Unnamed: 0
int64 0
389k
| code
stringlengths 26
79.6k
| docstring
stringlengths 1
46.9k
|
---|---|---|
8,300 | def _add(self, xer, primary, type):
if xer not in primary:
primary[xer] = TwistedSocketNotifier(None, self, xer, type) | Private method for adding a descriptor from the event loop.
It takes care of adding it if new or modifying it if already added
for another state (read -> read/write for example). |
8,301 | def _logged_in_successful(data):
if re.match(r
r
r,
data.strip()):
return False
else:
return True | Test the login status from the returned communication of the
server.
:param data: bytes received from server during login
:type data: list of bytes
:return boolean, True when you are logged in. |
8,302 | async def FinishActions(self, results):
_params = dict()
msg = dict(type=,
request=,
version=5,
params=_params)
_params[] = results
reply = await self.rpc(msg)
return reply | results : typing.Sequence[~ActionExecutionResult]
Returns -> typing.Sequence[~ErrorResult] |
8,303 | def fmap(order, aij, bij, x, y):
u = np.zeros_like(x)
v = np.zeros_like(y)
k = 0
for i in range(order + 1):
for j in range(i + 1):
u += aij[k] * (x ** (i - j)) * (y ** j)
v += bij[k] * (x ** (i - j)) * (y ** j)
k += 1
return u, v | Evaluate the 2D polynomial transformation.
u = sum[i=0:order]( sum[j=0:j]( a_ij * x**(i - j) * y**j ))
v = sum[i=0:order]( sum[j=0:j]( b_ij * x**(i - j) * y**j ))
Parameters
----------
order : int
Order of the polynomial transformation.
aij : numpy array
Polynomial coefficents corresponding to a_ij.
bij : numpy array
Polynomial coefficents corresponding to b_ij.
x : numpy array or float
X coordinate values where the transformation is computed. Note
that these values correspond to array indices.
y : numpy array or float
Y coordinate values where the transformation is computed. Note
that these values correspond to array indices.
Returns
-------
u : numpy array or float
U coordinate values.
v : numpy array or float
V coordinate values. |
8,304 | def register_magics(store_name=, ampl_object=None):
from IPython.core.magic import (
Magics, magics_class, cell_magic, line_magic
)
@magics_class
class StoreAMPL(Magics):
def __init__(self, shell=None, **kwargs):
Magics.__init__(self, shell=shell, **kwargs)
self._store = []
shell.user_ns[store_name] = self._store
@cell_magic
def ampl(self, line, cell):
self._store.append(cell)
@cell_magic
def ampl_eval(self, line, cell):
ampl_object.eval(cell)
@line_magic
def get_ampl(self, line):
return self._store
get_ipython().register_magics(StoreAMPL) | Register jupyter notebook magics ``%%ampl`` and ``%%ampl_eval``.
Args:
store_name: Name of the store where ``%%ampl cells`` will be stored.
ampl_object: Object used to evaluate ``%%ampl_eval`` cells. |
8,305 | def timelimit(timeout):
def _1(function):
def _2(*args, **kw):
class Dispatch(threading.Thread):
def __init__(self):
threading.Thread.__init__(self)
self.result = None
self.error = None
self.setDaemon(True)
self.start()
def run(self):
try:
self.result = function(*args, **kw)
except:
self.error = sys.exc_info()
c = Dispatch()
c.join(timeout)
if c.isAlive():
raise TimeoutError,
if c.error:
raise c.error[0], c.error[1]
return c.result
return _2
return _1 | borrowed from web.py |
8,306 | def to_df_CSV(self, tempfile: str=None, tempkeep: bool=False, **kwargs) -> :
return self.to_df(method=, tempfile=tempfile, tempkeep=tempkeep, **kwargs) | Export this SAS Data Set to a Pandas Data Frame via CSV file
:param tempfile: [optional] an OS path for a file to use for the local CSV file; default it a temporary file that's cleaned up
:param tempkeep: if you specify your own file to use with tempfile=, this controls whether it's cleaned up after using it
:param kwargs:
:return: Pandas data frame
:rtype: 'pd.DataFrame' |
8,307 | def getvalue(x):
if isrepeating(x):
raise TypeError(
"Ambiguous call to getvalue for %r which has more than one value."
% x)
for value in getvalues(x):
return value | Return the single value of x or raise TypError if more than one value. |
8,308 | def get_annotated_lines(self):
lines = [Line(idx + 1, x) for idx, x in enumerate(self.sourcelines)]
if hasattr(self.code, ):
lineno = self.code.co_firstlineno - 1
while lineno > 0:
if _funcdef_re.match(lines[lineno].code):
break
lineno -= 1
try:
offset = len(inspect.getblock([x.code + for x
in lines[lineno:]]))
except TokenError:
offset = 0
for line in lines[lineno:lineno + offset]:
line.in_frame = True
try:
lines[self.lineno - 1].current = True
except IndexError:
pass
return lines | Helper function that returns lines with extra information. |
8,309 | def tweakback(drzfile, input=None, origwcs = None,
newname = None, wcsname = None,
extname=, force=False, verbose=False):
print("TweakBack Version {:s}({:s}) started at: {:s}\n"
.format(__version__,__version_date__,util._ptime()[0]))
fltfiles = parseinput.parseinput(input)[0]
if fltfiles is None or len(fltfiles) == 0:
if not extlist:
extlist = [0]
wcsutil.altwcs.archiveWCS(imhdulist, extlist, reusekey=True)
for ext in extlist:
logstr = "Processing {:s}[{:s}]".format(imhdulist.filename(),
ext2str(ext))
if verbose:
print("\n{:s}\n".format(logstr))
else:
log.info(logstr)
chip_wcs = wcsutil.HSTWCS(imhdulist, ext=ext)
update_chip_wcs(chip_wcs, orig_wcs, final_wcs,
xrms=crderr1, yrms = crderr2)
extnum = imhdulist.index(imhdulist[ext])
updatehdr.update_wcs(imhdulist, extnum, chip_wcs,
wcsname=final_name, reusename=False,
verbose=verbose)
imhdulist.close() | Apply WCS solution recorded in drizzled file to distorted input images
(``_flt.fits`` files) used to create the drizzled file. This task relies on
the original WCS and updated WCS to be recorded in the drizzled image's
header as the last 2 alternate WCSs.
Parameters
----------
drzfile : str (Default = '')
filename of undistorted image which contains the new WCS
and WCS prior to being updated
newname : str (Default = None)
Value of ``WCSNAME`` to be used to label the updated solution in the
output (eq., ``_flt.fits``) files. If left blank or None, it will
default to using the current ``WCSNAME`` value from the input drzfile.
input : str (Default = '')
filenames of distorted images to be updated using new WCS
from 'drzfile'. These can be provided either as an ``@-file``,
a comma-separated list of filenames or using wildcards.
.. note:: A blank value will indicate that the task should derive the
filenames from the 'drzfile' itself, if possible. The filenames will be
derived from the ``D*DATA`` keywords written out by
``AstroDrizzle``. If they can not be found, the task will quit.
origwcs : str (Default = None)
Value of ``WCSNAME`` keyword prior to the drzfile image being updated
by ``TweakReg``. If left blank or None, it will default to using the
second to last ``WCSNAME*`` keyword value found in the header.
wcsname : str (Default = None)
Value of WCSNAME for updated solution written out by ``TweakReg`` as
specified by the `wcsname` parameter from ``TweakReg``. If this is
left blank or `None`, it will default to the current ``WCSNAME``
value from the input drzfile.
extname : str (Default = 'SCI')
Name of extension in `input` files to be updated with new WCS
force : bool (Default = False)
This parameters specified whether or not to force an update of the WCS
even though WCS already exists with this solution or `wcsname`?
verbose : bool (Default = False)
This parameter specifies whether or not to print out additional
messages during processing.
Notes
-----
The algorithm used by this function is based on linearization of
the exact compound operator that converts input image coordinates
to the coordinates (in the input image) that would result in
alignment with the new drizzled image WCS.
If no input distorted files are specified as input, this task will attempt
to generate the list of filenames from the drizzled input file's own
header.
EXAMPLES
--------
An image named ``acswfc_mos2_drz.fits`` was created from 4 images using
astrodrizzle. This drizzled image was then aligned to another image using
tweakreg and the header was updated using the ``WCSNAME`` = ``TWEAK_DRZ``.
The new WCS can then be used to update each of the 4 images that were
combined to make up this drizzled image using:
>>> from drizzlepac import tweakback
>>> tweakback.tweakback('acswfc_mos2_drz.fits')
If the same WCS should be applied to a specific set of images, those images
can be updated using:
>>> tweakback.tweakback('acswfc_mos2_drz.fits',
... input='img_mos2a_flt.fits,img_mos2e_flt.fits')
See Also
--------
stwcs.wcsutil.altwcs: Alternate WCS implementation |
8,310 | def failed_login_limit_reached(self):
login_limit = 10
if self.failed_logins and self.failed_logins >= login_limit:
return True
else:
return False | A boolean method to check for failed login limit being reached |
8,311 | def addarchive(self, name):
with tarfile.open(name, ) as st:
for member in st.getmembers():
self.tarfile.addfile(member, st.extractfile(member.name)) | Add (i.e. copy) the contents of another tarball to this one.
