Unnamed: 0
int64 0
389k
| code
stringlengths 26
79.6k
| docstring
stringlengths 1
46.9k
|
---|---|---|
28,700 |
def easybake(css_in, html_in=sys.stdin, html_out=sys.stdout, last_step=None,
coverage_file=None, use_repeatable_ids=False):
html_doc = etree.parse(html_in)
oven = Oven(css_in, use_repeatable_ids)
oven.bake(html_doc, last_step)
print(etree.tostring(html_doc, method="xml").decode(),
file=html_out)
if coverage_file:
print(.format(css_in.name), file=coverage_file)
print(oven.get_coverage_report(), file=coverage_file)
print(, file=coverage_file)
|
Process the given HTML file stream with the css stream.
|
28,701 |
def FailoverInstance(r, instance, iallocator=None, ignore_consistency=False,
target_node=None):
body = {
"ignore_consistency": ignore_consistency,
}
if iallocator is not None:
body["iallocator"] = iallocator
if target_node is not None:
body["target_node"] = target_node
return r.request("put", "/2/instances/%s/failover" % instance,
content=body)
|
Does a failover of an instance.
@type instance: string
@param instance: Instance name
@type iallocator: string
@param iallocator: Iallocator for deciding the target node for
shared-storage instances
@type ignore_consistency: bool
@param ignore_consistency: Whether to ignore disk consistency
@type target_node: string
@param target_node: Target node for shared-storage instances
@rtype: string
@return: job id
|
28,702 |
def render(self):
size_format = self.size_primitive.fmt
if self.value is None:
return size_format, [-1]
value = self.render_value(self.value)
size = len(value)
fmt = "%s%ds" % (size_format, size)
return fmt, [size, value]
|
Returns the ``struct`` format and list of the size and value.
The format is derived from the size primitive and the length of the
resulting encoded value (e.g. the format for a string of 'foo' ends
up as 'h3s'.
.. note ::
The value is expected to be string-able (wrapped in ``str()``) and is
then encoded as UTF-8.
|
28,703 |
def get_parameter(self, name):
default_value = "$%!)(INVALID)(!%$"
value = self.lib.tdGetDeviceParameter(self.id, name, default_value)
if value == default_value:
raise AttributeError(name)
return value
|
Get a parameter.
|
28,704 |
def show_progress(name, **kwargs):
skl_groups.divergences.knn.progress
logger = logging.getLogger(name)
logger.setLevel(logging.INFO)
logger.addHandler(ProgressBarHandler(**kwargs))
|
Sets up a :class:`ProgressBarHandler` to handle progess logs for
a given module.
Parameters
----------
name : string
The module name of the progress logger to use. For example,
:class:`skl_groups.divergences.KNNDivergenceEstimator`
uses ``'skl_groups.divergences.knn.progress'``.
* : anything
Other keyword arguments are passed to the :class:`ProgressBarHandler`.
|
28,705 |
def skull_strip(dset,suffix=,prefix=None,unifize=True):
return available_method()(dset,suffix,prefix,unifize)
|
attempts to cleanly remove skull from ``dset``
|
28,706 |
def POPFQ(cpu):
mask = 0x00000001 | 0x00000004 | 0x00000010 | 0x00000040 | 0x00000080 | 0x00000400 | 0x00000800
cpu.EFLAGS = (cpu.EFLAGS & ~mask) | cpu.pop(64) & mask
|
Pops stack into EFLAGS register.
:param cpu: current CPU.
|
28,707 |
def get_rectangle(self):
rec = [self.pos[0], self.pos[1]]*2
for age in self.nodes:
for node in age:
for i in range(2):
if rec[0+i] > node.pos[i]:
rec[0+i] = node.pos[i]
elif rec[2+i] < node.pos[i]:
rec[2+i] = node.pos[i]
return tuple(rec)
|
Gets the coordinates of the rectangle, in which the tree can be put.
Returns:
tupel: (x1, y1, x2, y2)
|
28,708 |
def __handle_events(self):
events = pygame.event.get()
for event in events:
if event.type == pygame.QUIT:
self.exit()
|
This is the place to put all event handeling.
|
28,709 |
def values_clear(self, range):
url = SPREADSHEET_VALUES_CLEAR_URL % (self.id, quote(range))
r = self.client.request(, url)
return r.json()
|
Lower-level method that directly calls `spreadsheets.values.clear <https://developers.google.com/sheets/api/reference/rest/v4/spreadsheets.values/clear>`_.
:param str range: The `A1 notation <https://developers.google.com/sheets/api/guides/concepts#a1_notation>`_ of the values to clear.
:returns: `Response body <https://developers.google.com/sheets/api/reference/rest/v4/spreadsheets.values/clear#response-body>`_.
:rtype: dict
.. versionadded:: 3.0
|
28,710 |
def issubclass(cls, ifaces):
ifaces = _ensure_ifaces_tuple(ifaces)
for iface in ifaces:
return all((
_check_for_definition(
iface,
cls,
,
_is_attribute,
),
_check_for_definition(
iface,
cls,
,
_is_property,
),
_check_for_definition(
iface,
cls,
,
_is_method,
),
_check_for_definition(
iface,
cls,
,
_is_classmethod,
),
))
|
Check if the given class is an implementation of the given iface.
|
28,711 |
def get(self, resource):
return self.service.get(
resource, self.url_prefix, self.auth, self.session,
self.session_send_opts)
|
Get attributes of the data model object named by the given resource.
Args:
resource (intern.resource.boss.BossResource): resource.name as well as any parents must be identified to succeed.
Returns:
(intern.resource.boss.BossResource): Returns resource of type requested on success.
Raises:
requests.HTTPError on failure.
|
28,712 |
def extract_bbox(layers):
if not hasattr(layers, ):
layers = [layers]
bboxes = [
layer.bbox for layer in layers
if layer.is_visible() and not layer.bbox == (0, 0, 0, 0)
]
if len(bboxes) == 0:
return (0, 0, 0, 0)
lefts, tops, rights, bottoms = zip(*bboxes)
return (min(lefts), min(tops), max(rights), max(bottoms))
|
Returns a bounding box for ``layers`` or (0, 0, 0, 0) if the layers
have no bounding box.
|
28,713 |
def populate_values(self):
obj = self._get_base_state()
self.base_state = json.dumps(obj)
|
Add values from the underlying dash layout configuration
|
28,714 |
def qteTextChanged(self):
self.clearHighlighting()
SCI = self.qteWidget
self.compileMatchList()
if len(self.matchList) == 0:
return
style = bytearray(self.styleOrig)
cur = SCI.positionFromLineIndex(*self.cursorPosOrig)
self.selMatchIdx = 0
for start, stop in self.matchList:
if start < cur:
self.selMatchIdx += 1
style[start:stop] = bytes(b) * (stop - start)
if self.selMatchIdx == len(self.matchList):
self.selMatchIdx = 0
start, stop = self.matchList[self.selMatchIdx]
style[start:stop] = bytes(b) * (stop - start)
line, col = SCI.lineIndexFromPosition(start)
SCI.setCursorPosition(line, col)
self.selMatchIdx += 1
self.qteWidget.SCISetStylingEx(0, 0, style)
|
Search for sub-string matches.
This method is triggered by Qt whenever the text changes,
ie. whenever the user has altered the input. Extract the
new input, find all matches, and highlight them accordingly.
|
28,715 |
def dim_dc(self, pars):
r
self._set_parameters(pars)
nom1a = - self.m * np.log(self.w * self.tau) * self.otc *\
np.sin(self.ang)
nom1b = - self.m * self.otc * (np.pi / 2.0) * np.cos(self.ang)
term1 = (nom1a + nom1b) / self.denom
nom2 = (self.m * self.otc * np.sin(self.ang)) *\
(2 * np.log(self.w * self.tau) * self.otc * np.cos(self.ang) -
2 * self.otc * (np.pi / 2.0) * np.sin(self.ang) +
2 * np.log(self.w * self.tau) * self.otc2)
term2 = nom2 / self.denom ** 2
result = term1 + term2
result *= self.rho0
return result
|
r"""
:math:`\frac{\partial \hat{\rho''}(\omega)}{\partial c} = \rho_0
\frac{-m sin(\frac{c \pi}{2}) ln(\omega \tau)(\omega \tau)^c - m
(\omega \tau)^c \frac{\pi}{2} cos(\frac{\pi}{2}}{1 + 2 (\omega \tau)^c
cos(\frac{c \pi}{2}) + (\omega \tau)^{2 c}} + \rho_0 \frac{\left[-m
(\omega \tau)^c cos(\frac{c \pi}{2}) \right] \cdot \left[ -2 ln(\omega
\tau) (\omega \tau)^c cos(\frac{c \pi}{2}) + 2 (\omega \tau)^c
\frac{\pi}{2} cos(\frac{c \pi}{2}) \right] + \left[2 ln(\omega \tau)
(\omega \tau)^{2 c}\right]}{\left[1 + 2 (\omega \tau)^c cos(\frac{c
\pi}{2}) + (\omega \tau)^{2 c}\right]^2}`
|
28,716 |
def check_status(self):
black_list = (self.S_LOCKED, self.S_ERROR)
if self.returncode != 0:
msg = "job.sh return code: %s\nPerhaps the job was not submitted properly?" % self.returncode
return self.set_status(self.S_QCRITICAL, msg=msg)
if self.mpiabort_file.exists:
return self.set_status(self.S_ABICRITICAL, msg="Found ABINIT abort file")
err_msg = None
if self.stderr_file.getsize() != 0:
err_msg = self.stderr_file.read()
qerr_info = None
if self.qerr_file.getsize() != 0:
qerr_info = self.qerr_file.read()
qout_info = None
if self.qout_file.getsize():
qout_info = self.qout_file.read()
if self.output_file.exists:
try:
report = self.get_event_report()
except Exception as exc:
msg = "%s exception while parsing event_report:\n%s" % (self, exc)
return self.set_status(self.S_ABICRITICAL, msg=msg)
if report is None:
return self.set_status(self.S_ERROR, msg="got None report!")
