObject):
self.context.update(value.context)
else:
value_str = str(value)
if value_str in WeldObject._registry:
name = WeldObject._registry[value_str]
else:
name = WeldObject.generate_input_name(value_str)
self.context[name] = value
if tys is not None and not override:
self.argtypes[name] = tys
return name
|
Update this context. if value is another context,
the names from that context are added into this one.
Otherwise, a new name is assigned and returned.
TODO tys for inputs.
|
28,515 |
def set_log_level(logger, level):
if level > 2:
level = 2
if level < -1:
level = -1
levels = {
-1: logging.ERROR,
0: logging.WARN,
1: logging.INFO,
2: logging.DEBUG
}
logger.setLevel(levels[level])
|
Dynamic reconfiguration of the log level
|
28,516 |
def connect_edges_pd(graph):
edges = graph.dframe()
edges.index.name =
edges = edges.reset_index()
nodes = graph.nodes.dframe()
src, tgt = graph.kdims
x, y, idx = graph.nodes.kdims[:3]
df = pd.merge(edges, nodes, left_on=[src.name], right_on=[idx.name])
df = df.rename(columns={x.name: , y.name: })
df = pd.merge(df, nodes, left_on=[tgt.name], right_on=[idx.name])
df = df.rename(columns={x.name: , y.name: })
df = df.sort_values().drop([], axis=1)
edge_segments = []
for i, edge in df.iterrows():
start = edge[], edge[]
end = edge[], edge[]
edge_segments.append(np.array([start, end]))
return edge_segments
|
Given a Graph element containing abstract edges compute edge
segments directly connecting the source and target nodes. This
operation depends on pandas and is a lot faster than the pure
NumPy equivalent.
|
28,517 |
def getThirdpartyLibs(self, libs, configuration = , includePlatformDefaults = True):
if includePlatformDefaults == True:
libs = self._defaultThirdpartyLibs() + libs
interrogator = self._getUE4BuildInterrogator()
return interrogator.interrogate(self.getPlatformIdentifier(), configuration, libs, self._getLibraryOverrides())
|
Retrieves the ThirdPartyLibraryDetails instance for Unreal-bundled versions of the specified third-party libraries
|
28,518 |
def _init_taxid2asscs(self):
taxid2asscs = cx.defaultdict(list)
for ntanno in self.associations:
taxid2asscs[ntanno.tax_id].append(ntanno)
assert len(taxid2asscs) != 0, "**FATAL: NO TAXIDS: {F}".format(F=self.filename)
prt = sys.stdout
num_taxids = len(taxid2asscs)
prt.write(.format(N=num_taxids))
if num_taxids < 5:
prt.write(.format(Ts=.join(sorted(str(t) for t in taxid2asscs))))
prt.write()
return dict(taxid2asscs)
|
Create dict with taxid keys and annotation namedtuple list.
|
28,519 |
def list():
try:
devs = hid.enumerate(VENDOR_ID,PRODUCT_ID)
serials = list(map(lambda d:d.get(), devs))
return serials
except IOError as e:
return []
|
List blink(1) devices connected, by serial number
:return: List of blink(1) device serial numbers
|
28,520 |
def _process(self, segments):
mlh, mlw = self.max_line_height, self.max_line_width
s = segments.astype(numpy.uint32)
order = mlw * (s[:, 1] // mlh) + s[:, 0]
sort_order = numpy.argsort(order)
return segments[sort_order]
|
sort segments in read order - left to right, up to down
|
28,521 |
def messages_from_response(response):
messages = []
if hasattr(response, ) and response.context and \
in response.context:
messages = response.context[]
elif hasattr(response, ):
morsel = response.cookies.get()
if not morsel:
return []
from django.contrib.messages.storage.cookie import CookieStorage
store = CookieStorage(FakeRequest())
messages = store._decode(morsel.value)
else:
return []
return [(m.message, m.level) for m in messages]
|
Returns a list of the messages from the django MessageMiddleware
package contained within the given response. This is to be used during
unit testing when trying to see if a message was set properly in a view.
:param response: HttpResponse object, likely obtained through a
test client.get() or client.post() call
:returns: a list of tuples (message_string, message_level), one for each
message in the response context
|
28,522 |
def plot_freq(self, x, y, title=, ylabel=None, scale=):
freq = self.frequency
scaling = freq[].get_value()
if ylabel is None:
if freq[].get_value():
ylabel =
elif == scaling:
ylabel =
elif == scaling:
ylabel =
self.parent.plot_dialog = PlotDialog(self.parent)
self.parent.plot_dialog.canvas.plot(x, y, title, ylabel, scale=scale)
self.parent.show_plot_dialog()
|
Plot mean frequency spectrum and display in dialog.
Parameters
----------
x : list
vector with frequencies
y : ndarray
vector with amplitudes
title : str
plot title
ylabel : str
plot y label
scale : str
semilogy, loglog or linear
|
28,523 |
def _closed_cb(self, final_frame=None):
if final_frame:
self._connection.send_frame(final_frame)
try:
self._notify_close_listeners()
finally:
self._pending_events = deque()
self._frame_buffer = deque()
for protocol_class in self._class_map.values():
protocol_class._cleanup()
delattr(self, protocol_class.name)
self._connection = None
self._class_map = None
self._close_listeners = set()
|
"Private" callback from the ChannelClass when a channel is closed. Only
called after broker initiated close, or we receive a close_ok. Caller
has the option to send a final frame, to be used to bypass any
synchronous or otherwise-pending frames so that the channel can be
cleanly closed.
|
28,524 |
def _scheduled_check_for_summaries(self):
if self._analysis_process is None:
return
timed_out = time.time() - self._analyze_start_time > self.time_limit
if timed_out:
self._handle_results(
,
)
return
try:
self._analysis_process.join(0.001)
except AssertionError:
pass
if not self._analysis_process.is_alive():
self._handle_results(,
)
return
self._base.after(self._POLL_PERIOD_MILLISECONDS,
self._scheduled_check_for_summaries)
|
Present the results if they have become available or timed out.
|
28,525 |
def mouseReleaseEvent( self, event ):
event.setAccepted(False)
if self._hotspotPressed:
event.accept()
self._hotspotPressed = False
return
scene = self.scene()
if ( self.isLocked() or self._ignoreMouseEvents or \
(scene and (scene.inViewMode() or scene.isConnecting()))):
event.ignore()
self._ignoreMouseEvents = False
return
super(XNode, self).mouseReleaseEvent(event)
self.emitGeometryChanged()
if ( scene ):
scene.blockSelectionSignals(False)
delta = datetime.datetime.now() - self._pressTime
if not scene.signalsBlocked() and delta.seconds < 1:
scene.nodeClicked.emit(self)
|
Overloads the mouse release event to ignore the event when the \
scene is in view mode, and release the selection block signal.
:param event <QMouseReleaseEvent>
|
28,526 |
def me(self):
self_id = self._state.user.id
return self.get_member(self_id)
|
Similar to :attr:`Client.user` except an instance of :class:`Member`.