:param name: File path to the tar archive.
:type name: unicode | str |
8,312 | def _filter(request, object_, tags=None, more=False, orderby=):
res = Result()
models = QUERY_MODELS
idDict = {}
objDict = {}
data = {}
modelmap = {}
length = 75
for m in models:
modelmap[m.model_class()] = m.model
if object_:
idDict[m.model] = m.model_class().objects.filter(gallery=object_)
else:
idDict[m.model] = m.model_class().objects.all()
if idDict[m.model] is None:
continue
if tags:
for bucket in tags:
searchQuery = ""
o = None
for item in bucket:
if item == 0:
idDict[m.model].annotate(num_tags=Count())
if not o:
o = Q()
o |= Q(num_tags__lte=1)
break
elif isinstance(item, six.integer_types):
if not o:
o = Q()
o |= Q(tags__id=item)
else:
searchQuery += item +
if not HAYSTACK:
if not o:
o = Q()
o |= Q(title__icontains=item)
if HAYSTACK and searchQuery != "":
searchIDs = search(searchQuery, m.model_class())
if searchIDs:
if not o:
o = Q()
o |= Q(id__in=searchIDs)
if o:
idDict[m.model] = idDict[m.model].annotate(num_tags=Count()).filter(o)
else:
idDict[m.model] = idDict[m.model].none()
idDict[m.model] = list(idDict[m.model].order_by(.format(orderby)).values_list(, flat=True))
lastid = request.session.get(.format(m.model), 0)
if not idDict[m.model]:
continue
if not more:
lastid = idDict[m.model][0]
index = idDict[m.model].index(lastid)
if more and lastid != 0:
index += 1
idDict[m.model] = idDict[m.model][index:index + length]
objDict[m.model] = m.model_class().objects.filter(id__in=idDict[m.model])
objDict[m.model] = objDict[m.model].select_related().prefetch_related().order_by(.format(orderby))
objDict[m.model] = list(objDict[m.model])
objects = _sortObjects(orderby, **objDict) if len(models) > 1 else objDict.values()[0]
objects = objects[:length]
lastids = {}
for obj in objects:
lastids[.format(modelmap[obj.__class__])] = obj.id
for key, value in lastids.items():
request.session[key] = value
for i in objects:
res.append(i.json())
data[] = len(objects)
if settings.DEBUG:
data[] = connection.queries
res.value = data
return JsonResponse(res.asDict()) | Filters Piece objects from self based on filters, search, and range
:param tags: List of tag IDs to filter
:type tags: list
:param more -- bool, Returns more of the same filtered set of images based on session range
return list, Objects filtered |
8,313 | def post(self):
self.set_header("Content-Type", "application/json")
key = uuid.uuid4().hex
metadata = json.loads(self.request.body.decode())
metadata["uuid"] = key
self.database[key] = metadata
result = json.dumps({"uuid": key})
self.write(result) | Register a new model (models) |
8,314 | def find_embedding(elt, embedding=None):
result = []
module = getmodule(elt)
if module is not None:
visited = set()
if embedding is None:
embedding = module
compounds = [embedding]
while compounds:
last_embedding = compounds[-1]
if last_embedding == elt:
result = compounds
break
else:
for name in dir(last_embedding):
embedded = getattr(last_embedding, name)
try:
if embedded not in visited:
visited.add(embedded)
else:
continue
except TypeError:
pass
else:
embedded_module = getmodule(embedded)
if embedded_module is module:
compounds.append(embedded)
break
else:
compounds.pop(-1)
return result | Try to get elt embedding elements.
:param embedding: embedding element. Must have a module.
:return: a list of [module [,class]*] embedding elements which define elt.
:rtype: list |
8,315 | def _plot_estimate(
cls,
estimate=None,
confidence_intervals=None,
loc=None,
iloc=None,
show_censors=False,
censor_styles=None,
ci_legend=False,
ci_force_lines=False,
ci_alpha=0.25,
ci_show=True,
at_risk_counts=False,
**kwargs
):
plot_estimate_config = PlotEstimateConfig(
cls, estimate, confidence_intervals, loc, iloc, show_censors, censor_styles, **kwargs
)
dataframe_slicer = create_dataframe_slicer(iloc, loc)
if show_censors and cls.event_table["censored"].sum() > 0:
cs = {"marker": "+", "ms": 12, "mew": 1}
cs.update(plot_estimate_config.censor_styles)
times = dataframe_slicer(cls.event_table.loc[(cls.event_table["censored"] > 0)]).index.values.astype(float)
v = cls.predict(times)
plot_estimate_config.ax.plot(times, v, linestyle="None", color=plot_estimate_config.colour, **cs)
dataframe_slicer(plot_estimate_config.estimate_).rename(
columns=lambda _: plot_estimate_config.kwargs.pop("label")
).plot(**plot_estimate_config.kwargs)
if ci_show:
if ci_force_lines:
dataframe_slicer(plot_estimate_config.confidence_interval_).plot(
linestyle="-",
linewidth=1,
color=[plot_estimate_config.colour],
legend=ci_legend,
drawstyle=plot_estimate_config.kwargs["drawstyle"],
ax=plot_estimate_config.ax,
alpha=0.6,
)
else:
x = dataframe_slicer(plot_estimate_config.confidence_interval_).index.values.astype(float)
lower = dataframe_slicer(plot_estimate_config.confidence_interval_.filter(like="lower")).values[:, 0]
upper = dataframe_slicer(plot_estimate_config.confidence_interval_.filter(like="upper")).values[:, 0]
if plot_estimate_config.kwargs["drawstyle"] == "default":
step = None
elif plot_estimate_config.kwargs["drawstyle"].startswith("step"):
step = plot_estimate_config.kwargs["drawstyle"].replace("steps-", "")
plot_estimate_config.ax.fill_between(
x, lower, upper, alpha=ci_alpha, color=plot_estimate_config.colour, linewidth=1.0, step=step
)
if at_risk_counts:
add_at_risk_counts(cls, ax=plot_estimate_config.ax)
return plot_estimate_config.ax | Plots a pretty figure of {0}.{1}
Matplotlib plot arguments can be passed in inside the kwargs, plus
Parameters
-----------
show_censors: bool
place markers at censorship events. Default: False
censor_styles: bool
If show_censors, this dictionary will be passed into the plot call.
ci_alpha: bool
the transparency level of the confidence interval. Default: 0.3
ci_force_lines: bool
force the confidence intervals to be line plots (versus default shaded areas). Default: False
ci_show: bool
show confidence intervals. Default: True
ci_legend: bool
if ci_force_lines is True, this is a boolean flag to add the lines' labels to the legend. Default: False
at_risk_counts: bool
show group sizes at time points. See function ``add_at_risk_counts`` for details. Default: False
loc: slice
specify a time-based subsection of the curves to plot, ex:
>>> model.plot(loc=slice(0.,10.))
will plot the time values between t=0. and t=10.
iloc: slice
specify a location-based subsection of the curves to plot, ex:
>>> model.plot(iloc=slice(0,10))
will plot the first 10 time points.
Returns
-------
ax:
a pyplot axis object |
8,316 | def start_container(self):
self.__container_lengths.append(self.current_container_length)
self.current_container_length = 0
new_container_node = _Node()
self.__container_node.add_child(new_container_node)
self.__container_nodes.append(self.__container_node)
self.__container_node = new_container_node | Add a node to the tree that represents the start of a container.
Until end_container is called, any nodes added through add_scalar_value
or start_container will be children of this new node. |
8,317 | def complete_task_from_id(self, task_id):
if task_id is None:
raise WorkflowException(self.spec, )
for task in self.task_tree:
if task.id == task_id:
return task.complete()
msg = % task_id
raise WorkflowException(self.spec, msg) | Runs the task with the given id.