if report.run_completed:
self.datetimes.start = report.start_datetime
self.datetimes.end = report.end_datetime
not_ok = report.filter_types(self.CRITICAL_EVENTS)
if not_ok:
return self.set_status(self.S_UNCONVERGED, msg=)
else:
return self.set_status(self.S_OK, msg="status set to ok based on abiout")
if report.errors:
logger.debug()
for error in report.errors:
logger.debug(str(error))
try:
self.abi_errors.append(error)
except AttributeError:
self.abi_errors = [error]
logger.debug("%s: Found Errors or Bugs in ABINIT main output!" % self)
msg = "\n".join(map(repr, report.errors))
return self.set_status(self.S_ABICRITICAL, msg=msg)
if self.stderr_file.exists and not err_msg:
if self.qerr_file.exists and not qerr_info:
return self.set_status(self.S_RUN, msg=)
if not self.output_file.exists:
logger.debug("output_file does not exists")
if not self.stderr_file.exists and not self.qerr_file.exists:
return self.status
if False and (qerr_info or qout_info):
from pymatgen.io.abinit.scheduler_error_parsers import get_parser
scheduler_parser = get_parser(self.manager.qadapter.QTYPE, err_file=self.qerr_file.path,
out_file=self.qout_file.path, run_err_file=self.stderr_file.path)
if scheduler_parser is None:
return self.set_status(self.S_QCRITICAL,
msg="Cannot find scheduler_parser for qtype %s" % self.manager.qadapter.QTYPE)
scheduler_parser.parse()
if scheduler_parser.errors:
self.queue_errors = scheduler_parser.errors
msg = "scheduler errors found:\n%s" % str(scheduler_parser.errors)
return self.set_status(self.S_QCRITICAL, msg=msg)
elif lennone(qerr_info) > 0:
self.history.info( % str(qerr_info))
if err_msg:
msg = % str(err_msg)
self.history.warning(msg)
|
This function checks the status of the task by inspecting the output and the
error files produced by the application and by the queue manager.
|
28,717 |
def calc_area_extent(self, key):
xyres = {500: 22272, 1000: 11136, 2000: 5568}
chkres = xyres[key.resolution]
measured = self.nc[.format(key.name)]
variable = self.nc[
.format(key.name)]
self.startline = int(measured[][...])
self.endline = int(measured[][...])
self.startcol = int(measured[][...])
self.endcol = int(measured[][...])
self.nlines, self.ncols = variable[:].shape
logger.debug(.format(key.name, chkres))
logger.debug(.format(self.nlines, self.ncols))
logger.debug(.format(self.startline, self.endline))
logger.debug(.format(self.startcol, self.endcol))
max_y = 5432229.9317116784
min_y = -5429229.5285458621
full_y = max_y + abs(min_y)
res_y = full_y / chkres
startl = min_y + res_y * self.startline - 0.5 * (res_y)
endl = min_y + res_y * self.endline + 0.5 * (res_y)
logger.debug(.format(startl, endl))
chk_extent = (-5432229.9317116784, endl,
5429229.5285458621, startl)
return(chk_extent)
|
Calculate area extent for a dataset.
|
28,718 |
def path(path_name=None, override=None, *, root=None, name=None, ext=None,
inject=None, relpath=None, reduce=False):
path_name, identity, root = _initialize(path_name, override, root, inject)
new_name = _process_name(path_name, identity, name, ext)
new_directory = _process_directory(path_name, identity, root, inject)
full_path = os.path.normpath(os.path.join(new_directory, new_name))
if APPEND_SEP_TO_DIRS and not new_name and full_path[-1] != os.sep:
full_path += os.sep
final_path = _format_path(full_path, root, relpath, reduce)
return final_path
|
Path manipulation black magic
|
28,719 |
def usergroup_update(usrgrpid, **kwargs):
s docstring)
:param _connection_password: Optional - zabbix password (can also be set in opts or pillar, see modules docstring)
:return: IDs of the updated user group, False on failure.
CLI Example:
.. code-block:: bash
salt zabbix.usergroup_update 8 name=guestsRenamed
usergroup.updateurlauthresultusrgrpids']
else:
raise KeyError
except KeyError:
return ret
|
.. versionadded:: 2016.3.0
Update existing user group
.. note::
This function accepts all standard user group properties: keyword
argument names differ depending on your zabbix version, see here__.
.. __: https://www.zabbix.com/documentation/2.4/manual/api/reference/usergroup/object#user_group
:param usrgrpid: ID of the user group to update.
:param _connection_user: Optional - zabbix user (can also be set in opts or pillar, see module's docstring)
:param _connection_password: Optional - zabbix password (can also be set in opts or pillar, see module's docstring)
:param _connection_url: Optional - url of zabbix frontend (can also be set in opts, pillar, see module's docstring)
:return: IDs of the updated user group, False on failure.
CLI Example:
.. code-block:: bash
salt '*' zabbix.usergroup_update 8 name=guestsRenamed
|
28,720 |
def update(self, d):
for (k, v) in d.items():
if k not in self or self[k] != v:
self[k] = v
|
Works like regular update, but only actually updates when the new
value and the old value differ. This is necessary to prevent
certain infinite loops.
:arg d: a dictionary
|
28,721 |
def get_critical_original_kink_ratio(self):
ratios = []
if self.c1_original == self.c2_original:
return [0, 1]
reaction_kink = [k[3] for k in self.get_kinks()]
for rxt in reaction_kink:
ratios.append(abs(self._get_original_composition_ratio(rxt)))
return ratios
|
Returns a list of molar mixing ratio for each kink between ORIGINAL
(instead of processed) reactant compositions. This is the
same list as mixing ratio obtained from get_kinks method
if self.norm = False.
Returns:
A list of floats representing molar mixing ratios between
the original reactant compositions for each kink.
|
28,722 |
def helices(self):
hel_molecules = list(itertools.chain(
*[p.helices._molecules
for p in self._molecules if hasattr(p, )]))
hel_assembly = Assembly(molecules=hel_molecules, assembly_id=self.id)
return hel_assembly
|
Generates new `Assembly` containing just Ξ±-helices.
Notes
-----
Metadata is not currently preserved from the parent object.
Returns
-------
hel_assembly : ampal.Protein
`Assembly` containing only the Ξ±-helices of the original `Assembly`.
|
28,723 |
def make_sentence(self, init_state=None, **kwargs):
tries = kwargs.get(, DEFAULT_TRIES)
mor = kwargs.get(, DEFAULT_MAX_OVERLAP_RATIO)
mot = kwargs.get(, DEFAULT_MAX_OVERLAP_TOTAL)
test_output = kwargs.get(, True)
max_words = kwargs.get(, None)
if init_state != None:
prefix = list(init_state)
for word in prefix:
if word == BEGIN:
prefix = prefix[1:]
else:
break
else:
prefix = []
for _ in range(tries):
words = prefix + self.chain.walk(init_state)
if max_words != None and len(words) > max_words:
continue
if test_output and hasattr(self, "rejoined_text"):
if self.test_sentence_output(words, mor, mot):
return self.word_join(words)
else:
return self.word_join(words)
return None
|
Attempts `tries` (default: 10) times to generate a valid sentence,
based on the model and `test_sentence_output`. Passes `max_overlap_ratio`
and `max_overlap_total` to `test_sentence_output`.
If successful, returns the sentence as a string. If not, returns None.
If `init_state` (a tuple of `self.chain.state_size` words) is not specified,
this method chooses a sentence-start at random, in accordance with
the model.
If `test_output` is set as False then the `test_sentence_output` check
will be skipped.
If `max_words` is specified, the word count for the sentence will be
evaluated against the provided limit.
|
28,724 |
def vol_per_rev_LS(id_number):
tubing_data_path = os.path.join(os.path.dirname(__file__), "data",
"LS_tubing.txt")
df = pd.read_csv(tubing_data_path, delimiter=)
idx = df["Number"] == id_number
return df[idx][].values[0] * u.mL/u.turn
|
Look up the volume per revolution output by a Masterflex L/S pump
through L/S tubing of the given ID number.
