Unnamed: 0
int64
0
389k
code
stringlengths
26
79.6k
docstring
stringlengths
1
46.9k
8,200
def _save_translations(sender, instance, *args, **kwargs): if site_is_monolingual(): return False cls = sender if not hasattr(cls._meta, "translatable_fields"): return False for field in cls._meta.translatable_fields: value = getattr(instance,field) if not value is None: md5_value = checksum(value) setattr( instance, u"md5"+field, md5_value ) for lang in settings.LANGUAGES: lang = lang[0] if lang != settings.LANGUAGE_CODE: context = u"Updating from object" if hasattr(instance, "trans_context"): context = getattr(instance, "trans_context") trans = FieldTranslation.update(instance, field, lang, context)
This signal saves model translations.
8,201
def consume(self, seq): for kmer in iter_kmers(seq, self.k, canonical=self.canonical): self._incr(kmer)
Counts all k-mers in sequence.
8,202
def _find_home_or_away(self, row): name = row().text() if name == self._home_name.text(): return HOME else: return AWAY
Determine whether the player is on the home or away team. Next to every player is their school's name. This name can be matched with the previously parsed home team's name to determine if the player is a member of the home or away team. Parameters ---------- row : PyQuery object A PyQuery object representing a single row in a boxscore table for a single player. Returns ------- str Returns a ``string`` constant denoting whether the team plays for the home or away team.
8,203
def remote_server_command(command, environment, user_profile, **kwargs): if environment.remote_server_key: temp = tempfile.NamedTemporaryFile(mode="wb") temp.write(environment.remote_server_key) temp.seek(0) known_hosts = temp.name else: known_hosts = get_script_path() binds = { user_profile.profiledir + : , known_hosts: , get_script_path(): } if kwargs.get("include_project_dir", None): binds[environment.target] = del kwargs["include_project_dir"] kwargs["ro"] = binds try: web_command(command, **kwargs) except WebCommandError as e: e.user_description = raise e
Wraps web_command function with docker bindings needed to connect to a remote server (such as datacats.com) and run commands there (for example, when you want to copy your catalog to that server). The files binded to the docker image include the user's ssh credentials: ssh_config file, rsa and rsa.pub user keys known_hosts whith public keys of the remote server (if known) The **kwargs (keyword arguments) are passed on to the web_command call intact, see the web_command's doc string for details
8,204
def generate_gap_bed(fname, outname): f = Fasta(fname) with open(outname, "w") as bed: for chrom in f.keys(): for m in re.finditer(r, f[chrom][:].seq): bed.write("{}\t{}\t{}\n".format(chrom, m.start(0), m.end(0)))
Generate a BED file with gap locations. Parameters ---------- fname : str Filename of input FASTA file. outname : str Filename of output BED file.
8,205
def pkgdb(opts): s package database .. versionadded:: 2015.8.0 pkgdbspmpkgdb' )
Return modules for SPM's package database .. versionadded:: 2015.8.0
8,206
def uninstall(self, pkgname, *args, **kwargs): auto_confirm = kwargs.pop("auto_confirm", True) verbose = kwargs.pop("verbose", False) with self.activated(): monkey_patch = next(iter( dist for dist in self.base_working_set if dist.project_name == "recursive-monkey-patch" ), None) if monkey_patch: monkey_patch.activate() pip_shims = self.safe_import("pip_shims") pathset_base = pip_shims.UninstallPathSet pathset_base._permitted = PatchedUninstaller._permitted dist = next( iter(filter(lambda d: d.project_name == pkgname, self.get_working_set())), None ) pathset = pathset_base.from_dist(dist) if pathset is not None: pathset.remove(auto_confirm=auto_confirm, verbose=verbose) try: yield pathset except Exception as e: if pathset is not None: pathset.rollback() else: if pathset is not None: pathset.commit() if pathset is None: return
A context manager which allows uninstallation of packages from the environment :param str pkgname: The name of a package to uninstall >>> env = Environment("/path/to/env/root") >>> with env.uninstall("pytz", auto_confirm=True, verbose=False) as uninstaller: cleaned = uninstaller.paths >>> if cleaned: print("uninstalled packages: %s" % cleaned)
8,207
def registration_form_received(self, stanza): self.lock.acquire() try: self.__register = Register(stanza.get_query()) self.registration_callback(stanza, self.__register.get_form()) finally: self.lock.release()
Handle registration form received. [client only] Call self.registration_callback with the registration form received as the argument. Use the value returned by the callback will be a filled-in form. :Parameters: - `stanza`: the stanza received. :Types: - `stanza`: `pyxmpp.iq.Iq`
8,208
def JZ(cpu, target): cpu.PC = Operators.ITEBV(cpu.address_bit_size, cpu.ZF, target.read(), cpu.PC)
Jumps short if zero. :param cpu: current CPU. :param target: destination operand.
8,209
def load(self, fileobj): for loader in (pickle.load, json.load, csv.reader): fileobj.seek(0) try: return self.initial_update(loader(fileobj)) except Exception as e: pass raise ValueError()
Load the dict from the file object
8,210
def get_stroke_glide_indices(A_g_hf, fs_a, J, t_max): import numpy from . import dsp if A_g_hf.ndim > 1: raise IndexError( ) n_max = t_max * fs_a zc = dsp.findzc(A_g_hf, J, n_max/2) ind = numpy.where(zc[1:, 0] - zc[0:-1, 1] > n_max)[0] gl_ind = numpy.vstack([zc[ind, 0] - 1, zc[ind + 1, 1] + 1]).T gl_mean_idx = numpy.round(numpy.mean(gl_ind, 1)).astype(int) gl_ind = numpy.round(gl_ind).astype(int) for i in range(len(gl_mean_idx)): col = range(gl_mean_idx[i], gl_ind[i, 0], - 1) test = numpy.where(numpy.isnan(A_g_hf[col]))[0] if test.size != 0: gl_mean_idx[i] = numpy.nan gl_ind[i,0] = numpy.nan gl_ind[i,1] = numpy.nan else: over_J1 = numpy.where(abs(A_g_hf[col]) >= J)[0][0] gl_ind[i,0] = gl_mean_idx[i] - over_J1 + 1 col = range(gl_mean_idx[i], gl_ind[i, 1]) over_J2 = numpy.where(abs(A_g_hf[col]) >= J)[0][0] gl_ind[i,1] = gl_mean_idx[i] + over_J2 - 1 GL = gl_ind GL = GL[numpy.where(GL[:, 1] - GL[:, 0] > n_max / 2)[0], :] return GL
Get stroke and glide indices from high-pass accelerometer data Args ---- A_g_hf: 1-D ndarray Animal frame triaxial accelerometer matrix at sampling rate fs_a. fs_a: int Number of accelerometer samples per second J: float Frequency threshold for detecting a fluke stroke in m/s^2. If J is not given, fluke strokes will not be located but the rotations signal (pry) will be computed. t_max: int Maximum duration allowable for a fluke stroke in seconds. A fluke stroke is counted whenever there is a cyclic variation in the pitch deviation with peak-to-peak magnitude greater than +/-J and consistent with a fluke stroke duration of less than t_max seconds, e.g., for Mesoplodon choose t_max=4. Returns ------- GL: 1-D ndarray Matrix containing the start time (first column) and end time (2nd column) of any glides (i.e., no zero crossings in t_max or more seconds). Times are in seconds. Note ---- If no J or t_max is given, J=[], or t_max=[], GL returned as None
8,211
def AddArguments(cls, argument_group): argument_group.add_argument( , dest=, action=, default=False, required=cls._DEFAULT_APPEND, help=( )) argument_group.add_argument( , dest=, type=str, default=cls._DEFAULT_EVIDENCE, action=, required=False, help=) argument_group.add_argument( , dest=, type=str, action=, default=cls._DEFAULT_FIELDS, help=( )) argument_group.add_argument( , dest=, type=str, action=, default=, help=( .format( cls._DEFAULT_FIELDS)))
Adds command line arguments the helper supports to an argument group. This function takes an argument parser or an argument group object and adds to it all the command line arguments this helper supports. Args: argument_group (argparse._ArgumentGroup|argparse.ArgumentParser): argparse group.