This is essentially used to get the member version of yourself.
|
28,527 |
def quantile(self, prob=None, combine_method="interpolate", weights_column=None):
if len(self) == 0: return self
if prob is None: prob = [0.01, 0.1, 0.25, 0.333, 0.5, 0.667, 0.75, 0.9, 0.99]
if weights_column is None:
weights_column = "_"
else:
assert_is_type(weights_column, str, I(H2OFrame, lambda wc: wc.ncol == 1 and wc.nrow == self.nrow))
if isinstance(weights_column, H2OFrame):
merged = self.cbind(weights_column)
weights_column = merged.names[-1]
return H2OFrame._expr(expr=ExprNode("quantile", merged, prob, combine_method, weights_column))
return H2OFrame._expr(expr=ExprNode("quantile", self, prob, combine_method, weights_column))
|
Compute quantiles.
:param List[float] prob: list of probabilities for which quantiles should be computed.
:param str combine_method: for even samples this setting determines how to combine quantiles. This can be
one of ``"interpolate"``, ``"average"``, ``"low"``, ``"high"``.
:param weights_column: optional weights for each row. If not given, all rows are assumed to have equal
importance. This parameter can be either the name of column containing the observation weights in
this frame, or a single-column separate H2OFrame of observation weights.
:returns: a new H2OFrame containing the quantiles and probabilities.
|
28,528 |
def on_sighup(self, signal_unused, frame_unused):
for setting in self.http_config:
if getattr(self.http_server, setting) != self.http_config[setting]:
LOGGER.debug(, setting)
setattr(self.http_server, setting, self.http_config[setting])
for setting in self.settings:
if self.app.settings[setting] != self.settings[setting]:
LOGGER.debug(, setting)
self.app.settings[setting] = self.settings[setting]
self.app.handlers = []
self.app.named_handlers = {}
routes = self.namespace.config.get(config.ROUTES)
self.app.add_handlers(".*$", self.app.prepare_routes(routes))
LOGGER.info()
|
Reload the configuration
:param int signal_unused: Unused signal number
:param frame frame_unused: Unused frame the signal was caught in
|
28,529 |
def get_dropout_mask(dropout_probability: float, tensor_for_masking: torch.Tensor):
binary_mask = (torch.rand(tensor_for_masking.size()) > dropout_probability).to(tensor_for_masking.device)
dropout_mask = binary_mask.float().div(1.0 - dropout_probability)
return dropout_mask
|
Computes and returns an element-wise dropout mask for a given tensor, where
each element in the mask is dropped out with probability dropout_probability.
Note that the mask is NOT applied to the tensor - the tensor is passed to retain
the correct CUDA tensor type for the mask.
Parameters
----------
dropout_probability : float, required.
Probability of dropping a dimension of the input.
tensor_for_masking : torch.Tensor, required.
Returns
-------
A torch.FloatTensor consisting of the binary mask scaled by 1/ (1 - dropout_probability).
This scaling ensures expected values and variances of the output of applying this mask
and the original tensor are the same.
|
28,530 |
def extract_features(self, text):
try:
return self.feature_extractor(text, self.train_set)
except (TypeError, AttributeError):
return self.feature_extractor(text)
|
Extracts features from a body of text.
:rtype: dictionary of features
|
28,531 |
def pos_tag_sents(
sentences: List[List[str]], engine: str = "perceptron", corpus: str = "orchid"
) -> List[List[Tuple[str, str]]]:
if not sentences:
return []
return [pos_tag(sent, engine=engine, corpus=corpus) for sent in sentences]
|
Part of Speech tagging Sentence function.
:param list sentences: a list of lists of tokenized words
:param str engine:
* unigram - unigram tagger
* perceptron - perceptron tagger (default)
* artagger - RDR POS tagger
:param str corpus:
* orchid - annotated Thai academic articles (default)
* orchid_ud - annotated Thai academic articles using Universal Dependencies Tags
* pud - Parallel Universal Dependencies (PUD) treebanks
:return: returns a list of labels regarding which part of speech it is
|
28,532 |
def _import_bibdoc():
try:
from invenio.bibdocfile import BibRecDocs, BibDoc
except ImportError:
from invenio.legacy.bibdocfile.api import BibRecDocs, BibDoc
return BibRecDocs, BibDoc
|
Import BibDocFile.
|
28,533 |
def _do_broker_main(self):
self._waker.broker_ident = thread.get_ident()
try:
while self._alive:
self._loop_once()
fire(self, )
self._broker_shutdown()
except Exception:
LOG.exception()
self._alive = False
self._exitted = True
self._broker_exit()
|
Broker thread main function. Dispatches IO events until
:meth:`shutdown` is called.
|
28,534 |
def _auth(
self,
username,
password,
pkey,
key_filenames,
allow_agent,
look_for_keys,
gss_auth,
gss_kex,
gss_deleg_creds,
gss_host,
passphrase,
):
saved_exception = None
two_factor = False
allowed_types = set()
two_factor_types = {"keyboard-interactive", "password"}
if passphrase is None and password is not None:
passphrase = password
if gss_kex and self._transport.gss_kex_used:
try:
self._transport.auth_gssapi_keyex(username)
return
except Exception as e:
saved_exception = e
if gss_auth:
try:
return self._transport.auth_gssapi_with_mic(
username, gss_host, gss_deleg_creds
)
except Exception as e:
saved_exception = e
if pkey is not None:
try:
self._log(
DEBUG,
"Trying SSH key {}".format(
hexlify(pkey.get_fingerprint())
),
)
allowed_types = set(
self._transport.auth_publickey(username, pkey)
)
two_factor = allowed_types & two_factor_types
if not two_factor:
return
except SSHException as e:
saved_exception = e
if not two_factor:
for key_filename in key_filenames:
for pkey_class in (RSAKey, DSSKey, ECDSAKey, Ed25519Key):
try:
key = self._key_from_filepath(
key_filename, pkey_class, passphrase
)
allowed_types = set(
self._transport.auth_publickey(username, key)
)
two_factor = allowed_types & two_factor_types
if not two_factor:
return
break
except SSHException as e:
saved_exception = e
if not two_factor and allow_agent:
if self._agent is None:
self._agent = Agent()
for key in self._agent.get_keys():
try:
id_ = hexlify(key.get_fingerprint())
self._log(DEBUG, "Trying SSH agent key {}".format(id_))
allowed_types = set(
self._transport.auth_publickey(username, key)
)
two_factor = allowed_types & two_factor_types
if not two_factor:
return
break
except (SSHException, IOError) as e:
saved_exception = e
if password is not None:
try:
self._transport.auth_password(username, password)
return
except SSHException as e:
saved_exception = e
elif two_factor:
try:
self._transport.auth_interactive_dumb(username)
return
except SSHException as e:
saved_exception = e
if saved_exception is not None:
raise saved_exception
raise SSHException("No authentication methods available")
|
Try, in order:
- The key(s) passed in, if one was passed in.
- Any key we can find through an SSH agent (if allowed).
- Any "id_rsa", "id_dsa" or "id_ecdsa" key discoverable in ~/.ssh/
(if allowed).
- Plain username/password auth, if a password was given.
(The password might be needed to unlock a private key [if 'passphrase'
isn't also given], or for two-factor authentication [for which it is
required].)
|
28,535 |
def me(self):
if self._me is not None:
return self._me
self._me = self.Person("{username}@{server}".format(
username=self.client.nickname,
server=self.client.server,
))
return self._me
|
Returns :class:`Person <pypump.models.person.Person>` instance of
the logged in user.