:param id_number: Identification number of the L/S tubing. Valid numbers are 13-18, 24, 35, and 36.
:type id_number: int
:return: Volume per revolution output by a Masterflex L/S pump through the L/S tubing
:rtype: float
:Examples:
>>> from aguaclara.research.peristaltic_pump import vol_per_rev_LS
>>> from aguaclara.core.units import unit_registry as u
>>> vol_per_rev_LS(13)
<Quantity(0.06, 'milliliter / turn')>
>>> vol_per_rev_LS(18)
<Quantity(3.8, 'milliliter / turn')>
|
28,725 |
def fit(self, dataset):
dataset = dataset.map(_convert_to_vector)
jmodel = callMLlibFunc("fitStandardScaler", self.withMean, self.withStd, dataset)
return StandardScalerModel(jmodel)
|
Computes the mean and variance and stores as a model to be used
for later scaling.
:param dataset: The data used to compute the mean and variance
to build the transformation model.
:return: a StandardScalarModel
|
28,726 |
def get_signature_challenge(self):
devices = [DeviceRegistration.wrap(device) for device in self.__get_u2f_devices()]
if devices == []:
return {
: ,
:
}
challenge = start_authenticate(devices)
challenge[] =
session[] = challenge.json
return challenge
|
Returns new signature challenge
|
28,727 |
def fit(self, X):
self.constant_value = self._get_constant_value(X)
if self.constant_value is None:
self.model = scipy.stats.gaussian_kde(X)
else:
self._replace_constant_methods()
self.fitted = True
|
Fit Kernel density estimation to an list of values.
Args:
X: 1-d `np.ndarray` or `pd.Series` or `list` datapoints to be estimated from.
This function will fit a gaussian_kde model to a list of datapoints
and store it as a class attribute.
|
28,728 |
def activate(self, asset):
activate_url = asset[][]
return self._get(activate_url, body_type=models.Body).get_body()
|
Request activation of the specified asset representation.
Asset representations are obtained from :py:meth:`get_assets`.
:param request dict: An asset representation from the API.
:returns: :py:class:`planet.api.models.Body` with no response content
:raises planet.api.exceptions.APIException: On API error.
|
28,729 |
def to_tokens(self, indices):
to_reduce = False
if not isinstance(indices, (list, tuple)):
indices = [indices]
to_reduce = True
max_idx = len(self._idx_to_token) - 1
tokens = []
for idx in indices:
if not isinstance(idx, int) or idx > max_idx:
raise ValueError(.format(idx))
else:
tokens.append(self._idx_to_token[idx])
return tokens[0] if to_reduce else tokens
|
Converts token indices to tokens according to the vocabulary.
Parameters
----------
indices : int or list of ints
A source token index or token indices to be converted.
Returns
-------
str or list of strs
A token or a list of tokens according to the vocabulary.
|
28,730 |
def requestTimingInfo(self):
try:
return tuple(item.split()[1] for item in self.http_response.header.get().split())
except AttributeError:
return None, None
|
Returns the time needed to process the request by the frontend server in microseconds
and the EPOC timestamp of the request in microseconds.
:rtype: tuple containing processing time and timestamp
|
28,731 |
def __is_function_action(self, action_function):
is_function_action = True
if not hasattr(action_function, ):
return False
try:
for end_string, context in action_function():
if not isinstance(end_string, basestring):
self.log_error("Action function must return end of filename as a string as first argument")
if not isinstance(context, dict):
self.log_error("Action function must return context as a dict as second argument")
break
except Exception:
is_function_action = False
return is_function_action
|
Detect if given function is really an action function.
Args:
action_function: Function to test.
Note:
We don't care if the variable refer to a function but rather if it is callable or not.
|
28,732 |
def _convert_to_image_color(self, color):
rgb = self._convert_color_to_rrggbb(color)
return self._convert_rrggbb_to_image_color(rgb)
|
:return: a color that can be used by the image
|
28,733 |
def hgsub_report(self):
if self.relpath == :
return
yield "%s = [%s]%s" % (
self.fpath.lstrip(),
self.label,
self.remote_url)
|
Yields:
str: .hgsubs line for this repository
|
28,734 |
def shutdown(self, delete=False):
disks = self.get_disks()
self.domain.destroy()
if delete:
for disk in disks:
disk.wipe()
disk.delete()
|
Shutdown this VM
:param delete: Should we delete after shutting the VM down?
:type delete: bool
|
28,735 |
def create(self, image, geometry, options):
image = self.cropbox(image, geometry, options)
image = self.orientation(image, geometry, options)
image = self.colorspace(image, geometry, options)
image = self.remove_border(image, options)
image = self.scale(image, geometry, options)
image = self.crop(image, geometry, options)
image = self.rounded(image, geometry, options)
image = self.blur(image, geometry, options)
image = self.padding(image, geometry, options)
return image
|
Processing conductor, returns the thumbnail as an image engine instance
|
28,736 |
def _construct_retry(method_config, retry_codes, retry_params, retry_names):
if method_config is None:
return None
codes = None
if retry_codes and in method_config:
codes_name = method_config[]
if codes_name in retry_codes and retry_codes[codes_name]:
codes = [retry_names[name] for name in retry_codes[codes_name]]
else:
codes = []
backoff_settings = None
if retry_params and in method_config:
params_name = method_config[]
if params_name and params_name in retry_params:
backoff_settings = gax.BackoffSettings(**retry_params[params_name])
return gax.RetryOptions(
backoff_settings=backoff_settings,
retry_codes=codes,
)
|
Helper for ``construct_settings()``.
Args:
method_config (dict): A dictionary representing a single ``methods``
entry of the standard API client config file. (See
``construct_settings()`` for information on this yaml.)
retry_codes (dict): A dictionary parsed from the ``retry_codes`` entry
of the standard API client config file. (See ``construct_settings()``
for information on this yaml.)
retry_params (dict): A dictionary parsed from the ``retry_params`` entry
of the standard API client config file. (See ``construct_settings()``
for information on this yaml.)
retry_names (dict): A dictionary mapping the string names used in the
standard API client config file to API response status codes.
Returns:
Optional[RetryOptions]: The retry options, if applicable.
|
28,737 |
def valid_file(cls, filename):
file_ex = os.path.splitext(filename)[1].replace(, , 1)
return file_ex in SUPPORTED_FILES and is_excel_file(filename)
|
Check if the provided file is a valid file for this plugin.
:arg filename: the path to the file to check.
|
28,738 |
def call(self):
is_mutable = False
if self.token.nature == Nature.MUT:
is_mutable = True
self._process(Nature.MUT)
identifier = Identifier(name=self.token.value)
self._process(Nature.ID)
if self.token.nature == Nature.LPAREN:
return FunctionCall(identifier=identifier, parameters=self.parameters())
else:
return Variable(identifier=identifier, is_mutable=is_mutable)
|
call: ['mut'] ID ['(' parameters ')']
|
28,739 |
def prepare_framework(estimator, s3_operations):
if estimator.code_location is not None:
bucket, key = fw_utils.parse_s3_url(estimator.code_location)
key = os.path.join(key, estimator._current_job_name, , )
else:
bucket = estimator.sagemaker_session._default_bucket
key = os.path.join(estimator._current_job_name, , )
script = os.path.basename(estimator.entry_point)
if estimator.source_dir and estimator.source_dir.lower().startswith():
code_dir = estimator.source_dir
estimator.uploaded_code = fw_utils.UploadedCode(s3_prefix=code_dir, script_name=script)
else:
code_dir = .format(bucket, key)
estimator.uploaded_code = fw_utils.UploadedCode(s3_prefix=code_dir, script_name=script)
s3_operations[] = [{
: estimator.source_dir or script,
: bucket,
: key,
: True
}]
estimator._hyperparameters[sagemaker.model.DIR_PARAM_NAME] = code_dir
estimator._hyperparameters[sagemaker.model.SCRIPT_PARAM_NAME] = script
estimator._hyperparameters[sagemaker.model.CLOUDWATCH_METRICS_PARAM_NAME] = \
estimator.enable_cloudwatch_metrics
estimator._hyperparameters[sagemaker.model.CONTAINER_LOG_LEVEL_PARAM_NAME] = estimator.container_log_level
estimator._hyperparameters[sagemaker.model.JOB_NAME_PARAM_NAME] = estimator._current_job_name
estimator._hyperparameters[sagemaker.model.SAGEMAKER_REGION_PARAM_NAME] = \
estimator.sagemaker_session.boto_region_name
|
Prepare S3 operations (specify where to upload `source_dir`) and environment variables
related to framework.