:type task_id: integer
:param task_id: The id of the Task object. |
8,318 | def get_previous_next_published(self, date):
previous_next = getattr(self, , None)
if previous_next is None:
date_year = datetime(date.year, 1, 1)
date_month = datetime(date.year, date.month, 1)
date_day = datetime(date.year, date.month, date.day)
date_next_week = date_day + timedelta(weeks=1)
previous_next = {: [None, None],
: [None, None],
: [None, None],
: [None, None]}
dates = self.get_queryset().datetimes(
, , order=)
for d in dates:
d_year = datetime(d.year, 1, 1)
d_month = datetime(d.year, d.month, 1)
d_day = datetime(d.year, d.month, d.day)
if d_year < date_year:
previous_next[][0] = d_year.date()
elif d_year > date_year and not previous_next[][1]:
previous_next[][1] = d_year.date()
if d_month < date_month:
previous_next[][0] = d_month.date()
elif d_month > date_month and not previous_next[][1]:
previous_next[][1] = d_month.date()
if d_day < date_day:
previous_next[][0] = d_day.date()
previous_next[][0] = d_day.date() - timedelta(
days=d_day.weekday())
elif d_day > date_day and not previous_next[][1]:
previous_next[][1] = d_day.date()
if d_day > date_next_week and not previous_next[][1]:
previous_next[][1] = d_day.date() - timedelta(
days=d_day.weekday())
setattr(self, , previous_next)
return previous_next | Returns a dict of the next and previous date periods
with published entries. |
8,319 | def initialize(self):
if not hasattr(self.application, ):
log.debug()
self.application.event_listener = EventListener(
self.application.mod_opts,
self.application.opts,
)
if not hasattr(self, ):
local_client = salt.client.get_local_client(mopts=self.application.opts)
self.saltclients = {
: local_client.run_job_async,
: local_client.run_job_async,
: salt.runner.RunnerClient(opts=self.application.opts).cmd_async,
: None,
}
if not hasattr(self, ):
self.ckminions = salt.utils.minions.CkMinions(self.application.opts) | Initialize the handler before requests are called |
8,320 | def change_quantiles(x, ql, qh, isabs, f_agg):
if ql >= qh:
ValueError("ql={} should be lower than qh={}".format(ql, qh))
div = np.diff(x)
if isabs:
div = np.abs(div)
try:
bin_cat = pd.qcut(x, [ql, qh], labels=False)
bin_cat_0 = bin_cat == 0
except ValueError:
return 0
ind = (bin_cat_0 & _roll(bin_cat_0, 1))[1:]
if sum(ind) == 0:
return 0
else:
ind_inside_corridor = np.where(ind == 1)
aggregator = getattr(np, f_agg)
return aggregator(div[ind_inside_corridor]) | First fixes a corridor given by the quantiles ql and qh of the distribution of x.
Then calculates the average, absolute value of consecutive changes of the series x inside this corridor.
Think about selecting a corridor on the
y-Axis and only calculating the mean of the absolute change of the time series inside this corridor.
:param x: the time series to calculate the feature of
:type x: numpy.ndarray
:param ql: the lower quantile of the corridor
:type ql: float
:param qh: the higher quantile of the corridor
:type qh: float
:param isabs: should the absolute differences be taken?
:type isabs: bool
:param f_agg: the aggregator function that is applied to the differences in the bin
:type f_agg: str, name of a numpy function (e.g. mean, var, std, median)
:return: the value of this feature
:return type: float |
8,321 | def revokeSystemPermission(self, login, user, perm):
self.send_revokeSystemPermission(login, user, perm)
self.recv_revokeSystemPermission() | Parameters:
- login
- user
- perm |
8,322 | def T6(word, rules):
offset = 0
try:
WORD, rest = tuple(word.split(, 1))
for vvv in long_vowel_sequences(rest):
i = vvv.start(2)
vvv = vvv.group(2)
i += (2 if phon.is_long(vvv[:2]) else 1) + offset
rest = rest[:i] + + rest[i:]
offset += 1
except ValueError:
WORD = word
for vvv in long_vowel_sequences(WORD):
i = vvv.start(2) + 2
WORD = WORD[:i] + + WORD[i:]
try:
WORD += + rest
except UnboundLocalError:
pass
rules += if word != WORD else
return WORD, rules | If a VVV-sequence contains a long vowel, insert a syllable boundary
between it and the third vowel. E.g. [kor.ke.aa], [yh.ti.öön], [ruu.an],
[mää.yt.te]. |
8,323 | def sky_fraction(self):
pix_id = self._best_res_pixels()
nb_pix_filled = pix_id.size
return nb_pix_filled / float(3 << (2*(self.max_order + 1))) | Sky fraction covered by the MOC |
8,324 | def models(self):
model_dict = self._build_all_dependencies()
while True:
model = self._get_model_without_dependencies(model_dict)
if not model:
break
yield (model, self._models().get(model)) | generator to return the tuple of model and its schema to create on aws. |
8,325 | def tokenize(self, string):
new_lexer = ply.lex.lex(module=self, debug=self.debug, errorlog=logger)
new_lexer.latest_newline = 0
new_lexer.string_value = None
new_lexer.input(string)
while True:
t = new_lexer.token()
if t is None: break
t.col = t.lexpos - new_lexer.latest_newline
yield t
if new_lexer.string_value is not None:
raise JsonPathLexerError() | Maps a string to an iterator over tokens. In other words: [char] -> [token] |
8,326 | def fit_points_in_bounding_box_params(df_points, bounding_box,
padding_fraction=0):
width = df_points.x.max()
height = df_points.y.max()
points_bbox = pd.Series([width, height], index=[, ])
fill_scale = 1 - 2 * padding_fraction
assert(fill_scale > 0)
scale = scale_to_fit_a_in_b(points_bbox, bounding_box)
padded_scale = scale * fill_scale
offset = .5 * (bounding_box - points_bbox * padded_scale)
offset.index = [, ]
return offset, padded_scale | Return offset and scale factor to scale ``x``, ``y`` columns of
:data:`df_points` to fill :data:`bounding_box` while maintaining aspect
ratio.
Arguments
---------
df_points : pandas.DataFrame
A frame with at least the columns ``x`` and ``y``, containing one row
per point.
bounding_box: pandas.Series
A `pandas.Series` containing numeric `width` and `height` values.
padding_fraction : float
Fraction of padding to add around points.
Returns
-------
(offset, scale) : (pandas.Series, float)
Offset translation and scale required to fit all points in
:data:`df_points` to fill :data:`bounding_box` while maintaining aspect
ratio.
:data:`offset` contains ``x`` and ``y`` values for the offset. |
8,327 | def organize(dirs, config, run_info_yaml, sample_names=None, is_cwl=False,
integrations=None):
from bcbio.pipeline import qcsummary
if integrations is None: integrations = {}
logger.info("Using input YAML configuration: %s" % run_info_yaml)
assert run_info_yaml and os.path.exists(run_info_yaml), \
"Did not find input sample YAML file: %s" % run_info_yaml
run_details = _run_info_from_yaml(dirs, run_info_yaml, config, sample_names,
is_cwl=is_cwl, integrations=integrations)
remote_retriever = None
for iname, retriever in integrations.items():
if iname in config:
run_details = retriever.add_remotes(run_details, config[iname])
remote_retriever = retriever
out = []
for item in run_details:
item["dirs"] = dirs
if "name" not in item:
item["name"] = ["", item["description"]]
elif isinstance(item["name"], six.string_types):
description = "%s-%s" % (item["name"], clean_name(item["description"]))
item["name"] = [item["name"], description]
item["description"] = description
item["resources"] = _add_remote_resources(item["resources"])
item["config"] = config_utils.update_w_custom(config, item)
item.pop("algorithm", None)
item = add_reference_resources(item, remote_retriever)
item["config"]["algorithm"]["qc"] = qcsummary.get_qc_tools(item)
item["config"]["algorithm"]["vcfanno"] = vcfanno.find_annotations(item, remote_retriever)
tmp_dir = tz.get_in(["config", "resources", "tmp", "dir"], item)
if tmp_dir:
if os.path.expandvars(tmp_dir) == tmp_dir:
tmp_dir = utils.safe_makedir(os.path.expandvars(tmp_dir))
tmp_dir = genome.abs_file_paths(tmp_dir, do_download=not integrations)
item["config"]["resources"]["tmp"]["dir"] = tmp_dir
out.append(item)
out = _add_provenance(out, dirs, config, not is_cwl)
return out | Organize run information from a passed YAML file or the Galaxy API.
Creates the high level structure used for subsequent processing.
sample_names is a list of samples to include from the overall file, for cases
where we are running multiple pipelines from the same configuration file. |
8,328 | def normalize_full_name_true(decl):
if decl.cache.normalized_full_name_true is None:
decl.cache.normalized_full_name_true = normalize(
declaration_utils.full_name(decl, with_defaults=True))
return decl.cache.normalized_full_name_true | Cached variant of normalize
Args:
decl (declaration.declaration_t): the declaration
Returns:
str: normalized name |
8,329 | def _set_default_resource_names(self):
self.ip_config_name = .join([
self.running_instance_id,
])
self.nic_name = .join([self.running_instance_id, ])
self.public_ip_name = .join([self.running_instance_id, ]) | Generate names for resources based on the running_instance_id. |
8,330 | def _match_filenames_w_dfs(filenames, lo_dfs):
logger_dataframes.info("enter match_filenames_w_dfs")
dfs = {}
for filename in filenames:
try:
if filename in lo_dfs["chronData"]:
dfs[filename] = lo_dfs["chronData"][filename]
elif filename in lo_dfs["paleoData"]:
dfs[filename] = lo_dfs["paleoData"][filename]
except KeyError:
logger_dataframes.info("filter_dfs: KeyError: missing data frames keys")
logger_dataframes.info("exit match_filenames_w_dfs")
return dfs | Match a list of filenames to their data frame counterparts. Return data frames
:param list filenames: Filenames of data frames to retrieve
:param dict lo_dfs: All data frames
:return dict: Filenames and data frames (filtered) |
8,331 | def click(self):
if self._click_extension is None:
from .click_ext import ClickExtension
self._click_extension = ClickExtension(
config=self
)
return self._click_extension | click extension
Returns:
ClickExtension |
8,332 | def register(self, resource, endpoint):
s endpoint as it appears in the URL
:type endpoint:
str
Not and instance of ``Resource`` subclass')
self._registry[endpoint] = resource
resource.connect_signal_receivers() | This methods registers a resource with the router and connects all receivers to their respective signals
:param resource:
The resource class to register
:type resource:
A subclass of ``Resource`` class
:param endpoint:
the name of the resource's endpoint as it appears in the URL
:type endpoint:
str |
8,333 | def maybe_show_asm(showasm, tokens):
if showasm:
stream = showasm if hasattr(showasm, ) else sys.stdout
for t in tokens:
stream.write(str(t))
stream.write() | Show the asm based on the showasm flag (or file object), writing to the
appropriate stream depending on the type of the flag.