Example:
>>> pump.me
<Person: [email protected]>
|
28,536 |
def generate_type(self):
types = enforce_list(self._definition[])
try:
python_types = .join(JSON_TYPE_TO_PYTHON_TYPE[t] for t in types)
except KeyError as exc:
raise JsonSchemaDefinitionException(.format(exc))
extra =
if in types:
extra += .format(
variable=self._variable,
)
if ( in types or in types) and not in types:
extra += .format(variable=self._variable)
with self.l(, python_types, extra):
self.l(, .join(types))
|
Validation of type. Can be one type or list of types.
Since draft 06 a float without fractional part is an integer.
.. code-block:: python
{'type': 'string'}
{'type': ['string', 'number']}
|
28,537 |
def reserve_time_slot(self, calendar_event, participant_id=None, **kwargs):
from canvasapi.calendar_event import CalendarEvent
calendar_event_id = obj_or_id(calendar_event, "calendar_event", (CalendarEvent,))
if participant_id:
uri = .format(
calendar_event_id, participant_id
)
else:
uri = .format(calendar_event_id)
response = self.__requester.request(
,
uri,
_kwargs=combine_kwargs(**kwargs)
)
return CalendarEvent(self.__requester, response.json())
|
Return single Calendar Event by id
:calls: `POST /api/v1/calendar_events/:id/reservations \
<https://canvas.instructure.com/doc/api/calendar_events.html#method.calendar_events_api.reserve>`_
:param calendar_event: The object or ID of the calendar event.
:type calendar_event: :class:`canvasapi.calendar_event.CalendarEvent` or int
:param participant_id: The ID of the participant, if given.
:type participant_id: str
:rtype: :class:`canvasapi.calendar_event.CalendarEvent`
|
28,538 |
def upload_list(book_id_list, rdf_library=None):
with open(book_id_list, ) as f:
cache = {}
for book_id in f:
book_id = book_id.strip()
try:
if int(book_id) in missing_pgid:
print(u.format(book_id))
continue
upload_book(book_id, rdf_library=rdf_library, cache=cache)
except Exception as e:
print(u.format(book_id))
logger.error(u"Error processing: {}\r{}".format(book_id, e))
|
Uses the fetch, make, push subcommands to add a list of pg books
|
28,539 |
def allstats(self, approximate=False):
statcollect = []
for x in self.layers():
try:
stats = x.ComputeStatistics(approximate)
except RuntimeError:
stats = None
stats = dict(zip([, , , ], stats))
statcollect.append(stats)
return statcollect
|
Compute some basic raster statistics
Parameters
----------
approximate: bool
approximate statistics from overviews or a subset of all tiles?
Returns
-------
list of dicts
a list with a dictionary of statistics for each band. Keys: `min`, `max`, `mean`, `sdev`.
See :osgeo:meth:`gdal.Band.ComputeStatistics`.
|
28,540 |
def get_by_name(account_name, bucket, region=, json_path=, alias=None):
for account in get_all_accounts(bucket, region, json_path)[]:
if in account[]:
if account[] == account_name:
return account
elif alias:
for a in account[]:
if a == account_name:
return account
|
Given an account name, attempts to retrieve associated account info.
|
28,541 |
def _create_dim_scales(self):
dim_order = self._dim_order.maps[0]
for dim in sorted(dim_order, key=lambda d: dim_order[d]):
if dim not in self._h5group:
size = self._current_dim_sizes[dim]
kwargs = {}
if self._dim_sizes[dim] is None:
kwargs["maxshape"] = (None,)
self._h5group.create_dataset(
name=dim, shape=(size,), dtype=, **kwargs)
h5ds = self._h5group[dim]
h5ds.attrs[] = dim_order[dim]
if len(h5ds.shape) > 1:
dims = self._variables[dim].dimensions
coord_ids = np.array([dim_order[d] for d in dims], )
h5ds.attrs[] = coord_ids
scale_name = dim if dim in self.variables else NOT_A_VARIABLE
h5ds.dims.create_scale(h5ds, scale_name)
for subgroup in self.groups.values():
subgroup._create_dim_scales()
|
Create all necessary HDF5 dimension scale.
|
28,542 |
def future_timeout_manager(timeout=None, ioloop=None):
ioloop = ioloop or tornado.ioloop.IOLoop.current()
t0 = ioloop.time()
def _remaining():
return timeout - (ioloop.time() - t0) if timeout else None
def maybe_timeout(f):
if not timeout:
return f
else:
remaining = _remaining()
deadline = ioloop.time() + remaining
return with_timeout(deadline, f, ioloop)
maybe_timeout.remaining = _remaining
return maybe_timeout
|
Create Helper function for yielding with a cumulative timeout if required
Keeps track of time over multiple timeout calls so that a single timeout can
be placed over multiple operations.
Parameters
----------
timeout : int or None
Timeout, or None for no timeout
ioloop : IOLoop instance or None
tornado IOloop instance to use, or None for IOLoop.current()
Return value
------------
maybe_timeout : func
Accepts a future, and wraps it in
:func:tornado.gen.with_timeout. maybe_timeout raises
:class:`tornado.gen.TimeoutError` if the timeout expires
Has a function attribute `remaining()` that returns the remaining
timeout or None if timeout == None
Example
-------
::
@tornado.gen.coroutine
def multi_op(timeout):
maybe_timeout = future_timeout_manager(timeout)
result1 = yield maybe_timeout(op1())
result2 = yield maybe_timeout(op2())
# If the cumulative time of op1 and op2 exceeds timeout,
# :class:`tornado.gen.TimeoutError` is raised
|
28,543 |
def modify_subscription_status(netid, subscription_code, status):
url = _netid_subscription_url(netid, subscription_code)
body = {
: ,
: str(status)
}
response = post_resource(url, json.dumps(body))
return _json_to_subscriptions(response)
|
Post a subscription 'modify' action for the given netid
and subscription_code
|
28,544 |
def _get_package(auth, owner, package_name):
package = (
Package.query
.filter_by(owner=owner, name=package_name)
.join(Package.access)
.filter(_access_filter(auth))
.one_or_none()
)
if package is None:
raise PackageNotFoundException(owner, package_name, auth.is_logged_in)
return package
|
Helper for looking up a package and checking permissions.
Only useful for *_list functions; all others should use more efficient queries.
|
28,545 |
def get_student_current_grade(self, username, course_id):
resp = self.requester.get(
urljoin(
self.base_url,
.format(
username=username,
course_key=course_id
)
)
)
resp.raise_for_status()
return CurrentGrade(resp.json()[0])
|
Returns an CurrentGrade object for the user in a course
Args:
username (str): an edx user's username
course_id (str): an edX course id.