Args:
estimator (sagemaker.estimator.Estimator): The framework estimator to get information from and update.
s3_operations (dict): The dict to specify s3 operations (upload `source_dir`).
|
28,740 |
def translated(structure, values, lang_spec):
indentation =
endline =
object_code = ""
stack = []
push = lambda x: stack.append(x)
pop = lambda : stack.pop()
last = lambda : stack[-1] if len(stack) > 0 else
def indented_code(s, level, end):
return lang_spec[INDENTATION]*level + s + end
level = 0
CONDITIONS = [LEXEM_TYPE_PREDICAT, LEXEM_TYPE_CONDITION]
ACTION = LEXEM_TYPE_ACTION
DOWNLEVEL = LEXEM_TYPE_DOWNLEVEL
for lexem_type in structure:
if lexem_type is ACTION:
if last() in CONDITIONS:
value, values = values[0:len(stack)], values[len(stack):]
object_code += (indented_code(lang_spec[BEG_CONDITION]
+ lang_spec[LOGICAL_AND].join(value)
+ lang_spec[END_CONDITION],
level,
lang_spec[END_LINE]
))
if len(lang_spec[BEG_BLOCK]) > 0:
object_code += indented_code(
lang_spec[BEG_BLOCK],
level,
lang_spec[END_LINE]
)
stack = []
level += 1
object_code += indented_code(
lang_spec[BEG_ACTION] + values[0],
level,
lang_spec[END_ACTION]+lang_spec[END_LINE]
)
values = values[1:]
elif lexem_type in CONDITIONS:
push(lexem_type)
elif lexem_type is DOWNLEVEL:
if last() not in CONDITIONS:
level -= 1
if level >= 0:
object_code += indented_code(
lang_spec[END_BLOCK], level,
lang_spec[END_LINE]
)
else:
level = 0
while level > 0:
level -= 1
if level >= 0:
object_code += indented_code(
lang_spec[END_BLOCK], level,
lang_spec[END_LINE]
)
else:
level = 0
return object_code
|
Return code associated to given structure and values,
translate with given language specification.
|
28,741 |
def simulate_moment_steps(
self,
circuit: circuits.Circuit,
param_resolver: = None,
qubit_order: ops.QubitOrderOrList = ops.QubitOrder.DEFAULT,
initial_state: Any = None
) -> Iterator:
return self._simulator_iterator(
circuit,
study.ParamResolver(param_resolver),
qubit_order,
initial_state)
|
Returns an iterator of StepResults for each moment simulated.
If the circuit being simulated is empty, a single step result should
be returned with the state being set to the initial state.
Args:
circuit: The Circuit to simulate.
param_resolver: A ParamResolver for determining values of Symbols.
qubit_order: Determines the canonical ordering of the qubits. This
is often used in specifying the initial state, i.e. the
ordering of the computational basis states.
initial_state: The initial state for the simulation. The form of
this state depends on the simulation implementation. See
documentation of the implementing class for details.
Returns:
Iterator that steps through the simulation, simulating each
moment and returning a StepResult for each moment.
|
28,742 |
def _getMethodsVoc(self):
methods = api.search({
"portal_type": "Method",
"is_active": True
}, "bika_setup_catalog")
items = map(lambda m: (api.get_uid(m), api.get_title(m)), methods)
items.sort(lambda x, y: cmp(x[1], y[1]))
items.insert(0, ("", _("Not specified")))
return DisplayList(list(items))
|
Return the registered methods as DisplayList
|
28,743 |
def create(self, locator):
for registration in self._registrations:
this_locator = registration.locator
if this_locator == locator:
try:
return registration.factory(locator)
except Exception as ex:
if isinstance(ex, CreateException):
raise ex
raise CreateException(
None,
"Failed to create object for " + str(locator)
).with_cause(ex)
|
Creates a component identified by given locator.
:param locator: a locator to identify component to be created.
:return: the created component.
|
28,744 |
def transform(self, Z):
mapper = self.broadcast(super(SparkDictVectorizer, self).transform,
Z.context)
dtype = sp.spmatrix if self.sparse else np.ndarray
return Z.transform(mapper, column=, dtype=dtype)
|
Transform ArrayRDD's (or DictRDD's 'X' column's) feature->value dicts
to array or sparse matrix.
Named features not encountered during fit or fit_transform will be
silently ignored.
Parameters
----------
Z : ArrayRDD or DictRDD with column 'X' containing Mapping or
iterable over Mappings, length = n_samples
Dict(s) or Mapping(s) from feature names (arbitrary Python
objects) to feature values (strings or convertible to dtype).
Returns
-------
Z : transformed, containing {array, sparse matrix}
Feature vectors; always 2-d.
|
28,745 |
def custom_pygments_guess_lexer_for_filename(_fn, _text, **options):
fn = basename(_fn)
primary = {}
matching_lexers = set()
for lexer in _iter_lexerclasses():
for filename in lexer.filenames:
if _fn_matches(fn, filename):
matching_lexers.add(lexer)
primary[lexer] = True
for filename in lexer.alias_filenames:
if _fn_matches(fn, filename):
matching_lexers.add(lexer)
primary[lexer] = False
if not matching_lexers:
raise ClassNotFound( % fn)
if len(matching_lexers) == 1:
return matching_lexers.pop()(**options)
result = []
for lexer in matching_lexers:
rv = lexer.analyse_text(_text)
if rv == 1.0:
return lexer(**options)
result.append(customize_lexer_priority(_fn, rv, lexer))
matlab = list(filter(lambda x: x[2].name.lower() == , result))
if len(matlab) > 0:
objc = list(filter(lambda x: x[2].name.lower() == , result))
if objc and objc[0][0] == matlab[0][0]:
raise SkipHeartbeat()
def type_sort(t):
return (t[0], primary[t[2]], t[1], t[2].__name__)
result.sort(key=type_sort)
return result[-1][2](**options)
|
Overwrite pygments.lexers.guess_lexer_for_filename to customize the
priority of different lexers based on popularity of languages.
|
28,746 |
def load_training_rasters(response_raster, explanatory_rasters, selected=None):
with rasterio.open(response_raster) as src:
response_data = src.read().flatten()
if selected is None:
train_y = response_data
else:
train_y = response_data[selected]
selected_data = []
for rast in explanatory_rasters:
with rasterio.open(rast) as src:
explanatory_data = src.read().flatten()
assert explanatory_data.size == response_data.size
if selected is None:
selected_data.append(explanatory_data)
else:
selected_data.append(explanatory_data[selected])
train_xs = np.asarray(selected_data).T
return train_xs, train_y
|
Parameters
----------
response_raster : Path to GDAL raster containing responses
explanatory_rasters : List of Paths to GDAL rasters containing explanatory variables
Returns
-------
train_xs : Array of explanatory variables
train_ys : 1xN array of known responses
|
28,747 |
def websocket(
self, uri, host=None, strict_slashes=None, subprotocols=None, name=None
):
self.enable_websocket()
if not uri.startswith("/"):
uri = "/" + uri
if strict_slashes is None:
strict_slashes = self.strict_slashes
def response(handler):
async def websocket_handler(request, *args, **kwargs):
request.app = self
if not getattr(handler, "__blueprintname__", False):
request.endpoint = handler.__name__
else:
request.endpoint = (
getattr(handler, "__blueprintname__", "")
+ handler.__name__
)
try:
protocol = request.transport.get_protocol()
except AttributeError:
protocol = request.transport._protocol
ws = await protocol.websocket_handshake(request, subprotocols)
fut = ensure_future(handler(request, ws, *args, **kwargs))
self.websocket_tasks.add(fut)
try:
await fut
except (CancelledError, ConnectionClosed):
pass
finally:
self.websocket_tasks.remove(fut)
await ws.close()
self.router.add(
uri=uri,
handler=websocket_handler,
methods=frozenset({"GET"}),
host=host,
strict_slashes=strict_slashes,
name=name,
)
return handler
return response
|
Decorate a function to be registered as a websocket route
:param uri: path of the URL
:param subprotocols: optional list of str with supported subprotocols
:param host:
:return: decorated function
|
28,748 |
def _syspath_modname_to_modpath(modname, sys_path=None, exclude=None):
def _isvalid(modpath, base):
subdir = dirname(modpath)
while subdir and subdir != base:
if not exists(join(subdir, )):
return False
subdir = dirname(subdir)
return True
_fname_we = modname.replace(, os.path.sep)
candidate_fnames = [
_fname_we + ,
]
candidate_fnames += [_fname_we + ext for ext in _platform_pylib_exts()]
if sys_path is None:
sys_path = sys.path
candidate_dpaths = [ if p == else p for p in sys_path]
if exclude:
def normalize(p):
if sys.platform.startswith():
return realpath(p).lower()
else:
return realpath(p)
real_exclude = {normalize(p) for p in exclude}
candidate_dpaths = [p for p in candidate_dpaths
if normalize(p) not in real_exclude]
for dpath in candidate_dpaths:
modpath = join(dpath, _fname_we)
if exists(modpath):
if isfile(join(modpath, )):
if _isvalid(modpath, dpath):
return modpath
for fname in candidate_fnames:
modpath = join(dpath, fname)
if isfile(modpath):
if _isvalid(modpath, dpath):
return modpath
|
syspath version of modname_to_modpath
Args:
modname (str): name of module to find
sys_path (List[PathLike], default=None):
if specified overrides `sys.path`
exclude (List[PathLike], default=None):
list of directory paths. if specified prevents these directories
from being searched.