:param showasm: Flag which determines whether the ingested code is
written to sys.stdout or not. (It is also to pass a file
like object, into which the asm will be written).
:param tokens: The asm tokens to show. |
8,334 | def _cutoff(self, coeffs, vscale):
bnd = self._threshold(vscale)
inds = np.nonzero(abs(coeffs) >= bnd)
if len(inds[0]):
N = inds[0][-1]
else:
N = 0
return N+1 | Compute cutoff index after which the coefficients are deemed negligible. |
8,335 | def size_as_bytes(size_, prefix):
prefix = prefix.upper()
assert prefix in si_prefixes
exponent = si_prefixes.index(prefix) + 1
return int(size_ * (1024.0 ** exponent)) | >>> size_as_bytes(7.5, 'T')
8246337208320 |
8,336 | def remove_from_group(self, group, user):
data = {: group, : user}
return self.post(, data) | Remove a user from a group
:type user: str
:param user: User's email
:type group: str
:param group: Group name
:rtype: dict
:return: an empty dictionary |
8,337 | def QA_util_date_stamp(date):
datestr = str(date)[0:10]
date = time.mktime(time.strptime(datestr, ))
return date | 字符串 '2018-01-01' 转变成 float 类型时间 类似 time.time() 返回的类型
:param date: 字符串str -- 格式必须是 2018-01-01 ,长度10
:return: 类型float |
8,338 | def installed(name, env=None, saltenv=, user=None):
ret = {: name, : {}, : , : True}
packages = []
if os.path.exists(name) or name.startswith():
if name.startswith():
lines = __salt__[](name, saltenv)
lines = lines.split()
elif os.path.exists(name):
f = open(name, mode=)
lines = f.readlines()
f.close()
for line in lines:
line = line.strip()
if line != and not line.startswith():
line = line.split()[0].strip()
packages.append(line)
else:
packages = [pkg.strip() for pkg in name.split()]
conda_list = __salt__[](env=env, user=user)
def extract_info(pkgname):
pkgname, pkgversion = package,
pkgname, pkgversion = (package.split()[0], package.split()[1]
) if in package else (package, pkgversion)
pkgname, pkgversion = (package.split()[0], package.split()[1]
) if in package else (pkgname, pkgversion)
pkgname, pkgversion = (package.split()[0], package.split()[1]
) if in package else (pkgname, pkgversion)
return pkgname, pkgversion
installed, failed, old = 0, 0, 0
for package in packages:
pkgname, pkgversion = extract_info(package)
conda_pkgname = pkgname + * (26 - len(pkgname)) + pkgversion
if conda_pkgname not in conda_list:
installation = __salt__[](package, env=env, user=user)
if installation[] == 0:
ret[][package] =
installed += 1
else:
ret[][package] = installation
failed += 1
else:
old += 1
comments = []
if installed > 0:
comments.append(.format(installed))
if failed > 0:
ret[] = False
comments.append(.format(failed))
if old > 0:
comments.append(.format(old))
ret[] = .join(comments)
return ret | Installs a single package, list of packages (comma separated) or packages in a requirements.txt
Checks if the package is already in the environment.
Check ocurres here so is only needed to `conda list` and `pip freeze` once
name
name of the package(s) or path to the requirements.txt
env : None
environment name or path where to put the new enviroment
if None (default) will use the default conda environment (`~/anaconda/bin`)
saltenv : 'base'
Salt environment. Usefull when the name is file using the salt file system
(e.g. `salt://.../reqs.txt`)
user
The user under which to run the commands |
8,339 | def set_chain_info(self, chain_id, chain_name, num_groups):
self.chain_id_list.append(chain_id)
self.chain_name_list.append(chain_name)
self.groups_per_chain.append(num_groups) | Set the chain information.
:param chain_id: the asym chain id from mmCIF
:param chain_name: the auth chain id from mmCIF
:param num_groups: the number of groups this chain has |
8,340 | def count_flag_reads(self, file_name, flag, paired_end):
param = " -c -f" + str(flag)
if file_name.endswith("sam"):
param += " -S"
return self.samtools_view(file_name, param=param) | Counts the number of reads with the specified flag.
:param str file_name: name of reads file
:param str flag: sam flag value to be read
:param bool paired_end: This parameter is ignored; samtools automatically correctly responds depending
on the data in the bamfile. We leave the option here just for consistency, since all the other
counting functions require the parameter. This makes it easier to swap counting functions during
pipeline development. |
8,341 | def generate_random_id(size=6, chars=string.ascii_uppercase + string.digits):
return "".join(random.choice(chars) for x in range(size)) | Generate random id numbers. |
8,342 | def class_get_trait_help(cls, trait, inst=None):
assert inst is None or isinstance(inst, cls)
lines = []
header = "--%s.%s=<%s>" % (cls.__name__, trait.name, trait.__class__.__name__)
lines.append(header)
if inst is not None:
lines.append(indent( % getattr(inst, trait.name), 4))
else:
try:
dvr = repr(trait.get_default_value())
except Exception:
dvr = None | Get the help string for a single trait.
If `inst` is given, it's current trait values will be used in place of
the class default. |
8,343 | def fold_string(input_string, max_width):
new_string = input_string
if isinstance(input_string, six.string_types):
if max_width < len(input_string):
new_string = textwrap.fill(input_string, max_width)
return new_string | Fold a string within a maximum width.
Parameters:
input_string:
The string of data to go into the cell
max_width:
Maximum width of cell. Data is folded into multiple lines to
fit into this width.
Return:
String representing the folded string |
8,344 | def get_sun_times(dates, lon, lat, time_zone):
df = pd.DataFrame(index=dates, columns=[, , , ])
doy = np.array([(d - d.replace(day=1, month=1)).days + 1 for d in df.index])
day_angle_b = np.deg2rad((360. / 365.25) * (doy - 79.346))
declination = np.deg2rad(
0.3723 + 23.2567 * np.sin(day_angle_b) - 0.7580 * np.cos(day_angle_b)
+ 0.1149 * np.sin(2*day_angle_b) + 0.3656 * np.cos(2*day_angle_b)
- 0.1712 * np.sin(3*day_angle_b) + 0.0201 * np.cos(3*day_angle_b)
)
day_angle_s = 2 * np.pi * (doy - 1) / 365.
eq_time = 12. / np.pi * (
0.000075 +
0.001868 * np.cos( day_angle_s) - 0.032077 * np.sin( day_angle_s) -
0.014615 * np.cos(2*day_angle_s) - 0.040849 * np.sin(2*day_angle_s)
)
standard_meridian = time_zone * 15.
delta_lat_time = (lon - standard_meridian) * 24. / 360.
omega_nul_arg = -np.tan(np.deg2rad(lat)) * np.tan(declination)
omega_nul = np.arccos(omega_nul_arg)
sunrise = 12. * (1. - (omega_nul) / np.pi) - delta_lat_time - eq_time
sunset = 12. * (1. + (omega_nul) / np.pi) - delta_lat_time - eq_time
sunnoon = 12. * (1.) - delta_lat_time - eq_time
pos = omega_nul_arg < -1
sunrise[pos] = sunnoon[pos] - 12
sunset[pos] = sunnoon[pos] + 12
pos = omega_nul_arg > 1
sunrise[pos] = sunnoon[pos]
sunset[pos] = sunnoon[pos]
daylength = sunset - sunrise
sunrise[sunrise < 0] += 24
sunset[sunset > 24] -= 24
df.sunrise = sunrise
df.sunnoon = sunnoon
df.sunset = sunset
df.daylength = daylength
return df | Computes the times of sunrise, solar noon, and sunset for each day.