8,212
def config_dict(config): return dict( (key, getattr(config, key)) for key in config.values )
Given a Sphinx config object, return a dictionary of config values.
8,213
def retry(tries, delay=0, back_off=1, raise_msg=): if back_off < 1: raise ValueError() tries = math.floor(tries) if tries < 0: raise ValueError() if delay < 0: raise ValueError() def deco_retry(f): def f_retry(*args, **kwargs): max_tries, max_delay = tries, delay while max_tries > 0: rv = f(*args, **kwargs) if rv: return rv max_tries -= 1 time.sleep(max_delay) max_delay *= back_off else: if raise_msg: raise Exception(raise_msg) return return f_retry return deco_retry
Retries a function or method until it got True. - ``delay`` sets the initial delay in seconds - ``back_off`` sets the factor by which - ``raise_msg`` if not '', it'll raise an Exception
8,214
def bootstrap(ns_var_name: str = NS_VAR_NAME, core_ns_name: str = CORE_NS) -> None: core_ns_sym = sym.symbol(core_ns_name) ns_var_sym = sym.symbol(ns_var_name, ns=core_ns_name) __NS = Maybe(Var.find(ns_var_sym)).or_else_raise( lambda: RuntimeException(f"Dynamic Var {ns_var_sym} not bound!") ) def in_ns(s: sym.Symbol): ns = Namespace.get_or_create(s) __NS.value = ns return ns Var.intern_unbound(core_ns_sym, sym.symbol("unquote")) Var.intern_unbound(core_ns_sym, sym.symbol("unquote-splicing")) Var.intern( core_ns_sym, sym.symbol("in-ns"), in_ns, meta=lmap.map({_REDEF_META_KEY: True}) ) Var.intern( core_ns_sym, sym.symbol(_PRINT_GENERATED_PY_VAR_NAME), False, dynamic=True, meta=lmap.map({_PRIVATE_META_KEY: True}), ) Var.intern( core_ns_sym, sym.symbol(_GENERATED_PYTHON_VAR_NAME), "", dynamic=True, meta=lmap.map({_PRIVATE_META_KEY: True}), ) Var.intern( core_ns_sym, sym.symbol(_PRINT_DUP_VAR_NAME), lobj.PRINT_DUP, dynamic=True ) Var.intern( core_ns_sym, sym.symbol(_PRINT_LENGTH_VAR_NAME), lobj.PRINT_LENGTH, dynamic=True ) Var.intern( core_ns_sym, sym.symbol(_PRINT_LEVEL_VAR_NAME), lobj.PRINT_LEVEL, dynamic=True ) Var.intern( core_ns_sym, sym.symbol(_PRINT_META_VAR_NAME), lobj.PRINT_META, dynamic=True ) Var.intern( core_ns_sym, sym.symbol(_PRINT_READABLY_VAR_NAME), lobj.PRINT_READABLY, dynamic=True, )
Bootstrap the environment with functions that are are difficult to express with the very minimal lisp environment.
8,215
def _storage_list_keys(bucket, pattern): data = [{: item.metadata.name, : item.metadata.content_type, : item.metadata.size, : item.metadata.updated_on} for item in _storage_get_keys(bucket, pattern)] return datalab.utils.commands.render_dictionary(data, [, , , ])
List all storage keys in a specified bucket that match a pattern.
8,216
def build_slabs(self): slabs = self.get_unreconstructed_slabs() recon_slabs = [] for slab in slabs: d = get_d(slab) top_site = sorted(slab, key=lambda site: site.frac_coords[2])[-1].coords if "points_to_remove" in self.reconstruction_json.keys(): pts_to_rm = copy.deepcopy(self.reconstruction_json["points_to_remove"]) for p in pts_to_rm: p[2] = slab.lattice.get_fractional_coords([top_site[0], top_site[1], top_site[2]+p[2]*d])[2] cart_point = slab.lattice.get_cartesian_coords(p) dist = [site.distance_from_point(cart_point) for site in slab] site1 = dist.index(min(dist)) slab.symmetrically_remove_atoms([site1]) if "points_to_add" in self.reconstruction_json.keys(): pts_to_add = copy.deepcopy(self.reconstruction_json["points_to_add"]) for p in pts_to_add: p[2] = slab.lattice.get_fractional_coords([top_site[0], top_site[1], top_site[2]+p[2]*d])[2] slab.symmetrically_add_atom(slab[0].specie, p) slab.reconstruction = self.name setattr(slab, "recon_trans_matrix", self.trans_matrix) ouc = slab.oriented_unit_cell.copy() ouc.make_supercell(self.trans_matrix) slab.oriented_unit_cell = ouc recon_slabs.append(slab) return recon_slabs
Builds the reconstructed slab by: (1) Obtaining the unreconstructed slab using the specified parameters for the SlabGenerator. (2) Applying the appropriate lattice transformation in the a and b lattice vectors. (3) Remove any specified sites from both surfaces. (4) Add any specified sites to both surfaces. Returns: (Slab): The reconstructed slab.
8,217
def cmServicePrompt(): a = TpPd(pd=0x5) b = MessageType(mesType=0x25) c = PdAndSapi() packet = a / b / c return packet
CM SERVICE PROMPT Section 9.2.5a
8,218
def on_song_changed(self, song): if song is None or song.lyric is None: self._lyric = None self._pos_s_map = {} else: self._lyric = song.lyric.content self._pos_s_map = parse(self._lyric) self._pos_list = sorted(list(self._pos_s_map.keys())) self._pos = None self.current_sentence =
bind song changed signal with this
8,219
def has_path(nodes, A, B): r x1 = np.intersect1d(nodes, A).size > 0 x2 = np.intersect1d(nodes, B).size > 0 return x1 and x2
r"""Test if nodes from a breadth_first_order search lead from A to B. Parameters ---------- nodes : array_like Nodes from breadth_first_oder_seatch A : array_like The set of educt states B : array_like The set of product states Returns ------- has_path : boolean True if there exists a path, else False
8,220
def add_string_label(self, str_): if self.STRING_LABELS.get(str_, None) is None: self.STRING_LABELS[str_] = backend.tmp_label() return self.STRING_LABELS[str_]
Maps ("folds") the given string, returning an unique label ID. This allows several constant labels to be initialized to the same address thus saving memory space. :param str_: the string to map :return: the unique label ID
8,221
def rank_loss(sentence_emb, image_emb, margin=0.2): with tf.name_scope("rank_loss"): sentence_emb = tf.nn.l2_normalize(sentence_emb, 1) image_emb = tf.nn.l2_normalize(image_emb, 1) scores = tf.matmul(image_emb, tf.transpose(sentence_emb)) diagonal = tf.diag_part(scores) cost_s = tf.maximum(0.0, margin - diagonal + scores) cost_im = tf.maximum( 0.0, margin - tf.reshape(diagonal, [-1, 1]) + scores) batch_size = tf.shape(sentence_emb)[0] empty_diagonal_mat = tf.ones_like(cost_s) - tf.eye(batch_size) cost_s *= empty_diagonal_mat cost_im *= empty_diagonal_mat return tf.reduce_mean(cost_s) + tf.reduce_mean(cost_im)
Experimental rank loss, thanks to kkurach@ for the code.
8,222
def setwinsize(self, r, c): TIOCSWINSZ = getattr(termios, , -2146929561) if TIOCSWINSZ == 2148037735L: TIOCSWINSZ = -2146929561 s = struct.pack(, r, c, 0, 0) fcntl.ioctl(self.fileno(), TIOCSWINSZ, s)
This sets the terminal window size of the child tty. This will cause a SIGWINCH signal to be sent to the child. This does not change the physical window size. It changes the size reported to TTY-aware applications like vi or curses -- applications that respond to the SIGWINCH signal.