Notes:
This is much slower than the pkgutil mechanisms.
CommandLine:
python -m xdoctest.static_analysis _syspath_modname_to_modpath
Example:
>>> print(_syspath_modname_to_modpath('xdoctest.static_analysis'))
...static_analysis.py
>>> print(_syspath_modname_to_modpath('xdoctest'))
...xdoctest
>>> print(_syspath_modname_to_modpath('_ctypes'))
..._ctypes...
>>> assert _syspath_modname_to_modpath('xdoctest', sys_path=[]) is None
>>> assert _syspath_modname_to_modpath('xdoctest.static_analysis', sys_path=[]) is None
>>> assert _syspath_modname_to_modpath('_ctypes', sys_path=[]) is None
>>> assert _syspath_modname_to_modpath('this', sys_path=[]) is None
Example:
>>> # test what happens when the module is not visible in the path
>>> modname = 'xdoctest.static_analysis'
>>> modpath = _syspath_modname_to_modpath(modname)
>>> exclude = [split_modpath(modpath)[0]]
>>> found = _syspath_modname_to_modpath(modname, exclude=exclude)
>>> # this only works if installed in dev mode, pypi fails
>>> assert found is None, 'should not have found {}'.format(found)
|
28,749 |
def guess_segments_lines(segments, lines, nearline_tolerance=5.0):
ys = segments[:, 1]
closeness = numpy.abs(numpy.subtract.outer(ys, lines))
line_of_y = numpy.argmin(closeness, axis=1)
distance = numpy.min(closeness, axis=1)
bad = distance > numpy.mean(distance) + nearline_tolerance * numpy.std(distance)
line_of_y[bad] = -1
return line_of_y
|
given segments, outputs a array of line numbers, or -1 if it
doesn't belong to any
|
28,750 |
def EncloseAnsiText(text):
return sgr_re.sub(lambda x: ANSI_START + x.group(1) + ANSI_END, text)
|
Enclose ANSI/SGR escape sequences with ANSI_START and ANSI_END.
|
28,751 |
def add_remote(self, path, name, remote_url, use_sudo=False, user=None, fetch=True):
if path is None:
raise ValueError("Path to the working copy is needed to add a remote")
if fetch:
cmd = % (name, remote_url)
else:
cmd = % (name, remote_url)
with cd(path):
if use_sudo and user is None:
run_as_root(cmd)
elif use_sudo:
sudo(cmd, user=user)
else:
run(cmd)
|
Add a remote Git repository into a directory.
:param path: Path of the working copy directory. This directory must exist
and be a Git working copy with a default remote to fetch from.
:type path: str
:param use_sudo: If ``True`` execute ``git`` with
:func:`fabric.operations.sudo`, else with
:func:`fabric.operations.run`.
:type use_sudo: bool
:param user: If ``use_sudo is True``, run :func:`fabric.operations.sudo`
with the given user. If ``use_sudo is False`` this parameter
has no effect.
:type user: str
:param name: name for the remote repository
:type name: str
:param remote_url: URL of the remote repository
:type remote_url: str
:param fetch: If ``True`` execute ``git remote add -f``
:type fetch: bool
|
28,752 |
def monitor_running_process(context: RunContext):
while True:
capture_output_from_running_process(context)
if context.process_finished():
context.return_code = context.command.returncode
break
if context.process_timed_out():
context.return_code = -1
raise ProcessTimeoutError(
exe_name=context.exe_short_name,
timeout=context.timeout,
)
|
Runs an infinite loop that waits for the process to either exit on its or time out
Captures all output from the running process
:param context: run context
:type context: RunContext
|
28,753 |
def assert_called(_mock_self):
self = _mock_self
if self.call_count == 0:
msg = ("Expected to have been called." %
self._mock_name or )
raise AssertionError(msg)
|
assert that the mock was called at least once
|
28,754 |
def _index(self):
if self.__index is None:
try:
with open(self._get_path()) as f:
data = json.load(f)
except (IOError, ValueError):
self.__index = {}
else:
if data.get(, 0) != self.version:
self.clear_cache()
self.__index = {}
else:
self.__index = data[]
return self.__index
|
Keys a list of file paths that have been pickled in this directory.
The index is stored in a json file in the same directory as the
pickled objects.
|
28,755 |
def bandwidth(self, subid, params=None):
params = update_params(params, {: subid})
return self.request(, params, )
|
/v1/server/bandwidth
GET - account
Get the bandwidth used by a virtual machine
Link: https://www.vultr.com/api/#server_bandwidth
|
28,756 |
def list_metrics(self, project, page_size=None, page_token=None):
extra_params = {}
if page_size is not None:
extra_params["pageSize"] = page_size
path = "/projects/%s/metrics" % (project,)
return page_iterator.HTTPIterator(
client=self._client,
api_request=self._client._connection.api_request,
path=path,
item_to_value=_item_to_metric,
items_key="metrics",
page_token=page_token,
extra_params=extra_params,
)
|
List metrics for the project associated with this client.
See
https://cloud.google.com/logging/docs/reference/v2/rest/v2/projects.metrics/list
:type project: str
:param project: ID of the project whose metrics are to be listed.
:type page_size: int
:param page_size: maximum number of metrics to return, If not passed,
defaults to a value set by the API.
:type page_token: str
:param page_token: opaque marker for the next "page" of metrics. If not
passed, the API will return the first page of
metrics.
:rtype: :class:`~google.api_core.page_iterator.Iterator`
:returns: Iterator of
:class:`~google.cloud.logging.metric.Metric`
accessible to the current API.
|
28,757 |
def handle_heartbeat_response_22(msg):
if not msg.gateway.is_sensor(msg.node_id):
return None
msg.gateway.sensors[msg.node_id].heartbeat = msg.payload
msg.gateway.alert(msg)
return None
|
Process an internal heartbeat response message.
|
28,758 |
def persistent_menu(menu):
if len(menu) > 3:
raise Invalid()
if any(len(item[]) > 5 for item in menu if item[] == ):
raise Invalid()
for item in menu:
if len(item[]) > 30:
raise Invalid()
if item[] == and len(item[]) > 1000:
raise Invalid()
|
more: https://developers.facebook.com/docs/messenger-platform/thread-settings/persistent-menu
:param menu:
:return:
|
28,759 |
def calc_measurement_error(self, tangents):
if len(tangents) < 2:
return 0.0
avg_tan = float(sum(tangents) / len(tangents))
numerator = float()
for i in tangents:
numerator += (i - avg_tan) * (i - avg_tan)
return math.sqrt(numerator / len(tangents) / (len(tangents) - 1))
|
formula for measurement error
sqrt ( (sum(1, n, (k_i - <k>)**2) / (n*(n-1)))
|
28,760 |
def MultiReadClientSnapshot(self, client_ids, cursor=None):
int_ids = [db_utils.ClientIDToInt(cid) for cid in client_ids]
query = (
"SELECT h.client_id, h.client_snapshot, UNIX_TIMESTAMP(h.timestamp),"
" s.startup_info "
"FROM clients as c FORCE INDEX (PRIMARY), "
"client_snapshot_history as h FORCE INDEX (PRIMARY), "
"client_startup_history as s FORCE INDEX (PRIMARY) "
"WHERE h.client_id = c.client_id "
"AND s.client_id = c.client_id "
"AND h.timestamp = c.last_snapshot_timestamp "
"AND s.timestamp = c.last_startup_timestamp "
"AND c.client_id IN ({})").format(", ".join(["%s"] * len(client_ids)))
ret = {cid: None for cid in client_ids}
cursor.execute(query, int_ids)
while True:
row = cursor.fetchone()
if not row:
break
cid, snapshot, timestamp, startup_info = row
client_obj = mysql_utils.StringToRDFProto(rdf_objects.ClientSnapshot,
snapshot)
client_obj.startup_info = mysql_utils.StringToRDFProto(
rdf_client.StartupInfo, startup_info)
client_obj.timestamp = mysql_utils.TimestampToRDFDatetime(timestamp)
ret[db_utils.IntToClientID(cid)] = client_obj
return ret
|
Reads the latest client snapshots for a list of clients.
|
28,761 |
def main(args):
foo:bar AND baz:borkfoobarbazborkbarbork
args = [unicode(u, ) for u in args[1:]]
schema = __sample_schema() if "--schema" in args else None
if schema:
args.pop(args.index("--schema"))
query = u.join(args)
print "Lucene input:", query
parser = __sample_parser(schema=schema)
parsed = parser.parse(query)
print "Parsed representation:", repr(parsed)
print "Lucene form:", unicode(parsed)
cloudsearch_query = .join(walk_clause(parsed))
print "Cloudsearch form:", cloudsearch_query
|
For command line experimentation. Sample output:
$ python l2cs.py 'foo:bar AND baz:bork'
Lucene input: foo:bar AND baz:bork
Parsed representation: And([Term(u'foo', u'bar'), Term(u'baz', u'bork')])
Lucene form: (foo:bar AND baz:bork)
Cloudsearch form: (and (field foo 'bar') (field baz 'bork'))
|
28,762 |
def select_source(self, source):
status = self.status()
if status[]:
if status[] != source:
if source in self.SOURCES:
self._send(self.CMD_SOURCE + self.SOURCES[source], read_reply=True)
|
Select a source from the list of sources.
|
28,763 |
def run_eidos(endpoint, *args):
call_class = % (eidos_package, endpoint)
cmd = [, , , eip, call_class] + list(args)
logger.info( % (.join(cmd)))
subprocess.call(cmd)
|
Run a given enpoint of Eidos through the command line.