Parameters
----
dates: datetime
lat : latitude in DecDeg
lon : longitude in DecDeg
time_zone : timezone
Returns
----
DataFrame: [sunrise, sunnoon, sunset, day length] in dec hours |
8,345 | def open_external_editor(filename=None, sql=None):
message = None
filename = filename.strip().split(, 1)[0] if filename else None
sql = sql or
MARKER =
query = click.edit(u.format(sql=sql, marker=MARKER),
filename=filename, extension=)
if filename:
try:
with open(filename, encoding=) as f:
query = f.read()
except IOError:
message = % filename
if query is not None:
query = query.split(MARKER, 1)[0].rstrip()
else:
query = sql
return (query, message) | Open external editor, wait for the user to type in their query, return
the query.
:return: list with one tuple, query as first element. |
8,346 | def script_post_save(model, os_path, contents_manager, **kwargs):
from nbconvert.exporters.script import ScriptExporter
if model[] != :
return
global _script_exporter
if _script_exporter is None:
_script_exporter = ScriptExporter(parent=contents_manager)
log = contents_manager.log
base, ext = os.path.splitext(os_path)
script, resources = _script_exporter.from_filename(os_path)
script_fname = base + resources.get(, )
log.info("Saving script /%s", to_api_path(script_fname, contents_manager.root_dir))
with io.open(script_fname, , encoding=) as f:
f.write(script) | convert notebooks to Python script after save with nbconvert
replaces `ipython notebook --script` |
8,347 | def _default_arguments(self, obj):
if not (inspect.isfunction(obj) or inspect.ismethod(obj)):
if inspect.isclass(obj):
obj = (getattr(obj,,None) or
getattr(obj,,None))
elif hasattr(obj, ):
obj = obj.__call__
try:
args,_,_1,defaults = inspect.getargspec(obj)
if defaults:
return args[-len(defaults):]
except TypeError: pass
return [] | Return the list of default arguments of obj if it is callable,
or empty list otherwise. |
8,348 | def _pairwise_chisq(self):
return [
self._chi_squared(
mr_subvar_proportions,
self._margin[idx],
self._opposite_axis_margin[idx]
/ np.sum(self._opposite_axis_margin[idx]),
)
for (idx, mr_subvar_proportions) in enumerate(self._proportions)
] | Pairwise comparisons (Chi-Square) along axis, as numpy.ndarray.
Returns a list of square and symmetric matrices of test statistics for the null
hypothesis that each vector along *axis* is equal to each other. |
8,349 | def get_updated_data(self, old_data: Dict[str, LinkItem]) -> Dict[str, LinkItem]:
if not self.download_data:
return {}
new_link_item_dict = {}
for link, link_item in tqdm(self.download_data.items(), desc="Compare with save", unit="item", leave=True,
mininterval=1, ncols=100, disable=dynamic_data.DISABLE_TQDM):
if (link not in old_data) or (link_item.time > old_data[link].time):
new_link_item_dict[link] = link_item
return new_link_item_dict | Get links who needs to be downloaded by comparing old and the new data.
:param old_data: old data
:type old_data: Dict[str, ~unidown.plugin.link_item.LinkItem]
:return: data which is newer or dont exist in the old one
:rtype: Dict[str, ~unidown.plugin.link_item.LinkItem] |
8,350 | def find_holes(db_module, db, table_name, column_name, _range, filter=None):
if not filter:
filter = {"match_all": {}}
_range = wrap(_range)
params = {
"min": _range.min,
"max": _range.max - 1,
"column_name": db_module.quote_column(column_name),
"table_name": db_module.quote_column(table_name),
"filter": esfilter2sqlwhere(filter)
}
min_max = db.query(, params)[0]
db.execute("SET @last={{min}}-1", {"min": _range.min})
ranges = db.query(, params)
if ranges:
ranges.append({"min": min_max.max, "max": _range.max})
else:
if min_max.min:
ranges.append({"min": _range.min, "max": min_max.min})
ranges.append({"min": min_max.max, "max": _range.max})
else:
ranges.append(_range)
return ranges | FIND HOLES IN A DENSE COLUMN OF INTEGERS
RETURNS A LIST OF {"min"min, "max":max} OBJECTS |
8,351 | def get_search_results(portal_type=None, uid=None, **kw):
if uid is not None:
logger.info("UID found, returning the object immediately" % uid)
return u.to_list(get_object_by_uid(uid))
include_portal = False
if u.to_string(portal_type) == "Plone Site":
include_portal = True
if "Plone Site" in u.to_list(req.get("portal_type")):
include_portal = True
results = search(portal_type=portal_type, uid=uid, **kw)
if include_portal:
results = list(results) + u.to_list(get_portal())
return results | Search the catalog and return the results
:returns: Catalog search results
:rtype: iterable |
8,352 | def compute_gt_results(est_file, ref_file, boundaries_id, labels_id, config,
bins=251, annotator_id=0):
if config["hier"]:
ref_times, ref_labels, ref_levels = \
msaf.io.read_hier_references(
ref_file, annotation_id=annotator_id,
exclude_levels=["segment_salami_function"])
else:
jam = jams.load(ref_file, validate=False)
ann = jam.search(namespace=)[annotator_id]
ref_inter, ref_labels = ann.to_interval_values()
est_inter, est_labels = io.read_estimations(est_file, boundaries_id,
labels_id, **config)
logging.info("Evaluating %s" % os.path.basename(est_file))
if config["hier"]:
assert len(est_inter) == len(est_labels), "Same number of levels " \
"are required in the boundaries and labels for the hierarchical " \
"evaluation."
est_times = []
est_labels = []
est_inter = sorted(est_inter, key=lambda level: len(level))
for inter in est_inter:
est_times.append(msaf.utils.intervals_to_times(inter))
est_labels.append(np.ones(len(est_times[-1]) - 1) * -1)
utils.align_end_hierarchies(est_times, ref_times, thres=1)
est_hier = [utils.times_to_intervals(times) for times in est_times]
ref_hier = [utils.times_to_intervals(times) for times in ref_times]
res = {}
res["t_recall10"], res["t_precision10"], res["t_measure10"] = \
mir_eval.hierarchy.tmeasure(ref_hier, est_hier, window=10)
res["t_recall15"], res["t_precision15"], res["t_measure15"] = \
mir_eval.hierarchy.tmeasure(ref_hier, est_hier, window=15)
res["track_id"] = os.path.basename(est_file)[:-5]
return res
else:
return compute_results(ref_inter, est_inter, ref_labels, est_labels,
bins, est_file) | Computes the results by using the ground truth dataset identified by
the annotator parameter.
Return
------
results : dict
Dictionary of the results (see function compute_results). |
8,353 | def validate_twilio_signature(func=None, backend_name=):
def _dec(view_func):
@functools.wraps(view_func, assigned=available_attrs(view_func))
def _wrapped_view(request, *args, **kwargs):
backend = kwargs.get(, backend_name)
config = settings.INSTALLED_BACKENDS[backend][]
validator = RequestValidator(config[])
signature = request.META.get(, )
url = request.build_absolute_uri()
body = {}
if request.method == :
body = request.POST
require_validation = config.get(, True)
if validator.validate(url, body, signature) or not require_validation:
return view_func(request, *args, **kwargs)
else:
return HttpResponseBadRequest()
return _wrapped_view
if func is None:
return _dec
else:
return _dec(func) | View decorator to validate requests from Twilio per http://www.twilio.com/docs/security. |
8,354 | def import_url(self,caseSensitiveNetworkCollectionKeys=None,\
caseSensitiveNetworkKeys=None,dataTypeList=None,\
DataTypeTargetForNetworkCollection=None,DataTypeTargetForNetworkList=None,\
delimiters=None,delimitersForDataList=None,firstRowAsColumnNames=None,\
KeyColumnForMapping=None,KeyColumnForMappingNetworkList=None,\
keyColumnIndex=None,newTableName=None,startLoadRow=None,\
TargetNetworkCollection=None,TargetNetworkList=None,url=None,\
WhereImportTable=None,verbose=None):
PARAMS=set_param([,\
,,,\
,,,\
,,,\
,,,,\
,,],[caseSensitiveNetworkCollectionKeys,\
caseSensitiveNetworkKeys,dataTypeList,DataTypeTargetForNetworkCollection,\
DataTypeTargetForNetworkList,delimiters,delimitersForDataList,\
firstRowAsColumnNames,KeyColumnForMapping,KeyColumnForMappingNetworkList,\
keyColumnIndex,newTableName,startLoadRow,TargetNetworkCollection,\
TargetNetworkList,url,WhereImportTable])
response=api(url=self.__url+"/import url", PARAMS=PARAMS, method="POST", verbose=verbose)
return response | Similar to Import Table this uses a long list of input parameters to
specify the attributes of the table, the mapping keys, and the destination
table for the input.