8,223
def estimate_pos_and_err_parabolic(tsvals): a = tsvals[2] - tsvals[0] bc = 2. * tsvals[1] - tsvals[0] - tsvals[2] s = a / (2 * bc) err = np.sqrt(2 / bc) return s, err
Solve for the position and uncertainty of source in one dimension assuming that you are near the maximum and the errors are parabolic Parameters ---------- tsvals : `~numpy.ndarray` The TS values at the maximum TS, and for each pixel on either side Returns ------- The position and uncertainty of the source, in pixel units w.r.t. the center of the maximum pixel
8,224
def _effectinit_raise_col_padding_on_focus(self, name, **kwargs): self._effects[name] = kwargs if "enlarge_time" not in kwargs: kwargs[] = 0.5 if "padding" not in kwargs: kwargs[] = 10 kwargs[] = kwargs[] / kwargs[] for option in self.options: option[] = 0.0
Init the column padding on focus effect. Keyword arguments can contain enlarge_time and padding.
8,225
def eval(self, expr, n, extra_constraints=(), solver=None, model_callback=None): if self._solver_required and solver is None: raise BackendError("%s requires a solver for evaluation" % self.__class__.__name__) results = self._eval( self.convert(expr), n, extra_constraints=self.convert_list(extra_constraints), solver=solver, model_callback=model_callback ) results = list(results) if type(expr) is not BV: return results size = expr.length for i in range(len(results)): results[i] &= (1 << size) - 1 solver.terminate() return results
This function returns up to `n` possible solutions for expression `expr`. :param expr: expression (an AST) to evaluate :param n: number of results to return :param solver: a solver object, native to the backend, to assist in the evaluation (for example, a z3.Solver) :param extra_constraints: extra constraints (as ASTs) to add to the solver for this solve :param model_callback: a function that will be executed with recovered models (if any) :return: A sequence of up to n results (backend objects)
8,226
def _is_reference(bpe): if isinstance(bpe, _bp()) or \ isinstance(bpe, _bpimpl()) or \ isinstance(bpe, _bp()) or \ isinstance(bpe, _bpimpl()) or \ isinstance(bpe, _bp()) or \ isinstance(bpe, _bpimpl()) or \ isinstance(bpe, _bp()) or \ isinstance(bpe, _bpimpl()): return True else: return False
Return True if the element is an entity reference.
8,227
def close(self): self.close_graph.set() if self.is_alive(): self.child.join(2)
close the graph
8,228
def get_api_client(): with _api_lock: global _api_client if not _api_client: conf_file = os.path.join(os.environ.get("HOME"), ".python-grid5000.yaml") _api_client = Client.from_yaml(conf_file) return _api_client
Gets the reference to the API cient (singleton).
8,229
def list_teams(profile="github", ignore_cache=False): key = .format( _get_config_value(profile, ) ) if key not in __context__ or ignore_cache: client = _get_client(profile) organization = client.get_organization( _get_config_value(profile, ) ) teams_data = organization.get_teams() teams = {} for team in teams_data: } __context__[key] = teams return __context__[key]
Lists all teams with the organization. profile The name of the profile configuration to use. Defaults to ``github``. ignore_cache Bypasses the use of cached teams. CLI Example: .. code-block:: bash salt myminion github.list_teams .. versionadded:: 2016.11.0
8,230
def __advice_stack_frame_protection(self, frame): if frame is None: logger.debug( ) return f_back = frame.f_back while f_back: if f_back.f_code is self.handle.__code__: raise RuntimeError( "indirect invocation of by is forbidden" % frame.f_code.co_name, ) f_back = f_back.f_back
Overriding of this is only permitted if and only if your name is Megumin and you have a pet/familiar named Chomusuke.
8,231
def describe_policy(policyName, region=None, key=None, keyid=None, profile=None): try: conn = _get_conn(region=region, key=key, keyid=keyid, profile=profile) policy = conn.get_policy(policyName=policyName) if policy: keys = (, , , ) return {: dict([(k, policy.get(k)) for k in keys])} else: return {: None} except ClientError as e: err = __utils__[](e) if e.response.get(, {}).get() == : return {: None} return {: __utils__[](e)}
Given a policy name describe its properties. Returns a dictionary of interesting properties. CLI Example: .. code-block:: bash salt myminion boto_iot.describe_policy mypolicy
8,232
def write(self, fptr): length = 4 + 4 + 16 + len(self.raw_data) write_buffer = struct.pack(, length, b) fptr.write(write_buffer) fptr.write(self.uuid.bytes) fptr.write(self.raw_data)
Write a UUID box to file.
8,233
def _infer(self, request): label_vocab = inference_utils.get_label_vocab( request.args.get()) try: if request.method != : logger.error(, request.method) return http_util.Respond(request, {: }, , code=405) (inference_addresses, model_names, model_versions, model_signatures) = self._parse_request_arguments(request) indices_to_infer = sorted(self.updated_example_indices) examples_to_infer = [self.examples[index] for index in indices_to_infer] infer_objs = [] for model_num in xrange(len(inference_addresses)): serving_bundle = inference_utils.ServingBundle( inference_addresses[model_num], model_names[model_num], request.args.get(), model_versions[model_num], model_signatures[model_num], request.args.get() == , request.args.get(), request.args.get()) infer_objs.append(inference_utils.run_inference_for_inference_results( examples_to_infer, serving_bundle)) resp = {: indices_to_infer, : infer_objs} self.updated_example_indices = set() return http_util.Respond(request, {: json.dumps(resp), : json.dumps(label_vocab)}, ) except common_utils.InvalidUserInputError as e: return http_util.Respond(request, {: e.message}, , code=400) except AbortionError as e: return http_util.Respond(request, {: e.details}, , code=400)
Returns JSON for the `vz-line-chart`s for a feature. Args: request: A request that should contain 'inference_address', 'model_name', 'model_type, 'model_version', 'model_signature' and 'label_vocab_path'. Returns: A list of JSON objects, one for each chart.
8,234
def compare_profiles(profile1, profile2): length = len(profile1) profile1 = np.array(list(profile1)) profile2 = np.array(list(profile2)) similarity_array = profile1 == profile2 matches = np.sum(similarity_array) similarity_ratio = matches/length return similarity_ratio
Given two profiles, determine the ratio of similarity, i.e. the hamming distance between the strings. Args: profile1/2 (str): profile string Returns: similarity_ratio (float): the ratio of similiarity (0-1)
8,235
def insert_first(self, val): self.head = Node(val, next_node=self.head) return True
Insert in head :param val: Object to insert :return: True iff insertion completed successfully
8,236
def cleanup_lines( lines, **kwargs ): capescunesc if not isinstance( lines, list ): raise Exception() remove_caps = False remove_clo = False double_quotes = None fix_sent_tags = False for argName, argVal in kwargs.items() : if argName in [, ]: remove_caps = bool(argVal) if argName == : remove_clo = bool(argVal) if argName == : fix_sent_tags = bool(argVal) if argName in [, ] and argVal and \ argVal.lower() in [, , , ]: double_quotes = argVal.lower() pat_token_line = re.compile() pat_analysis_start = re.compile() i = 0 to_delete = [] while ( i < len(lines) ): line = lines[i] isAnalysisLine = line.startswith() or line.startswith() if not isAnalysisLine: removeCurrentTokenAndAnalysis = False if line.startswith(): if i+1 == len(lines) or (i+1 < len(lines) and not in lines[i+1]): removeCurrentTokenAndAnalysis = True if line.startswith(): if i+1 == len(lines) or (i+1 < len(lines) and not in lines[i+1]): removeCurrentTokenAndAnalysis = True if removeCurrentTokenAndAnalysis: del lines[i] j=i while ( j < len(lines) ): line2 = lines[j] if line2.startswith() or line2.startswith(): del lines[j] else: break continue if double_quotes: if pat_token_line.match( lines[i] ): token_cleaned = (pat_token_line.match(lines[i])).group(1) if double_quotes in [, ]: token_cleaned = token_cleaned.replace(, ) lines[i] = +token_cleaned+ elif double_quotes in [, ]: token_cleaned = token_cleaned.replace(, ) lines[i] = +token_cleaned+ else: lines[i] = re.sub(, , lines[i]) lines[i] = re.sub(, , lines[i]) lines[i] = re.sub(, , lines[i]) if remove_caps: lines[i] = lines[i].replace(, ) if double_quotes and double_quotes in [, ]: lines[i] = lines[i].replace(, ) elif double_quotes and double_quotes in [, ]: m = pat_analysis_start.match( lines[i] ) if m: start = m.group(1) content = m.group(2) end = m.group(3) content = content.replace(, ) lines[i] = .join([start, , content, , end]) if remove_clo and in lines[i]: lines[i] = re.sub(, , lines[i]) lines[i] = re.sub(, , lines[i]) if fix_sent_tags: if i-1 > -1 and ( in lines[i-1] or in lines[i-1]): lines[i] = i += 1 return lines
Cleans up annotation after syntactic pre-processing and processing: -- Removes embedded clause boundaries "<{>" and "<}>"; -- Removes CLBC markings from analysis; -- Removes additional information between < and > from analysis; -- Removes additional information between " and " from analysis; -- If remove_caps==True , removes 'cap' annotations from analysis; -- If remove_clo==True , removes CLO CLC CLB markings from analysis; -- If double_quotes=='esc' then " will be overwritten with \\"; and if double_quotes=='unesc' then \\" will be overwritten with "; -- If fix_sent_tags=True, then sentence tags (<s> and </s>) will be checked for mistakenly added analysis, and found analysis will be removed; Returns the input list, which has been cleaned from additional information;
8,237
def config(self): response = self._call( mc_calls.Config ) config_list = response.body.get(, {}).get(, []) return config_list
Get a listing of mobile client configuration settings.
