prompt
stringlengths
54
1.42k
classes
sequencelengths
2
4
answer_index
int32
0
3
round
int32
2
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- An odometer with a precision of +/- 400 meters measures a distance of 69300 meters and an odometer with a precision of +/- 3000 meters measures a distance between two different points as 194000 meters. Using a calculator, you multiply the first value by the second value and get the output 13444200000.000000000000. If we write this output to the suitable number of significant figures, what is the result? A. 13400000000 meters^2 B. 13444200000 meters^2 C. 13444200000.000 meters^2 Answer:
[ " A", " B", " C" ]
0
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A hydraulic scale with a precision of +/- 4 grams measures a mass of 94 grams and an opisometer with a precision of +/- 0.001 meters measures a distance as 0.049 meters. After multiplying the first value by the second value your calculator app gets the solution 4.606000000000. Round this solution using the correct number of significant figures. A. 4.6 gram-meters B. 4 gram-meters C. 4.61 gram-meters Answer:
[ " A", " B", " C" ]
0
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A stadimeter with a precision of +/- 4 meters measures a distance of 70 meters and an odometer with a precision of +/- 2000 meters measures a distance between two different points as 8000 meters. Using a calculator, you multiply the two numbers and get the solution 560000.000000000000. Report this solution using the proper number of significant figures. A. 560000 meters^2 B. 600000 meters^2 C. 560000.0 meters^2 Answer:
[ " A", " B", " C" ]
1
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A timer with a precision of +/- 0.002 seconds takes a measurement of 0.083 seconds, and a stadimeter with a precision of +/- 100 meters measures a distance as 76900 meters. Your calculator produces the output 6382.700000000000 when multiplying the two numbers. Round this output using the correct level of precision. A. 6300 meter-seconds B. 6400 meter-seconds C. 6382.70 meter-seconds Answer:
[ " A", " B", " C" ]
1
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A stopwatch with a precision of +/- 0.01 seconds takes a measurement of 0.04 seconds, and an odometer with a precision of +/- 1000 meters measures a distance as 2778000 meters. Using a calculator, you multiply the former number by the latter and get the output 111120.000000000000. If we round this output properly with respect to the number of significant figures, what is the answer? A. 111120.0 meter-seconds B. 111000 meter-seconds C. 100000 meter-seconds Answer:
[ " A", " B", " C" ]
2
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A cathetometer with a precision of +/- 0.0002 meters measures a distance of 0.0052 meters and a hydraulic scale with a precision of +/- 3 grams measures a mass as 290 grams. You multiply the first number by the second number with a computer and get the solution 1.508000000000. When this solution is expressed to the correct number of significant figures, what do we get? A. 1.5 gram-meters B. 1.51 gram-meters C. 1 gram-meters Answer:
[ " A", " B", " C" ]
0
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A coincidence telemeter with a precision of +/- 10 meters takes a measurement of 4820 meters, and a caliper with a precision of +/- 0.04 meters measures a distance between two different points as 91.09 meters. Your computer gets the output 439053.800000000000 when multiplying the two values. When this output is written to the appropriate level of precision, what do we get? A. 439000 meters^2 B. 439053.800 meters^2 C. 439050 meters^2 Answer:
[ " A", " B", " C" ]
0
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A stopwatch with a precision of +/- 0.01 seconds measures a duration of 75.69 seconds and an opisometer with a precision of +/- 0.4 meters measures a distance as 292.9 meters. You multiply the first number by the second number with a computer and get the output 22169.601000000000. Using the right number of significant figures, what is the answer? A. 22169.6010 meter-seconds B. 22169.6 meter-seconds C. 22170 meter-seconds Answer:
[ " A", " B", " C" ]
2
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A chronometer with a precision of +/- 0.0002 seconds takes a measurement of 0.0008 seconds, and an odometer with a precision of +/- 100 meters reads 816700 meters when measuring a distance. After multiplying the two numbers your calculator app produces the solution 653.360000000000. How would this answer look if we reported it with the correct number of significant figures? A. 600 meter-seconds B. 653.4 meter-seconds C. 700 meter-seconds Answer:
[ " A", " B", " C" ]
2
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A timer with a precision of +/- 0.3 seconds takes a measurement of 1.0 seconds, and a storage container with a precision of +/- 4 liters reads 433 liters when measuring a volume. You multiply the former value by the latter with a calculator and get the solution 433.000000000000. If we round this solution correctly with respect to the number of significant figures, what is the result? A. 433 liter-seconds B. 430 liter-seconds C. 433.00 liter-seconds Answer:
[ " A", " B", " C" ]
1
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A hydraulic scale with a precision of +/- 4 grams takes a measurement of 565 grams, and a rangefinder with a precision of +/- 0.04 meters reads 3.80 meters when measuring a distance. You multiply the values with a calculator and get the output 2147.000000000000. How can we round this output to the right number of significant figures? A. 2147.000 gram-meters B. 2147 gram-meters C. 2150 gram-meters Answer:
[ " A", " B", " C" ]
2
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A coincidence telemeter with a precision of +/- 100 meters takes a measurement of 400 meters, and a clickwheel with a precision of +/- 0.002 meters measures a distance between two different points as 0.491 meters. Your calculator app gives the solution 196.400000000000 when multiplying the former value by the latter. Using the suitable level of precision, what is the answer? A. 100 meters^2 B. 200 meters^2 C. 196.4 meters^2 Answer:
[ " A", " B", " C" ]
1