Parameters
----------
endpoint : str
The class within the Eidos package to run, for instance
'apps.ExtractFromDirectory' will run
'org.clulab.wm.eidos.apps.ExtractFromDirectory'
*args
Any further arguments to be passed as inputs to the class
being run.
|
28,764 |
def cum_returns(returns, starting_value=0, out=None):
if len(returns) < 1:
return returns.copy()
nanmask = np.isnan(returns)
if np.any(nanmask):
returns = returns.copy()
returns[nanmask] = 0
allocated_output = out is None
if allocated_output:
out = np.empty_like(returns)
np.add(returns, 1, out=out)
out.cumprod(axis=0, out=out)
if starting_value == 0:
np.subtract(out, 1, out=out)
else:
np.multiply(out, starting_value, out=out)
if allocated_output:
if returns.ndim == 1 and isinstance(returns, pd.Series):
out = pd.Series(out, index=returns.index)
elif isinstance(returns, pd.DataFrame):
out = pd.DataFrame(
out, index=returns.index, columns=returns.columns,
)
return out
|
Compute cumulative returns from simple returns.
Parameters
----------
returns : pd.Series, np.ndarray, or pd.DataFrame
Returns of the strategy as a percentage, noncumulative.
- Time series with decimal returns.
- Example::
2015-07-16 -0.012143
2015-07-17 0.045350
2015-07-20 0.030957
2015-07-21 0.004902
- Also accepts two dimensional data. In this case, each column is
cumulated.
starting_value : float, optional
The starting returns.
out : array-like, optional
Array to use as output buffer.
If not passed, a new array will be created.
Returns
-------
cumulative_returns : array-like
Series of cumulative returns.
|
28,765 |
def copy(source, dest, name=None, shallow=False, without_attrs=False, log=None,
if_exists=, dry_run=False, **create_kws):
_check_dest_is_group(dest)
with _LogWriter(log) as log:
n_copied, n_skipped, n_bytes_copied = _copy(
log, source, dest, name=name, root=True, shallow=shallow,
without_attrs=without_attrs, if_exists=if_exists, dry_run=dry_run,
**create_kws
)
_log_copy_summary(log, dry_run, n_copied, n_skipped, n_bytes_copied)
return n_copied, n_skipped, n_bytes_copied
|
Copy the `source` array or group into the `dest` group.
Parameters
----------
source : group or array/dataset
A zarr group or array, or an h5py group or dataset.
dest : group
A zarr or h5py group.
name : str, optional
Name to copy the object to.
shallow : bool, optional
If True, only copy immediate children of `source`.
without_attrs : bool, optional
Do not copy user attributes.
log : callable, file path or file-like object, optional
If provided, will be used to log progress information.
if_exists : {'raise', 'replace', 'skip', 'skip_initialized'}, optional
How to handle arrays that already exist in the destination group. If
'raise' then a CopyError is raised on the first array already present
in the destination group. If 'replace' then any array will be
replaced in the destination. If 'skip' then any existing arrays will
not be copied. If 'skip_initialized' then any existing arrays with
all chunks initialized will not be copied (not available when copying to
h5py).
dry_run : bool, optional
If True, don't actually copy anything, just log what would have
happened.
**create_kws
Passed through to the create_dataset method when copying an array/dataset.
Returns
-------
n_copied : int
Number of items copied.
n_skipped : int
Number of items skipped.
n_bytes_copied : int
Number of bytes of data that were actually copied.
Examples
--------
Here's an example of copying a group named 'foo' from an HDF5 file to a
Zarr group::
>>> import h5py
>>> import zarr
>>> import numpy as np
>>> source = h5py.File('data/example.h5', mode='w')
>>> foo = source.create_group('foo')
>>> baz = foo.create_dataset('bar/baz', data=np.arange(100), chunks=(50,))
>>> spam = source.create_dataset('spam', data=np.arange(100, 200), chunks=(30,))
>>> zarr.tree(source)
/
βββ foo
β βββ bar
β βββ baz (100,) int64
βββ spam (100,) int64
>>> dest = zarr.group()
>>> from sys import stdout
>>> zarr.copy(source['foo'], dest, log=stdout)
copy /foo
copy /foo/bar
copy /foo/bar/baz (100,) int64
all done: 3 copied, 0 skipped, 800 bytes copied
(3, 0, 800)
>>> dest.tree() # N.B., no spam
/
βββ foo
βββ bar
βββ baz (100,) int64
>>> source.close()
The ``if_exists`` parameter provides options for how to handle pre-existing data in
the destination. Here are some examples of these options, also using
``dry_run=True`` to find out what would happen without actually copying anything::
>>> source = zarr.group()
>>> dest = zarr.group()
>>> baz = source.create_dataset('foo/bar/baz', data=np.arange(100))
>>> spam = source.create_dataset('foo/spam', data=np.arange(1000))
>>> existing_spam = dest.create_dataset('foo/spam', data=np.arange(1000))
>>> from sys import stdout
>>> try:
... zarr.copy(source['foo'], dest, log=stdout, dry_run=True)
... except zarr.CopyError as e:
... print(e)
...
copy /foo
copy /foo/bar
copy /foo/bar/baz (100,) int64
an object 'spam' already exists in destination '/foo'
>>> zarr.copy(source['foo'], dest, log=stdout, if_exists='replace', dry_run=True)
copy /foo
copy /foo/bar
copy /foo/bar/baz (100,) int64
copy /foo/spam (1000,) int64
dry run: 4 copied, 0 skipped
(4, 0, 0)
>>> zarr.copy(source['foo'], dest, log=stdout, if_exists='skip', dry_run=True)
copy /foo
copy /foo/bar
copy /foo/bar/baz (100,) int64
skip /foo/spam (1000,) int64
dry run: 3 copied, 1 skipped
(3, 1, 0)
Notes
-----
Please note that this is an experimental feature. The behaviour of this
function is still evolving and the default behaviour and/or parameters may change
in future versions.
|
28,766 |
def draw_spectra(md, ds):
coeffs_all, covs, scatters, red_chisqs, pivots, label_vector = model.model
nstars = len(dataset.test_SNR)
cannon_flux = np.zeros(dataset.test_flux.shape)
cannon_ivar = np.zeros(dataset.test_ivar.shape)
for i in range(nstars):
x = label_vector[:,i,:]
spec_fit = np.einsum(, x, coeffs_all)
cannon_flux[i,:] = spec_fit
bad = dataset.test_ivar[i,:] == SMALL**2
cannon_ivar[i,:][~bad] = 1. / scatters[~bad] ** 2
return cannon_flux, cannon_ivar
|
Generate best-fit spectra for all the test objects
Parameters
----------
md: model
The Cannon spectral model
ds: Dataset
Dataset object
Returns
-------
best_fluxes: ndarray
The best-fit test fluxes
best_ivars:
The best-fit test inverse variances
|
28,767 |
def all_with(self, x):
_args = []
for arg in self.all:
if is_collection(x):
for _x in x:
if _x in arg:
_args.append(arg)
break
else:
if x in arg:
_args.append(arg)
return Args(_args, no_argv=True)
|
Returns all arguments containing given string (or list thereof)
|
28,768 |
def get_default_config(self):
config = super(ArchiveHandler, self).get_default_config()
config.update({
: ,
: ,
: 7,
: 1,
: None,
: False,
})
return config
|
Return the default config for the handler
|
28,769 |
def remove_direct_link_triples(train, valid, test):
pairs = set()
merged = valid + test
for t in merged:
pairs.add((t.head, t.tail))
filtered = filterfalse(lambda t: (t.head, t.tail) in pairs or (t.tail, t.head) in pairs, train)
return list(filtered)
|
Remove direct links in the training sets.
|
28,770 |
def load_dataframe(fobj, compression=):
try:
from pandas import read_fwf
except ImportError:
raise ImportError(PANDAS_MESSAGE)
names, colspecs = zip(
(, (2, 14)),
(, (41, 46)),
(, (51, 63)),
(, (64, 76)),
(, (79, 86)),
(, (87, 95)),
(, (96, 104)),
)
df = read_fwf(fobj, colspecs, names=names, compression=compression)
df = df.assign(
ra_hours = df[] / 15.0,
epoch_year = 1991.25,
)
return df.set_index()
|
Given an open file for `hip_main.dat.gz`, return a parsed dataframe.