8,238
def change_puk(ctx, puk, new_puk): controller = ctx.obj[] if not puk: puk = _prompt_pin(ctx, prompt=) if not new_puk: new_puk = click.prompt( , default=, hide_input=True, show_default=False, confirmation_prompt=True, err=True) if not _valid_pin_length(puk): ctx.fail() if not _valid_pin_length(new_puk): ctx.fail() try: controller.change_puk(puk, new_puk) click.echo() except AuthenticationBlocked as e: logger.debug(, exc_info=e) ctx.fail() except WrongPuk as e: logger.debug( , e.tries_left, exc_info=e) ctx.fail( % e.tries_left)
Change the PUK code. If the PIN is lost or blocked it can be reset using a PUK. The PUK must be between 6 and 8 characters long, and supports any type of alphanumeric characters.
8,239
def apply_substitutions(monomial, monomial_substitutions, pure=False): if is_number_type(monomial): return monomial original_monomial = monomial changed = True if not pure: substitutions = monomial_substitutions else: substitutions = {} for lhs, rhs in monomial_substitutions.items(): irrelevant = False for atom in lhs.atoms(): if atom.is_Number: continue if not monomial.has(atom): irrelevant = True break if not irrelevant: substitutions[lhs] = rhs while changed: for lhs, rhs in substitutions.items(): monomial = fast_substitute(monomial, lhs, rhs) if original_monomial == monomial: changed = False original_monomial = monomial return monomial
Helper function to remove monomials from the basis.
8,240
def add_router_interface(self, context, router_info): if router_info: self._select_dicts(router_info[]) cidr = router_info[] subnet_mask = cidr.split()[1] router_name = self._arista_router_name(router_info[], router_info[]) if self._mlag_configured: mlag_peer_failed = False for i, server in enumerate(self._servers): router_ip = self._get_router_ip(cidr, i, router_info[]) try: self.add_interface_to_router(router_info[], router_name, router_info[], router_ip, subnet_mask, server) mlag_peer_failed = False except Exception: if not mlag_peer_failed: mlag_peer_failed = True else: msg = (_( ) % router_name) LOG.exception(msg) raise arista_exc.AristaServicePluginRpcError( msg=msg) else: for s in self._servers: self.add_interface_to_router(router_info[], router_name, router_info[], None, subnet_mask, s)
Adds an interface to a router created on Arista HW router. This deals with both IPv6 and IPv4 configurations.
8,241
def initiate_tasks(self): self.tasks_classes = TaskLoader().load_tasks( paths=self.configuration[Configuration.ALGORITHM][Configuration.TASKS][Configuration.PATHS])
Loads all tasks using `TaskLoader` from respective configuration option
8,242
def create_snapshot(self, datacenter_id, volume_id, name=None, description=None): data = {: name, : description} response = self._perform_request( % ( datacenter_id, volume_id), method=, data=urlencode(data)) return response
Creates a snapshot of the specified volume. :param datacenter_id: The unique ID of the data center. :type datacenter_id: ``str`` :param volume_id: The unique ID of the volume. :type volume_id: ``str`` :param name: The name given to the volume. :type name: ``str`` :param description: The description given to the volume. :type description: ``str``
8,243
def substitute_minor_for_major(progression, substitute_index, ignore_suffix=False): (roman, acc, suff) = parse_string(progression[substitute_index]) res = [] if suff == or suff == or suff == and roman in [, , ] or ignore_suffix: n = skip(roman, 2) a = interval_diff(roman, n, 3) + acc if suff == or ignore_suffix: res.append(tuple_to_string((n, a, ))) elif suff == or ignore_suffix: res.append(tuple_to_string((n, a, ))) elif suff == or ignore_suffix: res.append(tuple_to_string((n, a, ))) return res
Substitute minor chords for its major equivalent. 'm' and 'm7' suffixes recognized, and ['II', 'III', 'VI'] if there is no suffix. Examples: >>> substitute_minor_for_major(['VI'], 0) ['I'] >>> substitute_minor_for_major(['Vm'], 0) ['bVIIM'] >>> substitute_minor_for_major(['VIm7'], 0) ['IM7']
8,244
def run(path, code, params=None, ignore=None, select=None, **meta): logger.debug() clear_cache = params.pop(, False) if clear_cache: MANAGER.astroid_cache.clear() class Reporter(BaseReporter): def __init__(self): self.errors = [] super(Reporter, self).__init__() def _display(self, layout): pass def handle_message(self, msg): self.errors.append(dict( lnum=msg.line, col=msg.column, text="%s %s" % (msg.msg_id, msg.msg), type=msg.msg_id[0] )) params = _Params(ignore=ignore, select=select, params=params) logger.debug(params) reporter = Reporter() try: Run([path] + params.to_attrs(), reporter=reporter, do_exit=False) except TypeError: import pylint if pylint.__version__.split()[0] != : raise Run([path] + params.to_attrs(), reporter=reporter, exit=False) return reporter.errors
Pylint code checking. :return list: List of errors.
8,245
def update_redirect(self): page_history = Stack(session.get("page_history", [])) page_history.push(request.url) session["page_history"] = page_history.to_json()
Call it on your own endpoint's to update the back history navigation. If you bypass it, the next submit or back will go over it.
8,246
def get_response(self, environ=None): response = super(SameContentException, self).get_response( environ=environ ) if self.etag is not None: response.set_etag(self.etag) if self.last_modified is not None: response.headers[] = http_date(self.last_modified) return response
Get a list of headers.
8,247
def get_catfact(): response = requests.get(CAT_FACTS_URL, verify=False) response.raise_for_status() json_data = response.json() return json_data[]
Get a cat fact from catfact.ninja and return it as a string. Functions for Soundhound, Google, IBM Watson, or other APIs can be added to create the desired functionality into this bot.