Returns:
CurrentGrade: object representing the student current grade for a course
|
28,546 |
async def genTempCoreProxy(mods=None):
with s_common.getTempDir() as dirn:
async with await s_cortex.Cortex.anit(dirn) as core:
if mods:
for mod in mods:
await core.loadCoreModule(mod)
async with core.getLocalProxy() as prox:
object.__setattr__(prox, , core)
yield prox
|
Get a temporary cortex proxy.
|
28,547 |
def build_fncall(
ctx,
fndoc,
argdocs=(),
kwargdocs=(),
hug_sole_arg=False,
trailing_comment=None,
):
if callable(fndoc):
fndoc = general_identifier(fndoc)
has_comment = bool(trailing_comment)
argdocs = list(argdocs)
kwargdocs = list(kwargdocs)
kwargdocs = [
(
comment_doc(
concat([
keyword_arg(binding),
ASSIGN_OP,
doc.doc
]),
doc.annotation.value
)
if is_commented(doc)
else concat([
keyword_arg(binding),
ASSIGN_OP,
doc
])
)
for binding, doc in kwargdocs
]
if not (argdocs or kwargdocs):
return concat([
fndoc,
LPAREN,
RPAREN,
])
if (
hug_sole_arg and
not kwargdocs and
len(argdocs) == 1 and
not is_commented(argdocs[0])
):
return group(
concat([
fndoc,
LPAREN,
argdocs[0],
RPAREN
])
)
allarg_docs = [*argdocs, *kwargdocs]
if trailing_comment:
allarg_docs.append(commentdoc(trailing_comment))
parts = []
for idx, doc in enumerate(allarg_docs):
last = idx == len(allarg_docs) - 1
if is_commented(doc):
has_comment = True
comment_str = doc.annotation.value
doc = doc.doc
else:
comment_str = None
part = concat([doc, NIL if last else COMMA])
if comment_str:
part = group(
flat_choice(
when_flat=concat([
part,
,
commentdoc(comment_str)
]),
when_broken=concat([
commentdoc(comment_str),
HARDLINE,
part,
]),
)
)
if not last:
part = concat([part, HARDLINE if has_comment else LINE])
parts.append(part)
outer = (
always_break
if has_comment
else group
)
return outer(
concat([
fndoc,
LPAREN,
nest(
ctx.indent,
concat([
SOFTLINE,
concat(parts),
])
),
SOFTLINE,
RPAREN
])
)
|
Builds a doc that looks like a function call,
from docs that represent the function, arguments
and keyword arguments.
If ``hug_sole_arg`` is True, and the represented
functional call is done with a single non-keyword
argument, the function call parentheses will hug
the sole argument doc without newlines and indentation
in break mode. This makes a difference in calls
like this::
> hug_sole_arg = False
frozenset(
[
1,
2,
3,
4,
5
]
)
> hug_sole_arg = True
frozenset([
1,
2,
3,
4,
5,
])
If ``trailing_comment`` is provided, the text is
rendered as a comment after the last argument and
before the closing parenthesis. This will force
the function call to be broken to multiple lines.
|
28,548 |
def _get_default_parameter_values(sam_template):
default_values = {}
parameter_definition = sam_template.get("Parameters", None)
if not parameter_definition or not isinstance(parameter_definition, dict):
LOG.debug("No Parameters detected in the template")
return default_values
for param_name, value in parameter_definition.items():
if isinstance(value, dict) and "Default" in value:
default_values[param_name] = value["Default"]
LOG.debug("Collected default values for parameters: %s", default_values)
return default_values
|
Method to read default values for template parameters and return it
Example:
If the template contains the following parameters defined
Parameters:
Param1:
Type: String
Default: default_value1
Param2:
Type: String
Default: default_value2
then, this method will grab default value for Param1 and return the following result:
{
Param1: "default_value1",
Param2: "default_value2"
}
:param dict sam_template: SAM template
:return dict: Default values for parameters
|
28,549 |
def create(self, language, tagged_text, source_channel=values.unset):
data = values.of({: language, : tagged_text, : source_channel, })
payload = self._version.create(
,
self._uri,
data=data,
)
return SampleInstance(
self._version,
payload,
assistant_sid=self._solution[],
task_sid=self._solution[],
)
|
Create a new SampleInstance
:param unicode language: The ISO language-country string that specifies the language used for the new sample
:param unicode tagged_text: The text example of how end users might express the task
:param unicode source_channel: The communication channel from which the new sample was captured
:returns: Newly created SampleInstance
:rtype: twilio.rest.autopilot.v1.assistant.task.sample.SampleInstance
|
28,550 |
def subcommand(self, *args):
return Subcommand(*args, directory=self.directory, env_vars=self.env_vars)
|
Get subcommand acting on a service. Subcommand will run in service directory
and with the environment variables used to run the service itself.
Args:
*args: Arguments to run command (e.g. "redis-cli", "-n", "1")
Returns:
Subcommand object.
|
28,551 |
def arange(start,stop,step=1,**kwargs):
expand_value = 1 if step > 0 else -1
return matlabarray(np.arange(start,
stop+expand_value,
step,
**kwargs).reshape(1,-1),**kwargs)
|
>>> a=arange(1,10) # 1:10
>>> size(a)
matlabarray([[ 1, 10]])
|
28,552 |
def static(self, uri, file_or_directory, *args, **kwargs):
name = kwargs.pop("name", "static")
if not name.startswith(self.name + "."):
name = "{}.{}".format(self.name, name)
kwargs.update(name=name)
strict_slashes = kwargs.get("strict_slashes")
if strict_slashes is None and self.strict_slashes is not None:
kwargs.update(strict_slashes=self.strict_slashes)
static = FutureStatic(uri, file_or_directory, args, kwargs)
self.statics.append(static)
|
Create a blueprint static route from a decorated function.
:param uri: endpoint at which the route will be accessible.
:param file_or_directory: Static asset.
|
28,553 |
def start_monitoring(self):
logging.info("Multi-plugin health monitor: Started in thread.")
try:
while True:
new_ips = self.get_new_working_set()
if new_ips:
logging.debug("Sending list of %d IPs to %d plugins." %
(len(new_ips), len(self.plugins)))
for q in self.monitor_ip_queues.values():
q.put(new_ips)
all_failed_ips = self._accumulate_ips_from_plugins(
"failed",
self.failed_queue_lookup,
self.report_failed_acc)
if all_failed_ips:
self.q_failed_ips.put(all_failed_ips)
all_questionable_ips = self._accumulate_ips_from_plugins(
"questionable",
self.questionable_queue_lookup,
self.report_questionable_acc)
if all_questionable_ips:
self.q_questionable_ips.put(all_questionable_ips)
time.sleep(self.get_monitor_interval())
except common.StopReceived:
return
|
Pass IP lists to monitor sub-plugins and get results from them.
Override the common definition of this function, since in the multi
plugin it's a little different: Instead of monitoring ourselves, we
just use a number of other plugins to gather results. The multi plugin
just serves as a proxy and (de)multiplexer for those other plugins.
Note that we don't have to push any updates about failed IPs if nothing
new was detected. Therefore, our own updates can be entirely driven by
updates from the sub-plugin, which keeps our architecture simple.
|
28,554 |
def merge_elisions(elided: List[str]) -> str:
results = list(elided[0])
for line in elided:
for idx, car in enumerate(line):
if car == " ":
results[idx] = " "
return "".join(results)
|
Given a list of strings with different space swapping elisions applied, merge the elisions,
taking the most without compounding the omissions.