If your copy of ``hip_main.dat`` has already been unzipped, pass the
optional argument ``compression=None``.
|
28,771 |
def display_multi(annotations, fig_kw=None, meta=True, **kwargs):
if fig_kw is None:
fig_kw = dict()
fig_kw.setdefault(, True)
fig_kw.setdefault(, True)
display_annotations = []
for ann in annotations:
for namespace in VIZ_MAPPING:
if can_convert(ann, namespace):
display_annotations.append(ann)
break
if not len(display_annotations):
raise ParameterError()
fig, axs = plt.subplots(nrows=len(display_annotations), ncols=1, **fig_kw)
if len(display_annotations) == 1:
axs = [axs]
for ann, ax in zip(display_annotations, axs):
kwargs[] = ax
display(ann, meta=meta, **kwargs)
return fig, axs
|
Display multiple annotations with shared axes
Parameters
----------
annotations : jams.AnnotationArray
A collection of annotations to display
fig_kw : dict
Keyword arguments to `plt.figure`
meta : bool
If `True`, display annotation metadata for each annotation
kwargs
Additional keyword arguments to the `mir_eval.display` routines
Returns
-------
fig
The created figure
axs
List of subplot axes corresponding to each displayed annotation
|
28,772 |
def get_instance(self, payload):
return ApplicationInstance(self._version, payload, account_sid=self._solution[], )
|
Build an instance of ApplicationInstance
:param dict payload: Payload response from the API
:returns: twilio.rest.api.v2010.account.application.ApplicationInstance
:rtype: twilio.rest.api.v2010.account.application.ApplicationInstance
|
28,773 |
def remove_pid_file(process_name):
pid_filename = get_pid_filename(process_name)
try:
os.remove(pid_filename)
print(.format(pid_filename), file=sys.stdout)
except Exception as e:
print(.format(pid_filename, e),
file=sys.stderr)
|
removes pid file
|
28,774 |
def from_path(cls, path):
urlparts = urlparse.urlsplit(path)
site =
if (urlparts.scheme == or urlparts.scheme == ):
if os.path.isfile(urlparts.path):
path = os.path.abspath(urlparts.path)
path = urlparse.urljoin(,
urllib.pathname2url(path))
site =
fil = File(os.path.basename(path))
fil.PFN(path, site)
return fil
|
Takes a path and returns a File object with the path as the PFN.
|
28,775 |
def build_command(chunks):
if not chunks:
raise ValueError(
"No command parts: {} ({})".format(chunks, type(chunks)))
if isinstance(chunks, str):
return chunks
parsed_pieces = []
for cmd_part in chunks:
if cmd_part is None:
continue
try:
parsed_pieces.append(cmd_part.strip(" "))
except AttributeError:
option, argument = cmd_part
if argument is None or argument == "":
continue
option, argument = option.strip(" "), str(argument).strip(" ")
parsed_pieces.append("{} {}".format(option, argument))
return " ".join(parsed_pieces)
|
Create a command from various parts.
The parts provided may include a base, flags, option-bound arguments, and
positional arguments. Each element must be either a string or a two-tuple.
Raw strings are interpreted as either the command base, a pre-joined
pair (or multiple pairs) of option and argument, a series of positional
arguments, or a combination of those elements. The only modification they
undergo is trimming of any space characters from each end.
:param Iterable[str | (str, str | NoneType)] chunks: the collection of the
command components to interpret, modify, and join to create a
single meaningful command
:return str: the single meaningful command built from the given components
:raise ValueError: if no command parts are provided
|
28,776 |
def from_linearized(first, second, intersections):
s, t, success = segment_intersection(
first.start_node, first.end_node, second.start_node, second.end_node
)
bad_parameters = False
if success:
if not (
_helpers.in_interval(s, 0.0, 1.0)
and _helpers.in_interval(t, 0.0, 1.0)
):
bad_parameters = True
else:
if first.error == 0.0 and second.error == 0.0:
raise ValueError(_UNHANDLED_LINES)
bad_parameters = True
s = 0.5
t = 0.5
if bad_parameters:
if not convex_hull_collide(first.curve.nodes, second.curve.nodes):
return
orig_s = (1 - s) * first.curve.start + s * first.curve.end
orig_t = (1 - t) * second.curve.start + t * second.curve.end
refined_s, refined_t = _intersection_helpers.full_newton(
orig_s, first.curve.original_nodes, orig_t, second.curve.original_nodes
)
refined_s, success = _helpers.wiggle_interval(refined_s)
if not success:
return
refined_t, success = _helpers.wiggle_interval(refined_t)
if not success:
return
add_intersection(refined_s, refined_t, intersections)
|
Determine curve-curve intersection from pair of linearizations.
.. note::
This assumes that at least one of ``first`` and ``second`` is
not a line. The line-line case should be handled "early"
by :func:`check_lines`.
.. note::
This assumes the caller has verified that the bounding boxes
for ``first`` and ``second`` actually intersect.
If there is an intersection along the segments, adds that intersection
to ``intersections``. Otherwise, returns without doing anything.
Args:
first (Linearization): First curve being intersected.
second (Linearization): Second curve being intersected.
intersections (list): A list of existing intersections.
Raises:
ValueError: If ``first`` and ``second`` both have linearization error
of ``0.0`` (i.e. they are both lines). This is because this
function expects the caller to have used :func:`check_lines`
already.
|
28,777 |
def get_indirect_url_lock_list(self, url, principal=None):
url = normalize_lock_root(url)
lockList = []
u = url
while u:
ll = self.storage.get_lock_list(
u, include_root=True, include_children=False, token_only=False
)
for l in ll:
if u != url and l["depth"] != "infinity":
continue
if principal is None or principal == l["principal"]:
lockList.append(l)
u = util.get_uri_parent(u)
return lockList
|
Return a list of valid lockDicts, that protect <path> directly or indirectly.
If a principal is given, only locks owned by this principal are returned.
Side effect: expired locks for this path and all parents are purged.
|
28,778 |
def generate_np(self, x, **kwargs):
x_adv = []
if in kwargs and kwargs[] is not None:
image_target = np.copy(kwargs[])
else:
image_target = None
if in kwargs and kwargs[] is not None:
y_target = np.copy(kwargs[])
else:
y_target = None
for i, x_single in enumerate(x):
img = np.expand_dims(x_single, axis=0)
if image_target is not None:
single_img_target = np.expand_dims(image_target[i], axis=0)
kwargs[] = single_img_target
if y_target is not None:
single_y_target = np.expand_dims(y_target[i], axis=0)
kwargs[] = single_y_target
adv_img = super(BoundaryAttackPlusPlus,
self).generate_np(img, **kwargs)
x_adv.append(adv_img)
return np.concatenate(x_adv, axis=0)
|
Generate adversarial images in a for loop.
:param y: An array of shape (n, nb_classes) for true labels.
:param y_target: An array of shape (n, nb_classes) for target labels.
Required for targeted attack.
:param image_target: An array of shape (n, **image shape) for initial
target images. Required for targeted attack.
See parse_params for other kwargs.
|
28,779 |
def dec_ptr(self, ptr):
result = ptr - self.reading_len[self.ws_type]
if result < self.data_start:
result = 0x10000 - self.reading_len[self.ws_type]
return result
|
Get previous circular buffer data pointer.
|
28,780 |
def bash(filename):
sys.stdout.flush()
subprocess.call("bash {}".format(filename), shell=True)
|
Runs a bash script in the local directory
|
28,781 |
def get_group(self, t, i):
try:
value = []
if t in _DIGIT and t != :
value.append(t)
t = next(i)
if t in _DIGIT:
value.append(t)
else:
i.rewind(1)
except StopIteration:
pass
return .join(value) if value else None
|
Get group number.
|
28,782 |
def _walk_tree(self, data, scheme, ancestors=None, property_name=None, prefix=None):
if property_name is None:
property_name =
if err:
raise err
else:
self._create_attr(property_name, data, ancestors)
self.__validate_unrecognized_values(scheme, data, ancestors, prefix)
self.__populate_scheme_references(scheme, property_name)
self.__validate_config_properties(scheme, data, ancestors, prefix)
|
This function takes configuration data and a validation scheme
then walk the configuration tree validating the configuraton data agenst
the scheme provided. Will raise error on failure otherwise return None.
Usage::
>>> self._walk_tree(
>>> OrderedDict([('root', config_data)]),
>>> registries,
>>> REGISTRIES_SCHEME
>>> )
:param ancestors: A :OrderedDict:, The first element of the dict must be 'root'.
:param data: The data that needs to be validated agents the scheme.
:param scheme: A :dict:, The scheme defining the validations.
:param property_name: A :string:, This is the name of the data getting validated.