8,248
def compute_transformed(context): key_composite = compute_key_composite( password=context._._.password, keyfile=context._._.keyfile ) kdf_parameters = context._.header.value.dynamic_header.kdf_parameters.data.dict if context._._.transformed_key is not None: transformed_key = context._._.transformed_key elif kdf_parameters[].value == kdf_uuids[]: transformed_key = argon2.low_level.hash_secret_raw( secret=key_composite, salt=kdf_parameters[].value, hash_len=32, type=argon2.low_level.Type.D, time_cost=kdf_parameters[].value, memory_cost=kdf_parameters[].value // 1024, parallelism=kdf_parameters[].value, version=kdf_parameters[].value ) elif kdf_parameters[].value == kdf_uuids[]: transformed_key = aes_kdf( kdf_parameters[].value, kdf_parameters[].value, key_composite ) else: raise Exception() return transformed_key
Compute transformed key for opening database
8,249
def as_base_units(self): b = collections.defaultdict(int) factor = 1 for k, v in self.items(): derived = False for d in DERIVED_UNITS.values(): if k in d: for k2, v2 in d[k].items(): if isinstance(k2, Number): factor *= k2 ** (v2 * v) else: b[k2] += v2 * v derived = True break if not derived: si, f = _get_si_unit(k) b[si] += v factor *= f ** v return {k: v for k, v in b.items() if v != 0}, factor
Converts all units to base SI units, including derived units. Returns: (base_units_dict, scaling factor). base_units_dict will not contain any constants, which are gathered in the scaling factor.
8,250
def stream(self, sha): hexsha, typename, size, stream = self._git.stream_object_data(bin_to_hex(sha)) return OStream(hex_to_bin(hexsha), typename, size, stream)
For now, all lookup is done by git itself
8,251
def _enable_lock(func): @functools.wraps(func) def wrapper(*args, **kwargs): self = args[0] if self.is_concurrent: only_read = kwargs.get() if only_read is None or only_read: with self._rwlock: return func(*args, **kwargs) else: self._rwlock.acquire_writer() try: return func(*args, **kwargs) finally: self._rwlock.release() else: return func(*args, **kwargs) return wrapper
The decorator for ensuring thread-safe when current cache instance is concurrent status.
8,252
def save_post(self, title, text, user_id, tags, draft=False, post_date=None, last_modified_date=None, meta_data=None, post_id=None): raise NotImplementedError("This method needs to be implemented by " "the inheriting class")
Persist the blog post data. If ``post_id`` is ``None`` or ``post_id`` is invalid, the post must be inserted into the storage. If ``post_id`` is a valid id, then the data must be updated. :param title: The title of the blog post :type title: str :param text: The text of the blog post :type text: str :param user_id: The user identifier :type user_id: str :param tags: A list of tags :type tags: list :param draft: If the post is a draft of if needs to be published. :type draft: bool :param post_date: (Optional) The date the blog was posted (default datetime.datetime.utcnow()) :type post_date: datetime.datetime :param last_modified_date: (Optional) The date when blog was last modified (default datetime.datetime.utcnow()) :type last_modified_date: datetime.datetime :param meta_data: The meta data for the blog post :type meta_data: dict :param post_id: The post identifier. This should be ``None`` for an insert call, and a valid value for update. :type post_id: int :return: The post_id value, in case of a successful insert or update. Return ``None`` if there were errors.
8,253
def _get_pretty_table(self, indent: int = 0, align: int = ALIGN_CENTER, border: bool = False) -> PrettyTable: rows = self.rows columns = self.columns if self._headers_color != Printer.NORMAL and len(rows) > 0 and len(columns) > 0: rows[0] = rows[0][:] columns = columns[:] columns[0] = self._headers_color + columns[0] rows[0][0] = Printer.NORMAL + str(rows[0][0]) table = PrettyTable(columns, border=border, max_width=get_console_width() - indent) table.align = self._ALIGN_DICTIONARY[align] for row in rows: table.add_row(row) for column, max_width in self._column_size_map.items(): table.max_width[column] = max_width return table
Returns the table format of the scheme, i.e.: <table name> +----------------+---------------- | <field1> | <field2>... +----------------+---------------- | value1(field1) | value1(field2) | value2(field1) | value2(field2) | value3(field1) | value3(field2) +----------------+----------------
8,254
def wait(self): logging.info("waiting for {} jobs to complete".format(len(self.submissions))) while not self.shutdown: time.sleep(1)
Waits for all submitted jobs to complete.
8,255
def get_logistic_regression_coefs_l2(self, category, clf=RidgeClassifierCV()): try: from sklearn.cross_validation import cross_val_predict except: from sklearn.model_selection import cross_val_predict y = self._get_mask_from_category(category) X = TfidfTransformer().fit_transform(self._X) clf.fit(X, y) y_hat = cross_val_predict(clf, X, y) acc, baseline = self._get_accuracy_and_baseline_accuracy(y, y_hat) return clf.coef_[0], acc, baseline
Computes l2-penalized logistic regression score. Parameters ---------- category : str category name to score category : str category name to score Returns ------- (coefficient array, accuracy, majority class baseline accuracy)
8,256
def _add_err(self, exinfo): if self._err: return self._err = exinfo self.all_ok = False
Sets the error on this MultiResult. Will be ignored if an error is already set. :param exinfo: Return value from ``sys.exc_info()``
8,257
def continuous_binary_search(f, lo, hi, gap=1e-4): while hi - lo > gap: mid = (lo + hi) / 2. if f(mid): hi = mid else: lo = mid return lo
Binary search for a function :param f: boolean monotone function with f(hi) = True :param int lo: :param int hi: with hi >= lo :param float gap: :returns: first value x in [lo,hi] such that f(x), x is computed up to some precision :complexity: `O(log((hi-lo)/gap))`
8,258
def watch(self, flag): lib.EnvSetDeftemplateWatch(self._env, int(flag), self._tpl)
Whether or not the Template is being watched.
8,259
def _multi_take(self, tup): o = self.obj d = {axis: self._get_listlike_indexer(key, axis) for (key, axis) in zip(tup, o._AXIS_ORDERS)} return o._reindex_with_indexers(d, copy=True, allow_dups=True)
Create the indexers for the passed tuple of keys, and execute the take operation. This allows the take operation to be executed all at once - rather than once for each dimension - improving efficiency. Parameters ---------- tup : tuple Tuple of indexers, one per axis Returns ------- values: same type as the object being indexed
8,260
def write_Bar(file, bar, bpm=120, repeat=0, verbose=False): m = MidiFile() t = MidiTrack(bpm) m.tracks = [t] while repeat >= 0: t.play_Bar(bar) repeat -= 1 return m.write_file(file, verbose)
Write a mingus.Bar to a MIDI file. Both the key and the meter are written to the file as well.
8,261
def score(infile, outfile, classifier, xgb_autotune, apply_weights, xeval_fraction, xeval_num_iter, ss_initial_fdr, ss_iteration_fdr, ss_num_iter, ss_main_score, group_id, parametric, pfdr, pi0_lambda, pi0_method, pi0_smooth_df, pi0_smooth_log_pi0, lfdr_truncate, lfdr_monotone, lfdr_transformation, lfdr_adj, lfdr_eps, level, ipf_max_peakgroup_rank, ipf_max_peakgroup_pep, ipf_max_transition_isotope_overlap, ipf_min_transition_sn, tric_chromprob, threads, test): if outfile is None: outfile = infile else: outfile = outfile xgb_hyperparams = {: xgb_autotune, : 10, : 100, : 10, : 0.33} xgb_params = {: 0.3, : 0, : 6, : 1, : 1, : 1, : 1, : 1, : 1, : 0, : 1, : 1, : , : 1, : } xgb_params_space = {: hp.uniform(, 0.0, 0.3), : hp.uniform(, 0.0, 0.5), : hp.quniform(, 2, 8, 1), : hp.quniform(, 1, 5, 1), : 1, : 1, : 1, : 1, : hp.uniform(, 0.0, 1.0), : hp.uniform(, 0.0, 1.0), : 1.0, : 1, : , : 1, : } if not apply_weights: PyProphetLearner(infile, outfile, classifier, xgb_hyperparams, xgb_params, xgb_params_space, xeval_fraction, xeval_num_iter, ss_initial_fdr, ss_iteration_fdr, ss_num_iter, ss_main_score, group_id, parametric, pfdr, pi0_lambda, pi0_method, pi0_smooth_df, pi0_smooth_log_pi0, lfdr_truncate, lfdr_monotone, lfdr_transformation, lfdr_adj, lfdr_eps, level, ipf_max_peakgroup_rank, ipf_max_peakgroup_pep, ipf_max_transition_isotope_overlap, ipf_min_transition_sn, tric_chromprob, threads, test).run() else: PyProphetWeightApplier(infile, outfile, classifier, xgb_hyperparams, xgb_params, xgb_params_space, xeval_fraction, xeval_num_iter, ss_initial_fdr, ss_iteration_fdr, ss_num_iter, ss_main_score, group_id, parametric, pfdr, pi0_lambda, pi0_method, pi0_smooth_df, pi0_smooth_log_pi0, lfdr_truncate, lfdr_monotone, lfdr_transformation, lfdr_adj, lfdr_eps, level, ipf_max_peakgroup_rank, ipf_max_peakgroup_pep, ipf_max_transition_isotope_overlap, ipf_min_transition_sn, tric_chromprob, threads, test, apply_weights).run()
Conduct semi-supervised learning and error-rate estimation for MS1, MS2 and transition-level data.