:param caseSensitiveNetworkCollectionKeys (string, optional): Determines wh
ether capitalization is considered in matching and sorting
:param caseSensitiveNetworkKeys (string, optional): Determines whether capi
talization is considered in matching and sorting
:param dataTypeList (string, optional): List of column data types ordered b
y column index (e.g. "string,int,long,double,boolean,intlist" or jus
t "s,i,l,d,b,il")
:param DataTypeTargetForNetworkCollection (string, optional): Select whethe
r to import the data as Node Table Columns, Edge Table Columns, or N
etwork Table Columns
:param DataTypeTargetForNetworkList (string, optional): The data type of th
e targets
:param delimiters (string, optional): The list of delimiters that separate
columns in the table.
:param delimitersForDataList (string, optional): The delimiters between ele
ments of list columns in the table.
:param firstRowAsColumnNames (string, optional): If the first imported row
contains column names, set this to true.
:param KeyColumnForMapping (string, optional): The column in the network to
use as the merge key
:param KeyColumnForMappingNetworkList (string, optional): The column in the
network to use as the merge key
:param keyColumnIndex (string, optional): The column that contains the key
values for this import. These values will be used to match with the
key values in the network.
:param newTableName (string, optional): The title of the new table
:param startLoadRow (string, optional): The first row of the input table to
load. This allows the skipping of headers that are not part of the
import.
:param TargetNetworkCollection (string, optional): The network collection t
o use for the table import
:param TargetNetworkList (string, optional): The list of networks into whic
h the table is imported
:param url (string): The URL of the file or resource that provides the tabl
e or network to be imported.
:param WhereImportTable (string, optional): Determines what network(s) the
imported table will be associated with (if any). A table can be impo
rted into a Network Collection, Selected networks or to an unassigne
d table. |
8,355 | def get_texts_and_labels(sentence_chunk):
words = sentence_chunk.split()
texts = []
labels = []
for word in words:
word = word.strip()
if len(word) > 0:
toks = word.split()
texts.append(toks[0].strip())
labels.append(toks[-1].strip())
return texts, labels | Given a sentence chunk, extract original texts and labels. |
8,356 | def format_dateaxis(subplot, freq, index):
if isinstance(index, ABCPeriodIndex):
majlocator = TimeSeries_DateLocator(freq, dynamic_mode=True,
minor_locator=False,
plot_obj=subplot)
minlocator = TimeSeries_DateLocator(freq, dynamic_mode=True,
minor_locator=True,
plot_obj=subplot)
subplot.xaxis.set_major_locator(majlocator)
subplot.xaxis.set_minor_locator(minlocator)
majformatter = TimeSeries_DateFormatter(freq, dynamic_mode=True,
minor_locator=False,
plot_obj=subplot)
minformatter = TimeSeries_DateFormatter(freq, dynamic_mode=True,
minor_locator=True,
plot_obj=subplot)
subplot.xaxis.set_major_formatter(majformatter)
subplot.xaxis.set_minor_formatter(minformatter)
subplot.format_coord = functools.partial(_format_coord, freq)
elif isinstance(index, ABCTimedeltaIndex):
subplot.xaxis.set_major_formatter(
TimeSeries_TimedeltaFormatter())
else:
raise TypeError()
pylab.draw_if_interactive() | Pretty-formats the date axis (x-axis).
Major and minor ticks are automatically set for the frequency of the
current underlying series. As the dynamic mode is activated by
default, changing the limits of the x axis will intelligently change
the positions of the ticks. |
8,357 | def getActiveAxes(self):
active = []
for i in range(len(self._axisId)):
if self._menu.IsChecked(self._axisId[i]):
active.append(i)
return active | Return a list of the selected axes. |
8,358 | def add_param(self, param_key, param_val):
self.params.append([param_key, param_val])
if param_key == :
self.success = param_val | adds parameters as key value pairs |
8,359 | def find_elements_by_class_name(self, name):
return self.find_elements(by=By.CLASS_NAME, value=name) | Finds elements by class name.
:Args:
- name: The class name of the elements to find.
:Returns:
- list of WebElement - a list with elements if any was found. An
empty list if not
:Usage:
::
elements = driver.find_elements_by_class_name('foo') |
8,360 | def build_plan(description, graph,
targets=None, reverse=False):
if reverse:
graph = graph.transposed()
if targets:
nodes = []
for target in targets:
for k, step in graph.steps.items():
if step.name == target:
nodes.append(step.name)
graph = graph.filtered(nodes)
return Plan(description=description, graph=graph) | Builds a plan from a list of steps.
Args:
description (str): an arbitrary string to
describe the plan.
graph (:class:`Graph`): a list of :class:`Graph` to execute.
targets (list): an optional list of step names to filter the graph to.
If provided, only these steps, and their transitive dependencies
will be executed. If no targets are specified, every node in the
graph will be executed.
reverse (bool): If provided, the graph will be walked in reverse order
(dependencies last). |
8,361 | async def _set_annotations(entity_tag, annotations, connection):
log.debug(, entity_tag)
facade = client.AnnotationsFacade.from_connection(connection)
args = client.EntityAnnotations(
entity=entity_tag,
annotations=annotations,
)
return await facade.Set([args]) | Set annotations on the specified entity.
:param annotations map[string]string: the annotations as key/value
pairs. |
8,362 | def dict(self, **kwargs):
return dict(
time = self.timestamp,
serial_number = self.serial_number,
value = self.value,
battery = self.battery,
supervision = self.supervision,
**kwargs
) | Dictionary representation. |
8,363 | def get_desc2nts(self, **kws_usr):
kws_nts = {k:v for k, v in kws_usr.items() if k in self.keys_nts}
return self.get_desc2nts_fnc(**kws_nts) | Return grouped, sorted namedtuples in either format: flat, sections. |
8,364 | def cced(self, user, include=None):
return self._query_zendesk(self.endpoint.cced, , id=user, include=include) | Retrieve the tickets this user is cc'd into.
:param include: list of objects to sideload. `Side-loading API Docs
<https://developer.zendesk.com/rest_api/docs/core/side_loading>`__.
:param user: User object or id |
8,365 | def _NormalizeTime(self, time):
if isinstance(time, rdfvalue.RDFDatetime):
return time.AsMicrosecondsSinceEpoch()
if isinstance(time, rdfvalue.Duration):
return time.microseconds
return int(time) | Normalize a time to be an int measured in microseconds. |
8,366 | def parse_config_file(config_path, verb=3):
import json
import unicodedata
with open(config_path) as config_file:
data = json.load(config_file, encoding="utf8")
if verb > 2:
print("
def get_if_exist(key, default):
return data[key] if key in data else default
return Bunch(testfiles=get_if_exist("testfiles", []),
breakfailed=get_if_exist("breakfailed", True),
remove_testfiles=get_if_exist("remove_testfiles", []),
onlyfailed=get_if_exist("onlyfailed", False),
verb=get_if_exist("verb", 3),
dump=get_if_exist("dump", 0), crc=get_if_exist("crc", 1),
scapy=get_if_exist("scapy", "scapy"),
preexec=get_if_exist("preexec", {}),
global_preexec=get_if_exist("global_preexec", ""),
outfile=get_if_exist("outputfile", sys.stdout),
local=get_if_exist("local", False),
num=get_if_exist("num", None),
modules=get_if_exist("modules", []),
kw_ok=get_if_exist("kw_ok", []),
kw_ko=get_if_exist("kw_ko", []),
format=get_if_exist("format", "ansi")) | Parse provided json to get configuration
Empty default json:
{
"testfiles": [],
"breakfailed": true,
"onlyfailed": false,
"verb": 3,
"dump": 0,
"crc": true,
"scapy": "scapy",
"preexec": {},
"global_preexec": "",
"outputfile": null,
"local": true,
"format": "ansi",
"num": null,
"modules": [],
"kw_ok": [],
"kw_ko": []
} |
8,367 | def set_attribute(self, name, value):
if value is True:
self.widget.set(name, name)
elif value is False:
del self.widget.attrib[name]
else:
self.widget.set(name, str(value)) | Default handler for those not explicitly defined |
8,368 | def run_powerflow(self, session, method=, export_pypsa=False, debug=False):
if method == :
pypsa_io.delete_powerflow_tables(session)
for grid_district in self.mv_grid_districts():
if export_pypsa:
export_pypsa_dir = repr(grid_district.mv_grid)
else:
export_pypsa_dir = None
grid_district.mv_grid.run_powerflow(session, method=,
export_pypsa_dir=export_pypsa_dir,
debug=debug)
elif method == :
for grid_district in self.mv_grid_districts():
if export_pypsa:
export_pypsa_dir = repr(grid_district.mv_grid)
else:
export_pypsa_dir = None
grid_district.mv_grid.run_powerflow(session,
method=,
export_pypsa_dir=export_pypsa_dir,
debug=debug) | Performs power flow calculation for all MV grids
Args:
session : sqlalchemy.orm.session.Session
Database session
method: str
Specify export method
If method='db' grid data will be exported to database
If method='onthefly' grid data will be passed to PyPSA directly (default)
export_pypsa: bool
If True PyPSA networks will be exported as csv to output/debug/grid/<MV-GRID_NAME>/
debug: bool, defaults to False
If True, information is printed during process |
8,369 | def scroll_event(self, widget, event):
x, y = event.x, event.y
num_degrees = 0
direction = 0
self.last_win_x, self.last_win_y = x, y
self.logger.debug("scroll deg=%f direction=%f" % (
num_degrees, direction))
data_x, data_y = self.check_cursor_location()
return self.make_ui_callback(, direction, num_degrees,
data_x, data_y) | Called when a mouse is turned in the widget (and maybe for
finger scrolling in the trackpad).