:param prefix:
:rtype: :None: will raise error if a validation fails.
|
28,783 |
def _add_arguments(param, parser, used_char_args, add_nos):
if param.kind is param.VAR_POSITIONAL:
arg_spec[] =
if description is not None:
arg_spec[] = description
flags = []
name = param.name
if is_option:
for letter in name[0], name[0].swapcase():
if letter not in used_char_args:
used_char_args.add(letter)
flags.append(.format(letter))
break
if len(name) > 1 or not flags:
flags.append(.format(name))
arg_spec[] = name
else:
flags.append(name)
parser.add_argument(*flags, **arg_spec)
if add_nos and arg_type is bool:
parser.add_argument(
.format(name),
action=,
dest=name,
const=default if default is not _empty else False)
|
Add the argument(s) to an ArgumentParser (using add_argument) for a given
parameter. used_char_args is the set of -short options currently already in
use, and is updated (if necessary) by this function. If add_nos is True,
this will also add an inverse switch for all boolean options. For
instance, for the boolean parameter "verbose", this will create --verbose
and --no-verbose.
|
28,784 |
def _build_default_options(self):
return [
OptionDefault(, None, inherit=True),
OptionDefault(, False, inherit=False),
OptionDefault(, enums.CREATE_STRATEGY, inherit=True),
OptionDefault(, (), inherit=True),
OptionDefault(, (), inherit=True),
OptionDefault(, {}, inherit=True),
]
|
Provide the default value for all allowed fields.
Custom FactoryOptions classes should override this method
to update() its return value.
|
28,785 |
def display(contents, domain=DEFAULT_DOMAIN, force_gist=False):
url = make_url(contents, domain, force_gist)
webbrowser.open(url)
return url
|
Open a web browser pointing to geojson.io with the specified content.
If the content is large, an anonymous gist will be created on github and
the URL will instruct geojson.io to download the gist data and then
display. If the content is small, this step is not needed as the data can
be included in the URL
Parameters
----------
content - (see make_geojson)
domain - string, default http://geojson.io
force_gist - bool, default False
Create an anonymous gist on Github regardless of the size of the
contents
|
28,786 |
def posterior(self, x, s=1.):
pr0 = 1. / self.sigma**2
prd = x.size / s**2
varp = 1. / (pr0 + prd)
mu = varp * (pr0 * self.mu + prd * x.mean())
return TruncNormal(mu=mu, sigma=np.sqrt(varp), a=self.a, b=self.b)
|
Model is X_1,...,X_n ~ N(theta, s^2), theta~self, s fixed
|
28,787 |
def stat_file(self, id=None, path="/"):
if id:
return self.request(id, params={"path": path}, method="get").json()
else:
return self.request(params={"path": path}, method="get").json()
|
Stat a file in an allocation directory.
https://www.nomadproject.io/docs/http/client-fs-stat.html
arguments:
- id
- path
returns: dict
raises:
- nomad.api.exceptions.BaseNomadException
- nomad.api.exceptions.URLNotFoundNomadException
|
28,788 |
def close(self):
self._close_proc()
super(PipeReader, self).close()
if self._tempfile:
try:
os.unlink(self._tempfile)
except OSError:
pass
self._tempfile = None
|
Close open resources.
|
28,789 |
def from_dict(d: Dict[str, Any]) -> :
name_type = d[]
cls = _NAME_TO_INSTRUCTIONS[name_type]
return cls.from_dict(d)
|
Loads a set of coverage instructions from a given dictionary.
Raises:
BadCoverageInstructions: if the given coverage instructions are
illegal.
|
28,790 |
def iter_list_market_profit_and_loss(
self, market_ids, chunk_size, **kwargs):
return itertools.chain(*(
self.list_market_profit_and_loss(market_chunk, **kwargs)
for market_chunk in utils.get_chunks(market_ids, chunk_size)
))
|
Split call to `list_market_profit_and_loss` into separate requests.
:param list market_ids: List of market IDs
:param int chunk_size: Number of records per chunk
:param dict kwargs: Arguments passed to `list_market_profit_and_loss`
|
28,791 |
def branch(self):
branch = [self]
for c in self.children:
branch += c.branch()
return branch
|
Get a flattened representation of the branch.
@return: A flat list of nodes.
@rtype: [L{Element},..]
|
28,792 |
def calculate_derivative_P(self, P, T, zs, ws, method, order=1):
rs derivative
function, with a delta of 0.01 Pa and a number of points equal to
2*order + 1.
This method can be overwritten by subclasses who may perfer to add
analytical methods for some or all methods as this is much faster.
If the calculation does not succeed, returns the actual error
encountered.
Parameters
----------
P : float
Pressure at which to calculate the derivative, [Pa]
T : float
Temperature at which to calculate the derivative, [K]
zs : list[float]
Mole fractions of all species in the mixture, [-]
ws : list[float]
Weight fractions of all species in the mixture, [-]
method : str
Method for which to find the derivative
order : int
Order of the derivative, >= 1
Returns
-------
d_prop_d_P_at_T : float
Calculated derivative property at constant temperature,
[`units/Pa^order`]
'
f = lambda P: self.calculate(T, P, zs, ws, method)
return derivative(f, P, dx=1e-2, n=order, order=1+order*2)
|
r'''Method to calculate a derivative of a mixture property with respect
to pressure at constant temperature and composition
of a given order using a specified method. Uses SciPy's derivative
function, with a delta of 0.01 Pa and a number of points equal to
2*order + 1.
This method can be overwritten by subclasses who may perfer to add
analytical methods for some or all methods as this is much faster.
If the calculation does not succeed, returns the actual error
encountered.
Parameters
----------
P : float
Pressure at which to calculate the derivative, [Pa]
T : float
Temperature at which to calculate the derivative, [K]
zs : list[float]
Mole fractions of all species in the mixture, [-]
ws : list[float]
Weight fractions of all species in the mixture, [-]
method : str
Method for which to find the derivative
order : int
Order of the derivative, >= 1
Returns
-------
d_prop_d_P_at_T : float
Calculated derivative property at constant temperature,
[`units/Pa^order`]
|
28,793 |
def create(model_config, reinforcer, optimizer, storage, total_frames, batches_per_epoch,
callbacks=None, scheduler=None, openai_logging=False):
from vel.openai.baselines import logger
logger.configure(dir=model_config.openai_dir())
return RlTrainCommand(
model_config=model_config,
reinforcer=reinforcer,
optimizer_factory=optimizer,
scheduler_factory=scheduler,
storage=storage,
callbacks=callbacks,
total_frames=int(float(total_frames)),
batches_per_epoch=int(batches_per_epoch),
openai_logging=openai_logging
)
|
Vel factory function
|
28,794 |
def _check_custom_url_parameters(self):
for param in self.custom_url_params.keys():
if param is not CustomUrlParam.TRANSPARENT:
raise ValueError(.format(param))
|
Checks if custom url parameters are valid parameters.
Throws ValueError if the provided parameter is not a valid parameter.
|
28,795 |
def __neuron_evolution(self, index):
value = 0.0
for index_neighbor in range(self.__num_osc):
value += self.__weights[index][index_neighbor] * (1.0 - 2.0 * (self.__output[index_neighbor] ** 2))
return value / self.__weights_summary[index]
|
!
@brief Calculates state of the neuron with specified index.
@param[in] index (uint): Index of neuron in the network.
@return (double) New output of the specified neuron.
|
28,796 |
def __generate_file(self, template_filename, context, generated_filename, force=False):
if force or (not os.path.isfile(generated_filename) or os.stat(template_filename).st_mtime - os.stat(generated_filename).st_mtime > 1):
self.log_info( % template_filename)
code_generated = self.__jinja2_environment.get_template(template_filename).render(context)
with open(generated_filename, ) as f:
self.log_info( % generated_filename)
f.write(code_generated.encode())
|
Generate **one** (source code) file from a template.
The file is **only** generated if needed, i.e. if ``force`` is set to ``True`` or if generated file is older
than the template file. The generated file is written in the same directory as the template file.
Args:
template_filename (str): **Absolute** filename of a template file to translate.
context (dict): Dictionary with ``(key, val)`` replacements.
generated_filename (str): **Absolute** filename of the generated file filename.
force (bool): If set to ``True``, file is generated no matter what.
|
28,797 |
def unstructure_attrs_astuple(self, obj):
attrs = obj.__class__.__attrs_attrs__
return tuple(self.unstructure(getattr(obj, a.name)) for a in attrs)
|
Our version of `attrs.astuple`, so we can call back to us.
|
28,798 |
def _format_background(background):
if os.path.isfile(background):
with open(background, "r") as i_file:
background = i_file.read().splitlines()
else:
background = background.splitlines()
final_background = ""
for line in background:
if line == "":
final_background += r"\\" + "\n\n"
continue
final_background += latex.wrap_lines(latex.sanitize_tex(line))
return final_background
|
Formats the background section
:param background: the background content or file.
:type background: str or file
:returns: the background content.
:rtype: str
|
28,799 |
def make_describe_attrs(self):
lst = []
if self.all_groups:
lst.append((NEWLINE, ))
lst.append((INDENT, ))
for group in self.all_groups:
if group.name:
lst.extend(self.tokens.make_describe_attr(group.kls_name))
return lst
|
Create tokens for setting is_noy_spec on describes
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.