8,262
def get_container_metadata(self, container, prefix=None): return self._manager.get_metadata(container, prefix=prefix)
Returns a dictionary containing the metadata for the container.
8,263
def print_topics(self, Nwords=10): print( % Nwords) for k, words in self.list_topics(Nwords): print(unicode(k).ljust(3) + + .join(list(zip(*words))[0]))
Print the top ``Nwords`` words for each topic.
8,264
def absstart(self): if hasattr(self, "docstart") and self.docstart > 0: return self.docstart else: return self.start
Returns the absolute start of the element by including docstrings outside of the element definition if applicable.
8,265
def main(mash_output, hash_cutoff, sample_id, assembly_file): input_f = open(mash_output, "r") master_dict = {} for line in input_f: tab_split = line.split("\t") current_seq = tab_split[1].strip() ref_accession = "_".join(tab_split[0].strip().split("_")[0:3]) mash_dist = tab_split[2].strip() hashes_list = tab_split[-1].strip().split("/") perc_hashes = float(hashes_list[0]) / float(hashes_list[1]) if ref_accession in master_dict.keys(): current_seq += ", {}".format(master_dict[ref_accession][-1]) if perc_hashes > float(hash_cutoff): master_dict[ref_accession] = [ round(1 - float(mash_dist), 2), round(perc_hashes, 2), current_seq ] send_to_output(master_dict, mash_output, sample_id, assembly_file)
Main function that allows to dump a mash dist txt file to a json file Parameters ---------- mash_output: str A string with the input file. hash_cutoff: str the percentage cutoff for the percentage of shared hashes between query and plasmid in database that is allowed for the plasmid to be reported to the results outputs sample_id: str The name of the sample.
8,266
def crossover_with(self, other, points=2): assert isinstance(other, BitCondition) assert len(self) == len(other) template = BitString.crossover_template(len(self), points) inv_template = ~template bits1 = (self._bits & template) | (other._bits & inv_template) mask1 = (self._mask & template) | (other._mask & inv_template) bits2 = (self._bits & inv_template) | (other._bits & template) mask2 = (self._mask & inv_template) | (other._mask & template) return type(self)(bits1, mask1), type(self)(bits2, mask2)
Perform 2-point crossover on this bit condition and another of the same length, returning the two resulting children. Usage: offspring1, offspring2 = condition1.crossover_with(condition2) Arguments: other: A second BitCondition of the same length as this one. points: An int, the number of crossover points of the crossover operation. Return: A tuple (condition1, condition2) of BitConditions, where the value at each position of this BitCondition and the other is preserved in one or the other of the two resulting conditions.
8,267
def clear(zpool, device=None): ** target = [] target.append(zpool) target.append(device) res = __salt__[]( __utils__[]( command=, target=target, ), python_shell=False, ) return __utils__[](res, )
Clears device errors in a pool. .. warning:: The device must not be part of an active pool configuration. zpool : string name of storage pool device : string (optional) specific device to clear .. versionadded:: 2018.3.1 CLI Example: .. code-block:: bash salt '*' zpool.clear mypool salt '*' zpool.clear mypool /path/to/dev
8,268
def _get_seqprop_to_seqprop_alignment(self, seqprop1, seqprop2): if isinstance(seqprop1, str): seqprop1_id = seqprop1 else: seqprop1_id = seqprop1.id if isinstance(seqprop2, str): seqprop2_id = seqprop2 else: seqprop2_id = seqprop2.id aln_id = .format(seqprop1_id, seqprop2_id) if self.sequence_alignments.has_id(aln_id): alignment = self.sequence_alignments.get_by_id(aln_id) return alignment else: raise ValueError(.format(aln_id))
Return the alignment stored in self.sequence_alignments given a seqprop + another seqprop
8,269
def clip_image(image, clip_min, clip_max): return np.minimum(np.maximum(clip_min, image), clip_max)
Clip an image, or an image batch, with upper and lower threshold.
8,270
def last_in_date_group(df, data_query_cutoff_times, assets, reindex=True, have_sids=True, extra_groupers=None): idx = [data_query_cutoff_times[data_query_cutoff_times.searchsorted( df[TS_FIELD_NAME].values, )]] if have_sids: idx += [SID_FIELD_NAME] if extra_groupers is None: extra_groupers = [] idx += extra_groupers last_in_group = df.drop(TS_FIELD_NAME, axis=1).groupby( idx, sort=False, ).last() for _ in range(len(idx) - 1): last_in_group = last_in_group.unstack(-1) if reindex: if have_sids: cols = last_in_group.columns last_in_group = last_in_group.reindex( index=data_query_cutoff_times, columns=pd.MultiIndex.from_product( tuple(cols.levels[0:len(extra_groupers) + 1]) + (assets,), names=cols.names, ), ) else: last_in_group = last_in_group.reindex(data_query_cutoff_times) return last_in_group
Determine the last piece of information known on each date in the date index for each group. Input df MUST be sorted such that the correct last item is chosen from each group. Parameters ---------- df : pd.DataFrame The DataFrame containing the data to be grouped. Must be sorted so that the correct last item is chosen from each group. data_query_cutoff_times : pd.DatetimeIndex The dates to use for grouping and reindexing. assets : pd.Int64Index The assets that should be included in the column multiindex. reindex : bool Whether or not the DataFrame should be reindexed against the date index. This will add back any dates to the index that were grouped away. have_sids : bool Whether or not the DataFrame has sids. If it does, they will be used in the groupby. extra_groupers : list of str Any extra field names that should be included in the groupby. Returns ------- last_in_group : pd.DataFrame A DataFrame with dates as the index and fields used in the groupby as levels of a multiindex of columns.
8,271
def get_name_init(self, name): self._register_name(name) return self._var_name_mappers[name].get_init()
Get initial name of symbol.
8,272
def get_composition_lookup_session_for_repository(self, repository_id, proxy): if repository_id is None: raise NullArgument() if not self.supports_composition_lookup(): raise Unimplemented() try: from . import sessions except ImportError: raise proxy = self._convert_proxy(proxy) try: session = sessions.CompositionLookupSession(repository_id, proxy, runtime=self._runtime) except AttributeError: raise return session
Gets the OsidSession associated with the composition lookup service for the given repository. arg: repository_id (osid.id.Id): the Id of the repository arg proxy (osid.proxy.Proxy): a proxy return: (osid.repository.CompositionLookupSession) - the new CompositionLookupSession raise: NotFound - repository_id not found raise: NullArgument - repository_id is null raise: OperationFailed - unable to complete request raise: Unimplemented - supports_composition_lookup() or supports_visible_federation() is false compliance: optional - This method must be implemented if supports_composition_lookup() and supports_visible_federation() are true.