:param elided:
:return:
>>> merge_elisions([
... "ignavae agua multum hiatus", "ignav agua multum hiatus" ,"ignavae agua mult hiatus"])
'ignav agua mult hiatus'
|
28,555 |
def partial_fit(self, X, y):
X, y = filter_by_label(X, y, self.reference_label)
super().partial_fit(X, y)
return self
|
:X: {array-like, sparse matrix}, shape [n_samples, n_features]
The data used to compute the mean and standard deviation
used for later scaling along the features axis.
:y: Healthy 'h' or 'sick_name'
|
28,556 |
def gen_add(src1, src2, dst):
assert src1.size == src2.size
return ReilBuilder.build(ReilMnemonic.ADD, src1, src2, dst)
|
Return an ADD instruction.
|
28,557 |
def seek(self, offset, whence=None, partition=None):
if whence is None:
if partition is None:
for tmp_partition in self.offsets:
self.offsets[tmp_partition] = offset
else:
self.offsets[partition] = offset
elif whence == 1:
if partition is None:
for tmp_partition, _offset in self.offsets.items():
self.offsets[tmp_partition] = _offset + offset
else:
self.offsets[partition] += offset
elif whence in (0, 2):
reqs = []
deltas = {}
if partition is None:
(delta, rem) = divmod(offset, len(self.offsets))
for tmp_partition, r in izip_longest(self.offsets.keys(),
repeat(1, rem),
fillvalue=0):
deltas[tmp_partition] = delta + r
for tmp_partition in self.offsets.keys():
if whence == 0:
reqs.append(OffsetRequestPayload(self.topic, tmp_partition, -2, 1))
elif whence == 2:
reqs.append(OffsetRequestPayload(self.topic, tmp_partition, -1, 1))
else:
pass
else:
deltas[partition] = offset
if whence == 0:
reqs.append(OffsetRequestPayload(self.topic, partition, -2, 1))
elif whence == 2:
reqs.append(OffsetRequestPayload(self.topic, partition, -1, 1))
else:
pass
resps = self.client.send_offset_request(reqs)
for resp in resps:
self.offsets[resp.partition] = \
resp.offsets[0] + deltas[resp.partition]
else:
raise ValueError( % (whence,))
self.fetch_offsets = self.offsets.copy()
self.count_since_commit += 1
if self.auto_commit:
self.commit()
self.queue = queue.Queue()
|
Alter the current offset in the consumer, similar to fseek
Arguments:
offset: how much to modify the offset
whence: where to modify it from, default is None
* None is an absolute offset
* 0 is relative to the earliest available offset (head)
* 1 is relative to the current offset
* 2 is relative to the latest known offset (tail)
partition: modify which partition, default is None.
If partition is None, would modify all partitions.
|
28,558 |
def _message_to_payload(cls, message):
try:
return json.loads(message.decode())
except UnicodeDecodeError:
message =
except json.JSONDecodeError:
message =
raise cls._error(cls.PARSE_ERROR, message, True, None)
|
Returns a Python object or a ProtocolError.
|
28,559 |
def picknthweekday(year, month, dayofweek, hour, minute, whichweek):
first = datetime.datetime(year, month, 1, hour, minute)
weekdayone = first.replace(day=((dayofweek-first.isoweekday())%7+1))
for n in range(whichweek):
dt = weekdayone+(whichweek-n)*ONEWEEK
if dt.month == month:
return dt
|
dayofweek == 0 means Sunday, whichweek 5 means last instance
|
28,560 |
def cornice_enable_openapi_explorer(
config,
api_explorer_path=,
permission=NO_PERMISSION_REQUIRED,
route_factory=None,
**kwargs):
config.add_route(, api_explorer_path,
factory=route_factory)
config.add_view(,
permission=permission,
route_name=)
|
:param config:
Pyramid configurator object
:param api_explorer_path:
where to expose Swagger UI interface view
:param permission:
pyramid permission for those views
:param route_factory:
factory for context object for those routes
This registers and configures the view that serves api explorer
|
28,561 |
def check_species_object(species_name_or_object):
if isinstance(species_name_or_object, Species):
return species_name_or_object
elif isinstance(species_name_or_object, str):
return find_species_by_name(species_name_or_object)
else:
raise ValueError("Unexpected type for species: %s : %s" % (
species_name_or_object, type(species_name_or_object)))
|
Helper for validating user supplied species names or objects.
|
28,562 |
def ensemble(transform, loglikelihood, parameter_names, nsteps=40000, nburn=400,
start=0.5, **problem):
import emcee
import progressbar
if in problem:
numpy.random.seed(problem[])
n_params = len(parameter_names)
nwalkers = 50 + n_params * 2
if nwalkers > 200:
nwalkers = 200
p0 = [numpy.random.rand(n_params) for i in xrange(nwalkers)]
start = start + numpy.zeros(n_params)
p0[0] = start
def like(cube):
cube = numpy.array(cube)
if (cube <= 1e-10).any() or (cube >= 1-1e-10).any():
return -1e100
params = transform(cube)
return loglikelihood(params)
sampler = emcee.EnsembleSampler(nwalkers, n_params, like,
live_dangerously=True)
print
pos, prob, state = sampler.run_mcmc(p0, nburn / nwalkers)
sampler.reset()
print
pbar = progressbar.ProgressBar(
widgets=[progressbar.Percentage(), progressbar.Counter(),
progressbar.Bar(), progressbar.ETA()],
maxval=nsteps).start()
for results in sampler.sample(pos, iterations=nsteps / nwalkers, rstate0=state):
pbar.update(pbar.currval + 1)
pbar.finish()
print "Mean acceptance fraction:", numpy.mean(sampler.acceptance_fraction)
chain = sampler.flatchain
final = chain[-1]
print
chain_post = numpy.array([transform(params) for params in chain])
chain_prob = sampler.flatlnprobability
return dict(start=final, chain=chain_post, chain_prior=chain,
chain_prob=chain_prob,
method=)
|
**Ensemble MCMC**
via `emcee <http://dan.iel.fm/emcee/>`_
|
28,563 |
def get_next_line(self):
line = self.freq_file.readline().strip().split()
if len(line) < 1:
self.load_genotypes()
line = self.freq_file.readline().strip().split()
info_line = self.info_file.readline().strip().split()
info = float(info_line[4])
exp_freq = float(info_line[3])
return line, info, exp_freq
|
If we reach the end of the file, we simply open the next, until we \
run out of archives to process
|
28,564 |
def complete_token_filtered_with_next(aliases, prefix, expanded, commands):
complete_ary = list(aliases.keys())
expanded_ary = list(expanded.keys())
result = []
for cmd in complete_ary:
if cmd.startswith(prefix):
if cmd in aliases and (
0 == len(set(expanded_ary) - set([aliases[cmd]]))):
result.append([cmd, aliases[cmd]])
pass
pass
pass
return sorted(result, key=lambda pair: pair[0])
|
Find all starting matches in dictionary *aliases* that start
with *prefix*, but filter out any matches already in
*expanded*.
|
28,565 |
def validate_scopes(value_list):
for value in value_list:
if value not in current_oauth2server.scopes:
raise ScopeDoesNotExists(value)
return True
|
Validate if each element in a list is a registered scope.
:param value_list: The list of scopes.