Adjust method signature as appropriate for callback. |
8,370 | def _delete_file(configurator, path):
path = os.path.join(configurator.target_directory, path)
os.remove(path)
try:
os.removedirs(os.path.dirname(path))
except OSError:
pass | remove file and remove it's directories if empty |
8,371 | def statexml2pdb(topology, state, output=None):
state = Restart.from_xml(state)
system = SystemHandler.load(topology, positions=state.positions)
if output is None:
output = topology +
system.write_pdb(output) | Given an OpenMM xml file containing the state of the simulation,
generate a PDB snapshot for easy visualization. |
8,372 | def release(self, connection: Connection):
assert not self._closed
key = connection.key
host_pool = self._host_pools[key]
_logger.debug(, key)
yield from host_pool.release(connection)
force = self.count() > self._max_count
yield from self.clean(force=force) | Put a connection back in the pool.
Coroutine. |
8,373 | def define_simulation_graph(batch_env, algo_cls, config):
step = tf.Variable(0, False, dtype=tf.int32, name=)
is_training = tf.placeholder(tf.bool, name=)
should_log = tf.placeholder(tf.bool, name=)
do_report = tf.placeholder(tf.bool, name=)
force_reset = tf.placeholder(tf.bool, name=)
algo = algo_cls(batch_env, step, is_training, should_log, config)
done, score, summary = tools.simulate(
batch_env, algo, should_log, force_reset)
message =
tf.logging.info(message.format(tools.count_weights()))
return tools.AttrDict(locals()) | Define the algorithm and environment interaction.
Args:
batch_env: In-graph environments object.
algo_cls: Constructor of a batch algorithm.
config: Configuration object for the algorithm.
Returns:
Object providing graph elements via attributes. |
8,374 | def filter(self, *args, **kwargs):
if in kwargs:
kwargs = self.get_filter_args_with_path(False, **kwargs)
return super(FileNodeManager, self).filter(*args, **kwargs) | Works just like the default Manager's :func:`filter` method, but
you can pass an additional keyword argument named ``path`` specifying
the full **path of the folder whose immediate child objects** you
want to retrieve, e.g. ``"path/to/folder"``. |
8,375 | def getheaderAnim(self, im):
bb = b
bb += intToBin(im.size[0])
bb += intToBin(im.size[1])
bb += b
return bb | getheaderAnim(im)
Get animation header. To replace PILs getheader()[0] |
8,376 | def publish_minions(self):
log.debug()
minions = {}
log.debug()
for minion, minion_info in six.iteritems(self.minions):
log.debug(minion)
curr_minion = {}
curr_minion.update(minion_info)
curr_minion.update({: minion})
minions[minion] = curr_minion
log.debug()
ret = {: minions}
self.handler.write_message(
salt.utils.json.dumps(ret) + str()) | Publishes minions as a list of dicts. |
8,377 | def make_tx_signatures(txs_to_sign, privkey_list, pubkey_list):
assert len(privkey_list) == len(pubkey_list) == len(txs_to_sign)
signatures = []
for cnt, tx_to_sign in enumerate(txs_to_sign):
sig = der_encode_sig(*ecdsa_raw_sign(tx_to_sign.rstrip(), privkey_list[cnt]))
err_msg = % (
sig,
tx_to_sign,
pubkey_list[cnt],
)
assert ecdsa_raw_verify(tx_to_sign, der_decode_sig(sig), pubkey_list[cnt]), err_msg
signatures.append(sig)
return signatures | Loops through txs_to_sign and makes signatures using privkey_list and pubkey_list
Not sure what privkeys and pubkeys to supply?
Use get_input_addresses() to return a list of addresses.
Matching those addresses to keys is up to you and how you store your private keys.
A future version of this library may handle this for you, but it is not trivial.
Note that if spending multisig funds the process is significantly more complicated.
Each tx_to_sign must be signed by *each* private key.
In a 2-of-3 transaction, two of [privkey1, privkey2, privkey3] must sign each tx_to_sign
http://dev.blockcypher.com/#multisig-transactions |
8,378 | def recursively_save_dict_contents_to_group(h5file, path, dic):
for key, item in dic.items():
if isinstance(item, (np.ndarray, np.int64, np.float64, str, bytes, tuple, list)):
h5file[path + str(key)] = item
elif isinstance(item, dict):
recursively_save_dict_contents_to_group(h5file, path + key + , item)
else:
raise ValueError( % type(item)) | Parameters
----------
h5file:
h5py file to be written to
path:
path within h5py file to saved dictionary
dic:
python dictionary to be converted to hdf5 format |
8,379 | def clean(ctx):
logger = logging.getLogger(__name__)
dirnames = [, , , ]
dirnames = [os.path.join(ctx.obj[], dirname)
for dirname in dirnames]
for dirname in dirnames:
if os.path.isdir(dirname):
shutil.rmtree(dirname)
logger.debug(, dirname)
else:
logger.debug(, dirname) | Clean Sphinx build products.
Use this command to clean out build products after a failed build, or
in preparation for running a build from a clean state.
This command removes the following directories from the
``pipelines_lsst_io`` directory:
- ``_build`` (the Sphinx build itself)
- ``modules`` (symlinks to the module doc directories of Stack packages)
- ``packages`` (symlinks to the package doc directories of Stack packages)
- ``py-api`` (pages created by automodapi for the Python API reference) |
8,380 | def directives(entrystream, type=None):
for directive in entry_type_filter(entrystream, tag.Directive):
if not type or type == directive.type:
yield directive | Pull directives out of the specified entry stream.
:param entrystream: a stream of entries
:param type: retrieve only directives of the specified type; set to
:code:`None` to retrieve all directives |
8,381 | def as_unicode(s, encoding=):
if isinstance(s, six.text_type):
return s
elif isinstance(s, six.binary_type):
return s.decode(encoding)
else:
raise ValueError(.format(six.text_type, six.binary_type)) | Force conversion of given string to unicode type.
Unicode is ``str`` type for Python 3.x and ``unicode`` for Python 2.x .
If the string is already in unicode, then no conversion is done and the same string is returned.
Parameters
----------
s: str or bytes (Python3), str or unicode (Python2)
The string to convert to unicode.
encoding: str
The encoding of the input string (default: utf-8)
Raises
------
ValueError
In case an input of invalid type was passed to the function.
Returns
-------
``str`` for Python3 or ``unicode`` for Python 2. |
8,382 | def block_ip(ip_address):
if not ip_address:
return
if config.DISABLE_IP_LOCKOUT:
return
key = get_ip_blocked_cache_key(ip_address)
if config.COOLOFF_TIME:
REDIS_SERVER.set(key, , config.COOLOFF_TIME)
else:
REDIS_SERVER.set(key, )
send_ip_block_signal(ip_address) | given the ip, block it |
8,383 | def add_section(self, section):
if not issubclass(section.__class__, SubSection):
raise TypeError("Argument should be a subclass of SubSection, \
not :" + str(section.__class__))
self.sections[section.name] = section
return section | You can add section inside a Element, the section must be a
subclass of SubSection. You can use this class to represent a tree. |
8,384 | def datetime_utc_to_local(utc):
ts = time.time()
cur = datetime.datetime.fromtimestamp(ts)
cur_utc = datetime.datetime.utcfromtimestamp(ts)
offset = cur - cur_utc
t = utc
d = datetime.timedelta(hours = 2)
while d > _MINUTE:
local = t + offset
tm = local.timetuple()
tm = tm[0:8] + (0, )
ts = time.mktime(tm)
u = datetime.datetime.utcfromtimestamp(ts)
diff = u - utc
if diff < _MINUTE and diff > -_MINUTE:
break
if diff > _NULLDELTA:
offset -= d
else:
offset += d
d //= 2
return local | An ugly hack to convert naive :std:`datetime.datetime` object containing
UTC time to a naive :std:`datetime.datetime` object with local time.