8,273
def _open(self, mode=): open_file = None writeable = in mode or in mode or in mode try: if (self.filename.startswith() or self.filename.startswith()): open_file = fs.opener.fsopendir(self.filename).open(, mode) else: if not hasattr(self, ): self._pyfs, self._path = fs.opener.opener.parse( self.filename, writeable=writeable) if self._cache_timeout is not None: self._pyfs = fs.remote.CacheFS( self._pyfs, cache_timeout=self._cache_timeout) open_file = self._pyfs.open(self._path, mode) except fs.errors.ResourceNotFoundError: if self._can_create: segments = fs.opener.opener.split_segments(self.filename) if segments: fs_name, credentials, url1, url2, path = segments.groups() assert fs_name, host = if in url2: split_url2 = url2.split(, 1) if len(split_url2) > 1: url2 = split_url2[1] else: url2 = host = split_url2[0] pyfs = fs.opener.opener.opendir( % (fs_name, host)) if self._cache_timeout is not None: pyfs = fs.remote.CacheFS( pyfs, cache_timeout=self._cache_timeout) url2_path, url2_filename = os.path.split(url2) if url2_path and not pyfs.exists(url2_path): pyfs.makedir(url2_path, recursive=True) else: full_url = fs.opener._expand_syspath(self.filename) url2_path, url2 = os.path.split(full_url) pyfs = fs.osfs.OSFS(url2_path) try: self._pyfs = pyfs self._path = url2 return pyfs.open(url2, mode) except fs.errors.ResourceNotFoundError: if writeable: raise else: pass if writeable: raise else: pass return open_file
Open the password file in the specified mode
8,274
def _heartbeat_manager(self): if self._process and not self._process.is_alive() and not self.done: self.start()
Heartbeat DAG file processor and start it if it is not alive. :return:
8,275
def _make_readline_peeker(self): counter = itertools.count(0) def readline(): try: return self._peek_buffer(next(counter)) except StopIteration: return return readline
Make a readline-like function which peeks into the source.
8,276
def parse_data(self, data, msg_signature=None, timestamp=None, nonce=None): result = {} if isinstance(data, six.text_type): data = data.encode() if self.conf.encrypt_mode == : if not (msg_signature and timestamp and nonce): raise ParseError() data = self.conf.crypto.decrypt_message( msg=data, msg_signature=msg_signature, timestamp=timestamp, nonce=nonce, ) try: xml = XMLStore(xmlstring=data) except Exception: raise ParseError() result = xml.xml2dict result[] = data result[] = result.pop().lower() message_type = MESSAGE_TYPES.get(result[], UnknownMessage) self.__message = message_type(result) self.__is_parse = True
解析微信服务器发送过来的数据并保存类中 :param data: HTTP Request 的 Body 数据 :param msg_signature: EncodingAESKey 的 msg_signature :param timestamp: EncodingAESKey 用时间戳 :param nonce: EncodingAESKey 用随机数 :raises ParseError: 解析微信服务器数据错误, 数据不合法
8,277
def _map_type_to_dict(self, type_name): root = self._root_instance if type_name == RESULT: return root._results elif type_name == PARAMETER: return root._parameters elif type_name == DERIVED_PARAMETER: return root._derived_parameters elif type_name == CONFIG: return root._config elif type_name == LEAF: return root._other_leaves else: raise RuntimeError()
Maps a an instance type representation string (e.g. 'RESULT') to the corresponding dictionary in root.
8,278
def unix_ts(dtval): s int(datetime.timestamp()). :param dt: datetime to convert ' epoch = datetime(1970, 1, 1, 0, 0, tzinfo=tzutc()) delta = (dtval - epoch) return delta.days * 24 * 3600 + delta.seconds
Convert datetime into a unix timestamp. This is the equivalent to Python 3's int(datetime.timestamp()). :param dt: datetime to convert
8,279
def Lexicon(**rules): for (lhs, rhs) in rules.items(): rules[lhs] = [word.strip() for word in rhs.split()] return rules
Create a dictionary mapping symbols to alternative words. >>> Lexicon(Art = "the | a | an") {'Art': ['the', 'a', 'an']}
8,280
def erfcc(x): z = abs(x) t = 1.0 / (1.0 + 0.5 * z) ans = t * math.exp( -z * z - 1.26551223 + t * (1.00002368 + t * (0.37409196 + t * (0.09678418 + t * (-0.18628806 + t * (0.27886807 + t * (-1.13520398 + t * (1.48851587 + t * (-0.82215223 + t * 0.17087277))))))))) if x >= 0: return ans else: return 2.0 - ans
Returns the complementary error function erfc(x) with fractional error everywhere less than 1.2e-7. Adapted from Numerical Recipies. Usage: lerfcc(x)
8,281
async def _wrap_gen(self, ID: str): while True: result = await self._gens_queue[ID].get() if isinstance(result, StopAsyncIteration): del self._gens_queue[ID] break else: yield result
异步迭代器包装. Parameters: ID (str): - 任务ID Yield: (Any): - 从异步迭代器结果队列中获取的结果 Raise: (StopAsyncIteration): - 异步迭代器终止时抛出该异常
8,282
def showMenu(self, point=None): menu = self.createMenu(self) menu.exec_(QtGui.QCursor.pos()) menu.deleteLater()
Displays the menu for this view widget. :param point | <QPoint>
8,283
def cpp_best_split_full_model(X, Uy, C, S, U, noderange, delta, save_memory=False): return CSP.best_split_full_model(X, Uy, C, S, U, noderange, delta)
wrappe calling cpp splitting function
8,284
def split_leading_indent(line, max_indents=None): indent = "" while ( (max_indents is None or max_indents > 0) and line.startswith((openindent, closeindent)) ) or line.lstrip() != line: if max_indents is not None and line.startswith((openindent, closeindent)): max_indents -= 1 indent += line[0] line = line[1:] return indent, line
Split line into leading indent and main.
8,285
def closure(self): def single_var(var): "Checks if var represents a single variable" if not hasattr(var, ): return True else: return len(var) == 1 def sg0(ind): "Symmetry rule: -> " return IndependenceAssertion(ind.event2, ind.event1, ind.event3) def apply_left_and_right(func): def symmetric_func(*args): if len(args) == 1: return func(args[0]) + func(sg0(args[0])) if len(args) == 2: return (func(*args) + func(args[0], sg0(args[1])) + func(sg0(args[0]), args[1]) + func(sg0(args[0]), sg0(args[1]))) return symmetric_func @apply_left_and_right def sg1(ind): "Decomposition rule: -> , " if single_var(ind.event2): return [] else: return [IndependenceAssertion(ind.event1, ind.event2 - {elem}, ind.event3) for elem in ind.event2] @apply_left_and_right def sg2(ind): "Weak Union rule: -> , " if single_var(ind.event2): return [] else: return [IndependenceAssertion(ind.event1, ind.event2 - {elem}, {elem} | ind.event3) for elem in ind.event2] @apply_left_and_right def sg3(ind1, ind2): "Contraction rule: & -> " if ind1.event1 != ind2.event1: return [] Y = ind2.event2 Z = ind2.event3 Y_Z = ind1.event3 if Y < Y_Z and Z < Y_Z and Y.isdisjoint(Z): return [IndependenceAssertion(ind1.event1, ind1.event2 | Y, Z)] else: return [] all_independencies = set() new_inds = set(self.independencies) while new_inds: new_pairs = (set(itertools.permutations(new_inds, 2)) | set(itertools.product(new_inds, all_independencies)) | set(itertools.product(all_independencies, new_inds))) all_independencies |= new_inds new_inds = set(sum([sg1(ind) for ind in new_inds] + [sg2(ind) for ind in new_inds] + [sg3(*inds) for inds in new_pairs], [])) new_inds -= all_independencies return Independencies(*list(all_independencies))
Returns a new `Independencies()`-object that additionally contains those `IndependenceAssertions` that are implied by the the current independencies (using with the `semi-graphoid axioms <https://en.wikipedia.org/w/index.php?title=Conditional_independence&oldid=708760689#Rules_of_conditional_independence>`_; see (Pearl, 1989, `Conditional Independence and its representations <http://www.cs.technion.ac.il/~dang/journal_papers/pearl1989conditional.pdf>`_)). Might be very slow if more than six variables are involved. Examples -------- >>> from pgmpy.independencies import Independencies >>> ind1 = Independencies(('A', ['B', 'C'], 'D')) >>> ind1.closure() (A _|_ B | D, C) (A _|_ B, C | D) (A _|_ B | D) (A _|_ C | D, B) (A _|_ C | D) >>> ind2 = Independencies(('W', ['X', 'Y', 'Z'])) >>> ind2.closure() (W _|_ Y) (W _|_ Y | X) (W _|_ Z | Y) (W _|_ Z, X, Y) (W _|_ Z) (W _|_ Z, X) (W _|_ X, Y) (W _|_ Z | X) (W _|_ Z, Y | X) [..]