:raises invenio_oauth2server.errors.ScopeDoesNotExists: The exception is
raised if a scope is not registered.
:returns: ``True`` if it's successfully validated.
|
28,566 |
def to_keypoints(self):
from imgaug.augmentables.kps import Keypoint
return [Keypoint(x=point[0], y=point[1]) for point in self.exterior]
|
Convert this polygon's `exterior` to ``Keypoint`` instances.
Returns
-------
list of imgaug.Keypoint
Exterior vertices as ``Keypoint`` instances.
|
28,567 |
def mouse_move_event(self, event):
self.example.mouse_position_event(event.x(), event.y())
|
Forward mouse cursor position events to the example
|
28,568 |
def to_transfac(self):
m = "%s\t%s\t%s\n" % ("DE", self.id, "unknown")
for i, (row, cons) in enumerate(zip(self.pfm, self.to_consensus())):
m += "%i\t%s\t%s\n" % (i, "\t".join([str(int(x)) for x in row]), cons)
m += "XX"
return m
|
Return motif formatted in TRANSFAC format
Returns
-------
m : str
String of motif in TRANSFAC format.
|
28,569 |
def _is_primitive(thing):
primitive = (int, str, bool, float)
return isinstance(thing, primitive)
|
Determine if the value is a primitive
|
28,570 |
def hasModule(self, mod):
if self._modules is None:
self._initModuleList()
return mod in self._modules
|
Returns True if mod is among the loaded modules.
@param mod: Module name.
@return: Boolean
|
28,571 |
def validate_address(address: Any) -> None:
if not is_address(address):
raise ValidationError(f"Expected an address, got: {address}")
if not is_canonical_address(address):
raise ValidationError(
"Py-EthPM library only accepts canonicalized addresses. "
f"{address} is not in the accepted format."
)
|
Raise a ValidationError if an address is not canonicalized.
|
28,572 |
def deleteSelected(self):
ndeleted = self.deleteBy(self.isSelected)
nselected = len(self._selectedRows)
self._selectedRows.clear()
if ndeleted != nselected:
error( % nselected)
|
Delete all selected rows.
|
28,573 |
def program_supports_compression (program, compression):
if program in (, ):
return compression in (, , , , , ) + py_lzma
elif program in (, , ):
return compression in (, ) + py_lzma
return False
|
Decide if the given program supports the compression natively.
@return: True iff the program supports the given compression format
natively, else False.
|
28,574 |
def read_int32(self, little_endian=True):
if little_endian:
endian = "<"
else:
endian = ">"
return self.unpack( % endian, 4)
|
Read 4 bytes as a signed integer value from the stream.
Args:
little_endian (bool): specify the endianness. (Default) Little endian.
Returns:
int:
|
28,575 |
def create_objective_bank_hierarchy(self, alias, desc, genus):
url_path = self._urls.hierarchy()
data = {
: re.sub(r, , alias.lower()),
: {
: alias
},
: {
: desc
},
: str(genus)
}
return self._post_request(url_path, data)
|
Create a bank hierarchy with the given alias
:param alias:
:return:
|
28,576 |
def MGMT_COMM_SET(self, Addr=, xCommissionerSessionID=None, xSteeringData=None, xBorderRouterLocator=None,
xChannelTlv=None, ExceedMaxPayload=False):
print % self.port
try:
cmd = WPANCTL_CMD +
print "-------------------------------"
print xCommissionerSessionID
print xSteeringData
print str(xSteeringData) + + str(hex(xSteeringData)[2:])
print xBorderRouterLocator
print xChannelTlv
print ExceedMaxPayload
print "-------------------------------"
if xCommissionerSessionID != None:
cmd += + str(xCommissionerSessionID)
elif xCommissionerSessionID is None:
if self.isActiveCommissioner is True:
cmd += + self.__getCommissionerSessionId().lstrip()
else:
pass
if xSteeringData != None:
cmd += + str(len(hex(xSteeringData)[2:])) + str(hex(xSteeringData)[2:])
if xBorderRouterLocator != None:
cmd += + str(hex(xBorderRouterLocator))
if xChannelTlv != None:
cmd += + hex(xChannelTlv).lstrip().zfill(4)
print cmd
return self.__sendCommand(cmd)[0] !=
except Exception, e:
ModuleHelper.WriteIntoDebugLogger( + str(e))
|
send MGMT_COMM_SET command
Returns:
True: successful to send MGMT_COMM_SET
False: fail to send MGMT_COMM_SET
|
28,577 |
def add_announcement_view(request):
if request.method == "POST":
form = AnnouncementForm(request.POST)
logger.debug(form)
if form.is_valid():
obj = form.save()
obj.user = request.user
obj.content = safe_html(obj.content)
obj.save()
announcement_posted_hook(request, obj)
messages.success(request, "Successfully added announcement.")
return redirect("index")
else:
messages.error(request, "Error adding announcement")
else:
form = AnnouncementForm()
return render(request, "announcements/add_modify.html", {"form": form, "action": "add"})
|
Add an announcement.
|
28,578 |
async def identify(self, request):
if hasattr(request, ):
return request._session_identity
token = request.cookies.get(self._cookie_name)
if token is None:
token = getAuthorizationTokenFromHeader(request)
if token is None:
raise Unauthorized()
identity = await self.decode_jwt(token)
setattr(request, , identity)
return identity
|
从request中得到登录身份identity
|
28,579 |
def update_allowed(self):
return self.update_action.allowed(self.column.table.request,
self.datum,
self)
|
Determines whether update of given cell is allowed.
Calls allowed action of defined UpdateAction of the Column.
|
28,580 |
def plugin_is_enabled(name, runas=None):
*
if runas is None and not salt.utils.platform.is_windows():
runas = salt.utils.user.get_user()
return name in list_enabled_plugins(runas)
|
Return whether the plugin is enabled.
CLI Example:
.. code-block:: bash
salt '*' rabbitmq.plugin_is_enabled rabbitmq_plugin_name
|
28,581 |
def _get_line_type(line):
stripped = line.strip()
if not stripped:
return
remainder = re.sub(r"\s+", " ", re.sub(CHORD_RE, "", stripped))
if len(remainder) * 2 < len(re.sub(r"\s+", " ", stripped)):
return
return
|
Decide the line type in function of its contents
|
28,582 |
def _load_config(initial_namespace=None, defaults=None):
if defaults:
config = ConfigLoader()
config.update_from_object(defaults)
namespace = getattr(config, , initial_namespace)
app_config = getattr(config, , None)
if app_config:
if namespace is None:
config.update_from_object(app_config)
else:
_temp = ConfigLoader()
_temp.update_from_object(app_config, lambda key: key.startswith(namespace))
config.update(_temp.namespace(namespace))
return config
|
Kwargs:
initial_namespace:
defaults:
|
28,583 |
def GetPossibleGroup(self):
this_method = self._call_queue.pop()
assert this_method == self
group = None
try:
group = self._call_queue[-1]
except IndexError:
pass
return group
|
Returns a possible group from the end of the call queue or None if no
other methods are on the stack.
|
28,584 |
def url_builder(self, endpoint, params=None, url_params=None):
if url_params is None:
url_params = OrderedDict()
url_params[self.AUTH_PARAM] = self.api_token
return super().url_builder(
endpoint,
params=params,
url_params=url_params,
)
|
Add authentication URL parameter.
|
28,585 |
def populate_timestamps(self,update_header=False):
ii_start, ii_stop = 0, self.n_ints_in_file
if self.t_start:
ii_start = self.t_start
if self.t_stop:
ii_stop = self.t_stop
t0 = self.header[b]
t_delt = self.header[b]
if update_header:
timestamps = ii_start * t_delt / 24./60./60. + t0
else:
timestamps = np.arange(ii_start, ii_stop) * t_delt / 24./60./60. + t0
return timestamps
|
Populate time axis.