It seems standard Python 2.3 library doesn't provide any better way to
do that. |
8,385 | def find_max(self, predicate, max_=None):
if predicate(self.value):
max_ = self.value
next_node = self._greater
else:
next_node = self._lesser
if next_node is None:
return max_
return next_node.find_max(predicate, max_) | Return the largest item in or under this node that satisfies
*predicate*. |
8,386 | def _parse_doc(doc):
lines = doc.split("\n")
descriptions = list(itertools.takewhile(_checker(_KEYWORDS), lines))
if len(descriptions) < 3:
description = lines[0]
else:
description = "{0}\n\n{1}".format(
lines[0], textwrap.dedent("\n".join(descriptions[2:])))
args = list(itertools.takewhile(
_checker(_KEYWORDS_OTHERS),
itertools.dropwhile(_checker(_KEYWORDS_ARGS), lines)))
argmap = {}
if len(args) > 1:
for pair in args[1:]:
kv = [v.strip() for v in pair.split(":")]
if len(kv) >= 2:
argmap[kv[0]] = ":".join(kv[1:])
return dict(headline=descriptions[0], description=description, args=argmap) | Parse a docstring.
Parse a docstring and extract three components; headline, description,
and map of arguments to help texts.
Args:
doc: docstring.
Returns:
a dictionary. |
8,387 | def process_from_webservice(id_val, id_type=, source=,
with_grounding=True):
if with_grounding:
fmt =
else:
fmt =
resp = requests.get(RLIMSP_URL + fmt % (source, id_type, id_val))
if resp.status_code != 200:
raise RLIMSP_Error("Bad status code: %d - %s"
% (resp.status_code, resp.reason))
rp = RlimspProcessor(resp.json())
rp.extract_statements()
return rp | Return an output from RLIMS-p for the given PubMed ID or PMC ID.
Parameters
----------
id_val : str
A PMCID, with the prefix PMC, or pmid, with no prefix, of the paper to
be "read".
id_type : str
Either 'pmid' or 'pmcid'. The default is 'pmcid'.
source : str
Either 'pmc' or 'medline', whether you want pmc fulltext or medline
abstracts.
with_grounding : bool
The RLIMS-P web service provides two endpoints, one pre-grounded, the
other not so much. The grounded endpoint returns far less content, and
may perform some grounding that can be handled by the grounding mapper.
Returns
-------
:py:class:`indra.sources.rlimsp.processor.RlimspProcessor`
An RlimspProcessor which contains a list of extracted INDRA Statements
in its statements attribute. |
8,388 | def write_ln(self, *text, sep=):
if self.text and self.text[-1] != :
self.text +=
self.text += markdown.text(*text, sep) +
return self | Write line
:param text:
:param sep:
:return: |
8,389 | def format_symbol(symbol):
fixed = []
s = symbol.strip()
s = s[0].upper() + s[1:].lower()
for c in s:
if c.isalpha():
fixed.append( + c + )
elif c.isspace():
fixed.append()
elif c.isdigit():
fixed.append(c)
elif c == :
fixed.append( + c)
elif c == :
fixed.append( + c)
s = .join(fixed).strip()
return .join(s.split()) | Returns well formatted Hermann-Mauguin symbol as extected by
the database, by correcting the case and adding missing or
removing dublicated spaces. |
8,390 | def get_edges(self):
edge_list = [[value, key] for key in self.variable_parents
for value in self.variable_parents[key]]
return edge_list | Returns the edges of the network
Examples
--------
>>> reader = XMLBIF.XMLBIFReader("xmlbif_test.xml")
>>> reader.get_edges()
[['family-out', 'light-on'],
['family-out', 'dog-out'],
['bowel-problem', 'dog-out'],
['dog-out', 'hear-bark']] |
8,391 | def roll_sparse(x, shift, axis=0):
if not scipy.sparse.isspmatrix(x):
return np.roll(x, shift, axis=axis)
if axis not in [0, 1, -1]:
raise ParameterError()
shift = np.mod(shift, x.shape[axis])
if shift == 0:
return x.copy()
fmt = x.format
if axis == 0:
x = x.tocsc()
elif axis in (-1, 1):
x = x.tocsr()
x_r = scipy.sparse.lil_matrix(x.shape, dtype=x.dtype)
idx_in = [slice(None)] * x.ndim
idx_out = [slice(None)] * x_r.ndim
idx_in[axis] = slice(0, -shift)
idx_out[axis] = slice(shift, None)
x_r[tuple(idx_out)] = x[tuple(idx_in)]
idx_out[axis] = slice(0, shift)
idx_in[axis] = slice(-shift, None)
x_r[tuple(idx_out)] = x[tuple(idx_in)]
return x_r.asformat(fmt) | Sparse matrix roll
This operation is equivalent to ``numpy.roll``, but operates on sparse matrices.
Parameters
----------
x : scipy.sparse.spmatrix or np.ndarray
The sparse matrix input
shift : int
The number of positions to roll the specified axis
axis : (0, 1, -1)
The axis along which to roll.
Returns
-------
x_rolled : same type as `x`
The rolled matrix, with the same format as `x`
See Also
--------
numpy.roll
Examples
--------
>>> # Generate a random sparse binary matrix
>>> X = scipy.sparse.lil_matrix(np.random.randint(0, 2, size=(5,5)))
>>> X_roll = roll_sparse(X, 2, axis=0) # Roll by 2 on the first axis
>>> X_dense_r = roll_sparse(X.toarray(), 2, axis=0) # Equivalent dense roll
>>> np.allclose(X_roll, X_dense_r.toarray())
True |
8,392 | def set(self, field, value):
if field == :
raise ValueError()
elif field == :
raise ValueError(
reset_key\)
else:
self.data[field] = value | Sets the value of an app field.
:param str field:
The name of the app field. Trying to set immutable fields
``uuid`` or ``key`` will raise a ValueError.
:param value:
The new value of the app field.
:raises: ValueError |
8,393 | def copy_children(self, foreign_id, existing_node):
url = "{}/api/v2/pages/{}/".format(self.base_url, foreign_id)
self.log(
ACTION,
"Copying Children",
{"existing node type": str(type(existing_node))})
try:
self.log(ACTION, "Requesting Data", {"url": url})
response = requests.get(url)
content = json.loads(response.content)
self.log(SUCCESS, "Data Fetched Successfully", {"url": url})
main_language_child_ids = content["meta"]["main_language_children"]
if main_language_child_ids:
for main_language_child_id in main_language_child_ids:
self.copy_page_and_children(
foreign_id=main_language_child_id,
parent_id=existing_node.id, depth=1)
else:
self.log(SUCCESS, "No children to copy")
except Exception as e:
self.log(ERROR, "Copying Children", {"url": url, "exception": e}) | Initiates copying of tree, with existing_node acting as root |
8,394 | def nodes(self):
if self._nodes is None:
self._nodes = layout_nodes(self, only_nodes=True)
return self._nodes | Computes the node positions the first time they are requested
if no explicit node information was supplied. |
8,395 | def add_noise(Y, sigma):
return Y + np.random.normal(0, sigma, Y.shape) | Adds noise to Y |
8,396 | def _cell_to_python(cell):
data_type, value = cell.data_type, cell.value
if type(cell) is EmptyCell:
return None
elif data_type == "f" and value == "=TRUE()":
return True
elif data_type == "f" and value == "=FALSE()":
return False
elif cell.number_format.lower() == "yyyy-mm-dd":
return str(value).split(" 00:00:00")[0]
elif cell.number_format.lower() == "yyyy-mm-dd hh:mm:ss":
return str(value).split(".")[0]
elif cell.number_format.endswith("%") and isinstance(value, Number):
value = Decimal(str(value))
return "{:%}".format(value)
elif value is None:
return ""
else:
return value | Convert a PyOpenXL's `Cell` object to the corresponding Python object. |
8,397 | def median(self, axis=None, skipna=None, level=None, numeric_only=None, **kwargs):
axis = self._get_axis_number(axis) if axis is not None else 0
if numeric_only is not None and not numeric_only:
self._validate_dtypes(numeric_only=True)
return self._reduce_dimension(
self._query_compiler.median(
axis=axis,
skipna=skipna,
level=level,
numeric_only=numeric_only,
**kwargs
)
) | Computes median across the DataFrame.
Args:
axis (int): The axis to take the median on.
skipna (bool): True to skip NA values, false otherwise.
Returns:
The median of the DataFrame. (Pandas series) |
8,398 | def config(self, show_row_hdrs=True, show_col_hdrs=True,
show_col_hdr_in_cell=False, auto_resize=True):
self.show_row_hdrs = show_row_hdrs
self.show_col_hdrs = show_col_hdrs
self.show_col_hdr_in_cell = show_col_hdr_in_cell | Override the in-class params:
@param show_row_hdrs : show row headers
@param show_col_hdrs : show column headers
@param show_col_hdr_in_cell : embed column header in each cell
@param auto_resize : auto resize according to the size of terminal |
8,399 | def slice(index, template):
try:
return re.match("^.*{[%i]}" % index, template).group()
except AttributeError:
raise ValueError("Index %i not found in template: %s"
% (index, template)) | Slice a template based on it's positional argument
Arguments:
index (int): Position at which to slice
template (str): Template to slice
Example:
>>> slice(0, "{cwd}/{0}/assets/{1}/{2}")
'{cwd}/{0}'
>>> slice(1, "{cwd}/{0}/assets/{1}/{2}")
'{cwd}/{0}/assets/{1}' |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.