8,286
def cut_gmail_quote(html_message): gmail_quote = cssselect(, html_message) if gmail_quote and (gmail_quote[0].text is None or not RE_FWD.match(gmail_quote[0].text)): gmail_quote[0].getparent().remove(gmail_quote[0]) return True
Cuts the outermost block element with class gmail_quote.
8,287
def http_basic_auth_get_user(request): try: if user_is_authenticated(request.user): return request.user except AttributeError: pass if in request.META: auth_data = request.META[].split() if len(auth_data) == 2 and auth_data[0].lower() == "basic": uname, passwd = base64.b64decode(auth_data[1]).decode().split() django_user = authenticate(username=uname, password=passwd) if django_user is not None: login(request, django_user) try: return request.user except AttributeError: return AnonymousUser()
Inspect the given request to find a logged user. If not found, the header HTTP_AUTHORIZATION is read for 'Basic Auth' login and password, and try to authenticate against default UserModel. Always return a User instance (possibly anonymous, meaning authentication failed)
8,288
def html2groff(data, name): try: data = data[data.index():] except ValueError: pass for rp in pre_rps: data = re.compile(rp[0], rp[2]).sub(rp[1], data) for table in re.findall(r, data, re.S): tbl = parse_table(escape_pre_section(table)) tbl = re.compile(r, re.S).sub(r, tbl) data = data.replace(table, tbl) for rp in rps: data = re.compile(rp[0], rp[2]).sub(rp[1], data) for st in re.findall(r, data): data = data.replace(st, st.upper()) page_type = re.search(r, data) if page_type and in page_type.group(1): class_name = re.search(r, data).group(1) secs = re.findall(r, data, re.S) for sec, content in secs: if ( in sec and not in sec and not in sec and sec != ): content2 = re.sub(r, r % class_name, content) content2 = re.sub(r, r % class_name, content2) content2 = re.sub(r, r % class_name, content2) data = data.replace(content, content2) elif in sec and in sec: inherit = re.search(r, sec).group(1).lower() content2 = re.sub(r, r % inherit, content) data = data.replace(content, content2) data = data.replace(, ) return data
Convert HTML text from cplusplus.com to Groff-formatted text.
8,289
def write_Composition(composition, filename, zip=False): text = from_Composition(composition) if not zip: f = open(filename + , ) f.write(text) f.close() else: import zipfile import os zf = zipfile.ZipFile(filename + , mode=, compression=zipfile.ZIP_DEFLATED) zi = zipfile.ZipInfo( + os.sep + ) zi.external_attr = 0660 << 16L zf.writestr(zi, "<?xml version= encoding=?>" "<container><rootfiles><rootfile full-path=/>" "</rootfiles></container>".format(filename)) zi = zipfile.ZipInfo(filename + ) zi.external_attr = 0660 << 16L zf.writestr(zi, text) zf.close()
Create an XML file (or MXL if compressed) for a given composition.
8,290
def run(self): x, y = 1,0 num_steps = 0 while self.s.get_state() != : self.s.command({:, :, :[x, y]}, self.a1) self.s.command({:, :, :[x, y+1]}, self.a2) num_steps += 1 if num_steps >= 3: break for a in self.s.agents: print(a.name, , a.coords[], a.coords[])
This AI simple moves the characters towards the opposite edges of the grid for 3 steps or until event halts the simulation
8,291
def do_edit_settings(fake): path = resources.user.open().name click.echo() for (option, _, description) in legit_settings.config_defaults: click.echo(columns([crayons.yellow(option), 25], [description, None])) click.echo("") if fake: click.echo(crayons.red(.format(path))) else: click.edit(path)
Opens legit settings in editor.
8,292
def stop(self): if self.stream and self.stream.session.state != STATE_STOPPED: self.stream.stop()
Stop stream.
8,293
def _to_bytes(self, data, key=, expired=None, noc=0, ncalls=0): data_tuple = (data, expired, noc, ncalls) if not can_encrypt and key: warnings.warn("Pycrypto is not installed. The data will not be encrypted", UserWarning) result = encode_safely(data_tuple) elif can_encrypt and key: if PY3: cipher = AESCipher(key.encode(settings.DEFAULT_ENCODING)) else: cipher = AESCipher(key) result = cipher.encrypt(encode_safely(data_tuple)) else: result = encode_safely(data_tuple) return result
Serialize (and encrypt if `key` is provided) the data and represent it as string. **Parameters** :param data: any python serializable (pickable) object :param key: If the key is provided and `pycrypto` is installed, cached data will be encrypted (If `pycrypto` is not installed, this #TODO: pycrypto or something else?! parameter will be ignored). Empty string by default. :param expired: exact date when the cache will be expired; It is `None` by default :param noc: the number of allowed calls; TODO: Clarify what does it mean, exactly?!!!! :param ncalls: What is it; I don't understand!!! TODO: clarify this!!!! :type key: str :type expired: `datetime` or `None` :type noc: int :type ncalls: int :returns: serialized data :rtype: str
8,294
def cprint(color, prefix, message): message = message or "" prefix = prefix or "" print((Console.theme[color] + prefix + message + Console.theme[]))
prints a message in a given color :param color: the color as defined in the theme :param prefix: the prefix (a string) :param message: the message :return:
8,295
def info(name): s available, or OpenSSL text if not :param name: CommonName of cert CLI example: .. code-block:: bash salt acme.info dev.example.com certtls.cert_infotls.cert_infoextensionsextensionsopenssl x509 -in {0} -noout -textcmd.runquiet')
Return information about a certificate .. note:: Will output tls.cert_info if that's available, or OpenSSL text if not :param name: CommonName of cert CLI example: .. code-block:: bash salt 'gitlab.example.com' acme.info dev.example.com
8,296
def nodeListGetString(self, list, inLine): if list is None: list__o = None else: list__o = list._o ret = libxml2mod.xmlNodeListGetString(self._o, list__o, inLine) return ret
Build the string equivalent to the text contained in the Node list made of TEXTs and ENTITY_REFs
8,297
def heat_process(body, message): event_type = body[] process = heat_customer_process.get(event_type) if process is not None: process(body, message) else: matched = False process_wildcard = None for pattern in heat_customer_process_wildcard.keys(): if pattern.match(event_type): process_wildcard = heat_customer_process_wildcard.get(pattern) matched = True break if matched: process_wildcard(body, message) else: default_process(body, message) message.ack()
This function deal with the heat notification. First, find process from customer_process that not include wildcard. if not find from customer_process, then find process from customer_process_wildcard. if not find from customer_process_wildcard, then use ternya default process. :param body: dict of openstack notification. :param message: kombu Message class :return:
8,298
def walk_train_dirs(root_dir: str) -> Iterable[Tuple[str, Iterable[str]]]: if is_train_dir(root_dir): yield , [root_dir] return for dir_, subdirs, _ in os.walk(root_dir, topdown=True): train_subdirs = [subdir for subdir in subdirs if is_train_dir(path.join(dir_, subdir))] for subdir in train_subdirs: subdirs.remove(subdir) yield dir_, train_subdirs
Modify os.walk with the following: - return only root_dir and sub-dirs - return only training sub-dirs - stop recursion at training dirs :param root_dir: root dir to be walked :return: generator of (root_dir, training sub-dirs) pairs
8,299
def _remove_germline_filter(rec, name): if _is_germline(rec): if rec.FILTER and name in rec.FILTER: return vcfutils.cyvcf_remove_filter(rec, name) elif not _is_somatic(rec): if rec.FILTER and name in rec.FILTER: return vcfutils.cyvcf_remove_filter(rec, name) return rec
Check if germline based on STATUS/SS and REJECT flag. Handles VarDict, FreeBayes, MuTect, MuTect2 and VarScan.