IF update_header then only return tstart
|
28,586 |
def persist_revision_once(tokens, revision):
token_map = {id(token):token for token in tokens}
for token in token_map.values():
token.persist(revision)
|
This function makes sure that a revision is only marked as persisting
for a token once. This is important since some diff algorithms allow
tokens to be copied more than once in a revision. The id(token) should
unique to the in-memory representation of any object, so we use that as
unique token instance identifier.
|
28,587 |
async def start(self):
successful = 0
try:
for adapter in self.adapters:
await adapter.start()
successful += 1
self._started = True
except:
for adapter in self.adapters[:successful]:
await adapter.stop()
raise
|
Start all adapters managed by this device adapter.
If there is an error starting one or more adapters, this method will
stop any adapters that we successfully started and raise an exception.
|
28,588 |
def clear(self):
except AttributeError:
pass
self.includes = None
|
Completely clear a Node of all its cached state (so that it
can be re-evaluated by interfaces that do continuous integration
builds).
|
28,589 |
def filter_by_gene_expression(
self,
gene_expression_dict,
min_expression_value=0.0):
return self.filter_any_above_threshold(
multi_key_fn=lambda effect: effect.gene_ids,
value_dict=gene_expression_dict,
threshold=min_expression_value)
|
Filters variants down to those which have overlap a gene whose
expression value in the transcript_expression_dict argument is greater
than min_expression_value.
Parameters
----------
gene_expression_dict : dict
Dictionary mapping Ensembl gene IDs to expression estimates
(either FPKM or TPM)
min_expression_value : float
Threshold above which we'll keep an effect in the result collection
|
28,590 |
def get_coordination_symmetry_measures(self, only_minimum=True,
all_csms=True, optimization=None):
test_geometries = self.allcg.get_implemented_geometries(
len(self.local_geometry.coords))
if len(self.local_geometry.coords) == 1:
if len(test_geometries) == 0:
return {}
result_dict = {: {: 0.0, : [0], : ,
: {0: 0}, : {0: 0},
: None, : None, : None}}
if all_csms:
for csmtype in [, , , , , ]:
result_dict[][.format(csmtype)] = 0.0
result_dict[][.format(csmtype)] = None
result_dict[][.format(csmtype)] = None
result_dict[][.format(csmtype)] = None
return result_dict
result_dict = {}
for geometry in test_geometries:
self.perfect_geometry = AbstractGeometry.from_cg(cg=geometry,
centering_type=self.centering_type,
include_central_site_in_centroid=
self.include_central_site_in_centroid)
points_perfect = self.perfect_geometry.points_wcs_ctwcc()
cgsm = self.coordination_geometry_symmetry_measures(geometry,
points_perfect=points_perfect,
optimization=optimization)
result, permutations, algos, local2perfect_maps, perfect2local_maps = cgsm
if only_minimum:
if len(result) > 0:
imin = np.argmin([rr[] for rr in result])
if geometry.algorithms is not None:
algo = algos[imin]
else:
algo = algos
result_dict[geometry.mp_symbol] = {: result[imin][],
: permutations[
imin],
: algo,
:
local2perfect_maps[
imin],
:
perfect2local_maps[
imin],
: 1.0 / result[imin][],
:
np.linalg.inv(result[imin][]),
: result[imin][]}
if all_csms:
self._update_results_all_csms(result_dict, permutations, imin, geometry)
else:
result_dict[geometry.mp_symbol] = {: result,
: permutations,
: algos,
: local2perfect_maps,
: perfect2local_maps}
return result_dict
|
Returns the continuous symmetry measures of the current local geometry in a dictionary.
:return: the continuous symmetry measures of the current local geometry in a dictionary.
|
28,591 |
def handle(request, message=None, redirect=None, ignore=False,
escalate=False, log_level=None, force_log=None):
exc_type, exc_value, exc_traceback = sys.exc_info()
log_method = getattr(LOG, log_level or "exception")
force_log = force_log or os.environ.get("HORIZON_TEST_RUN", False)
force_silence = getattr(exc_value, "silence_logging", False)
if wrap:
raise HandledException([exc_type, exc_value, exc_traceback])
if message:
ret = handle_recoverable(request, user_message, redirect, ignore,
escalate, handled, force_silence, force_log,
log_method, log_entry, log_level)
if ret:
return ret
six.reraise(exc_type, exc_value, exc_traceback)
|
Centralized error handling for Horizon.
Because Horizon consumes so many different APIs with completely
different ``Exception`` types, it's necessary to have a centralized
place for handling exceptions which may be raised.
Exceptions are roughly divided into 3 types:
#. ``UNAUTHORIZED``: Errors resulting from authentication or authorization
problems. These result in being logged out and sent to the login screen.
#. ``NOT_FOUND``: Errors resulting from objects which could not be
located via the API. These generally result in a user-facing error
message, but are otherwise returned to the normal code flow. Optionally
a redirect value may be passed to the error handler so users are
returned to a different view than the one requested in addition to the
error message.
#. ``RECOVERABLE``: Generic API errors which generate a user-facing message
but drop directly back to the regular code flow.
All other exceptions bubble the stack as normal unless the ``ignore``
argument is passed in as ``True``, in which case only unrecognized
errors are bubbled.
If the exception is not re-raised, an appropriate wrapper exception
class indicating the type of exception that was encountered will be
returned.
|
28,592 |
def ensemble_change_summary(ensemble1, ensemble2, pst,bins=10, facecolor=,logger=None,filename=None,**kwargs):
if logger is None:
logger=Logger(,echo=False)
logger.log("plot ensemble change")
if isinstance(ensemble1, str):
ensemble1 = pd.read_csv(ensemble1,index_col=0)
ensemble1.columns = ensemble1.columns.str.lower()
if isinstance(ensemble2, str):
ensemble2 = pd.read_csv(ensemble2,index_col=0)
ensemble2.columns = ensemble2.columns.str.lower()
unnamed1 = [col for col in ensemble1.columns if "unnamed:" in col]
if len(unnamed1) != 0:
ensemble1 = ensemble1.iloc[:,:-1]
unnamed2 = [col for col in ensemble2.columns if "unnamed:" in col]
if len(unnamed2) != 0:
ensemble2 = ensemble2.iloc[:,:-1]
d = set(ensemble1.columns).symmetric_difference(set(ensemble2. columns))
if len(d) != 0:
logger.lraise("ensemble1 does not have the same columns as ensemble2: {0}".
format(.join(d)))
if "grouper" in kwargs:
raise NotImplementedError()
else:
en_cols = set(ensemble1.columns)
if len(en_cols.symmetric_difference(set(pst.par_names))) == 0:
par = pst.parameter_data.loc[pst.adj_par_names,:]
grouper = par.groupby(par.pargp).groups
grouper["all"] = pst.adj_par_names
li = par.loc[par.partrans == "log","parnme"]
ensemble1.loc[:,li] = ensemble1.loc[:,li].apply(np.log10)
ensemble2.loc[:, li] = ensemble2.loc[:, li].apply(np.log10)
elif len(en_cols.symmetric_difference(set(pst.obs_names))) == 0:
obs = pst.observation_data.loc[pst.nnz_obs_names,:]
grouper = obs.groupby(obs.obgnme).groups
grouper["all"] = pst.nnz_obs_names
else:
logger.lraise("could not match ensemble cols with par or obs...")
en1_mn, en1_std = ensemble1.mean(axis=0), ensemble1.std(axis=0)
en2_mn, en2_std = ensemble2.mean(axis=0), ensemble2.std(axis=0)
mn_diff = -1 * (en2_mn - en1_mn)
std_diff = 100 * (((en1_std - en2_std) / en1_std))
std_diff[en1_std.index[en1_std==0]] = np.nan
fig = plt.figure(figsize=figsize)
if "fig_title" in kwargs:
plt.figtext(0.5,0.5,kwargs["fig_title"])
else:
plt.figtext(0.5, 0.5, "pyemu.Pst.plot(kind=)\nfrom pest control file \n at {1}"
.format(pst.filename, str(datetime.now())), ha="center")
figs = []
ax_count = 0
for g, names in grouper.items():
logger.log("plotting change for {0}".format(g))
mn_g = mn_diff.loc[names]
std_g = std_diff.loc[names]
if mn_g.shape[0] == 0:
logger.statement("no entries for group ".format(g))
logger.log("plotting change for {0}".format(g))
continue
if ax_count % (nr * nc) == 0:
if ax_count > 0:
plt.tight_layout()
figs.append(fig)
fig = plt.figure(figsize=figsize)
axes = get_page_axes()
ax_count = 0
ax = axes[ax_count]
mn_g.hist(ax=ax,facecolor=facecolor,alpha=0.5,edgecolor=None,bins=bins)
ax.set_yticklabels([])
ax.set_xlabel("mean change",labelpad=0.1)
ax.set_title("{0}) mean change group:{1}, {2} entries\nmax:{3:10G}, min:{4:10G}".
format(abet[ax_count], g, mn_g.shape[0],mn_g.max(),mn_g.min()), loc="left")
ax.grid()
ax_count += 1
ax = axes[ax_count]
std_g.hist(ax=ax, facecolor=facecolor, alpha=0.5, edgecolor=None, bins=bins)
ax.set_yticklabels([])
ax.set_xlabel("sigma percent reduction", labelpad=0.1)
ax.set_title("{0}) sigma change group:{1}, {2} entries\nmax:{3:10G}, min:{4:10G}".
format(abet[ax_count], g, mn_g.shape[0], std_g.max(), std_g.min()), loc="left")
ax.grid()
ax_count += 1
logger.log("plotting change for {0}".format(g))
for a in range(ax_count, nr * nc):
axes[a].set_axis_off()
axes[a].set_yticks([])
axes[a].set_xticks([])
plt.tight_layout()
figs.append(fig)
if filename is not None:
plt.tight_layout()
with PdfPages(filename) as pdf:
for fig in figs:
pdf.savefig(fig)
plt.close(fig)
logger.log("plot ensemble change")
else:
logger.log("plot ensemble change")
return figs
|
helper function to plot first and second moment change histograms
Parameters
----------
ensemble1 : varies
str or pd.DataFrames
ensemble2 : varies
str or pd.DataFrame
pst : pyemu.Pst
pst instance
facecolor : str
the histogram facecolor.
filename : str
the name of the pdf to create. If None, return figs without saving. Default is None.
|
28,593 |
def put(text, cbname):
global _lastSel
_checkTkInit()
if cbname == :
_theRoot.clipboard_clear()
if text:
_theRoot.clipboard_append(text)
return
if cbname == :
_lastSel = text
_theRoot.selection_handle(ch_handler, selection=)
_theRoot.selection_own(selection=)
return
raise RuntimeError("Unexpected clipboard name: "+str(cbname))
|
Put the given string into the given clipboard.
|
28,594 |
def get_path_name(self):
path = fix_raw_path(os.path.dirname(os.path.abspath(self.path)))
name = os.path.basename(self.path)
return path, name
|
Gets path and name of song
:return: Name of path, name of file (or folder)
|
28,595 |
def _pdf_find_urls(bytes, mimetype):
try:
ascii_bytes = b.join(re.compile(b).findall(bytes))
ascii_bytes = ascii_bytes.replace(b, b)
except:
return []
urls = []
embedded_text = set(re.compile(b).findall(ascii_bytes))
return urls
|
This function finds URLs inside of PDF bytes.
|
28,596 |
def strip_tags(s):
def handle_match(m):
name = m.group(1)
if name in html_entities:
return unichr(html_entities[name])
if name[:2] in ("
try:
return unichr(int(name[2:], 16))
except ValueError:
return u""
elif name.startswith("
try:
return unichr(int(name[1:]))
except ValueError:
return u""
return u""
return _entity_re.sub(handle_match, _striptags_re.sub("", s))
|
Resolve HTML entities and remove tags from a string.
|
28,597 |
def migrate(gandi, resource, force, background):
oper = gandi.disk.migrate(resource, datacenter_id, background)
if background:
output_generic(gandi, oper, output_keys)
return oper
|
Migrate a disk to another datacenter.
|
28,598 |
def from_directory_import(
self,
module,
real_names,
local_names,
import_alias_mapping,
skip_init=False
):
module_path = module[1]
init_file_location = os.path.join(module_path, )
init_exists = os.path.isfile(init_file_location)
if init_exists and not skip_init:
package_name = os.path.split(module_path)[1]
return self.add_module(
module=(module[0], init_file_location),
module_or_package_name=package_name,
local_names=local_names,
import_alias_mapping=import_alias_mapping,
is_init=True,
from_from=True
)
for real_name in real_names:
full_name = os.path.join(module_path, real_name)
if os.path.isdir(full_name):
new_init_file_location = os.path.join(full_name, )
if os.path.isfile(new_init_file_location):
self.add_module(
module=(real_name, new_init_file_location),
module_or_package_name=real_name,
local_names=local_names,
import_alias_mapping=import_alias_mapping,
is_init=True,
from_from=True,
from_fdid=True
)
else:
raise Exception()
else:
file_module = (real_name, full_name + )
self.add_module(
module=file_module,
module_or_package_name=real_name,
local_names=local_names,
import_alias_mapping=import_alias_mapping,
from_from=True
)
return IgnoredNode()
|
Directories don't need to be packages.
|
28,599 |
def to_ndarray(self):
assert self.indices is None, "sparseTensor to ndarray is not supported"
return np.array(self.storage, dtype=get_dtype(self.bigdl_type)).reshape(self.shape)
|
Transfer JTensor to ndarray.
As SparseTensor may generate an very big ndarray, so we don't support this function for SparseTensor.
:return: a ndarray
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.