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- An odometer with a precision of +/- 2000 meters takes a measurement of 1149000 meters, and a tape measure with a precision of +/- 0.0003 meters reads 0.0115 meters when measuring a distance between two different points. Your computer gets the output 13213.500000000000 when multiplying the former number by the latter. How can we express this output to the right level of precision? A. 13200 meters^2 B. 13000 meters^2 C. 13213.500 meters^2 Answer:
[ " A", " B", " C" ]
0
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A coincidence telemeter with a precision of +/- 0.1 meters measures a distance of 1.0 meters and a coincidence telemeter with a precision of +/- 4 meters measures a distance between two different points as 1859 meters. Your calculator produces the solution 1859.000000000000 when multiplying the values. If we write this solution to the proper level of precision, what is the answer? A. 1900 meters^2 B. 1859.00 meters^2 C. 1859 meters^2 Answer:
[ " A", " B", " C" ]
0
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A measuring tape with a precision of +/- 0.04 meters measures a distance of 9.72 meters and a cathetometer with a precision of +/- 0.00001 meters reads 0.00142 meters when measuring a distance between two different points. After multiplying the values your computer gets the solution 0.013802400000. When this solution is rounded to the appropriate level of precision, what do we get? A. 0.01 meters^2 B. 0.0138 meters^2 C. 0.014 meters^2 Answer:
[ " A", " B", " C" ]
1
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A biltmore stick with a precision of +/- 0.01 meters takes a measurement of 0.99 meters, and a stopwatch with a precision of +/- 0.2 seconds measures a duration as 866.4 seconds. After multiplying the numbers your computer produces the solution 857.736000000000. Using the correct level of precision, what is the result? A. 857.7 meter-seconds B. 857.74 meter-seconds C. 860 meter-seconds Answer:
[ " A", " B", " C" ]
2
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A ruler with a precision of +/- 0.002 meters takes a measurement of 0.010 meters, and a tape measure with a precision of +/- 0.002 meters measures a distance between two different points as 0.991 meters. After multiplying the numbers your calculator gets the output 0.009910000000. How would this answer look if we expressed it with the correct level of precision? A. 0.01 meters^2 B. 0.0099 meters^2 C. 0.010 meters^2 Answer:
[ " A", " B", " C" ]
1
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A rangefinder with a precision of +/- 0.003 meters measures a distance of 0.708 meters and an analytical balance with a precision of +/- 100 grams measures a mass as 5300 grams. Your calculator app produces the solution 3752.400000000000 when multiplying the two values. How would this result look if we wrote it with the appropriate number of significant figures? A. 3800 gram-meters B. 3752.40 gram-meters C. 3700 gram-meters Answer:
[ " A", " B", " C" ]
0
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A hydraulic scale with a precision of +/- 1000 grams measures a mass of 6000 grams and a storage container with a precision of +/- 40 liters reads 8590 liters when measuring a volume. Your calculator app yields the output 51540000.000000000000 when multiplying the numbers. Round this output using the suitable number of significant figures. A. 51540000.0 gram-liters B. 51540000 gram-liters C. 50000000 gram-liters Answer:
[ " A", " B", " C" ]
2
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A ruler with a precision of +/- 0.1 meters takes a measurement of 991.7 meters, and a ruler with a precision of +/- 0.4 meters reads 649.1 meters when measuring a distance between two different points. You multiply the values with a computer and get the output 643712.470000000000. When this output is expressed to the proper level of precision, what do we get? A. 643712.4700 meters^2 B. 643700 meters^2 C. 643712.5 meters^2 Answer:
[ " A", " B", " C" ]
1
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A stadimeter with a precision of +/- 4 meters measures a distance of 78 meters and a radar-based method with a precision of +/- 40 meters measures a distance between two different points as 490 meters. After multiplying the values your calculator produces the solution 38220.000000000000. If we express this solution properly with respect to the level of precision, what is the answer? A. 38220.00 meters^2 B. 38220 meters^2 C. 38000 meters^2 Answer:
[ " A", " B", " C" ]
2
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A hydraulic scale with a precision of +/- 100 grams measures a mass of 89300 grams and a measuring stick with a precision of +/- 0.03 meters measures a distance as 0.34 meters. After multiplying the numbers your calculator app gives the output 30362.000000000000. If we report this output to the right number of significant figures, what is the answer? A. 30362.00 gram-meters B. 30300 gram-meters C. 30000 gram-meters Answer:
[ " A", " B", " C" ]
2
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A balance with a precision of +/- 0.04 grams takes a measurement of 72.43 grams, and a measuring tape with a precision of +/- 0.3 meters reads 536.2 meters when measuring a distance. Your calculator gets the output 38836.966000000000 when multiplying the values. When this output is expressed to the proper number of significant figures, what do we get? A. 38836.9660 gram-meters B. 38840 gram-meters C. 38837.0 gram-meters Answer:
[ " A", " B", " C" ]
1
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A radar-based method with a precision of +/- 40 meters takes a measurement of 36440 meters, and a spring scale with a precision of +/- 400 grams measures a mass as 400 grams. Your computer gives the output 14576000.000000000000 when multiplying the values. How can we express this output to the proper number of significant figures? A. 10000000 gram-meters B. 14576000.0 gram-meters C. 14576000 gram-meters Answer:
[ " A", " B", " C" ]
0
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A hydraulic scale with a precision of +/- 300 grams takes a measurement of 500 grams, and a spring scale with a precision of +/- 0.002 grams reads 0.367 grams when measuring a mass of a different object. You multiply the first number by the second number with a calculator app and get the solution 183.500000000000. If we express this solution to the proper number of significant figures, what is the result? A. 183.5 grams^2 B. 100 grams^2 C. 200 grams^2 Answer:
[ " A", " B", " C" ]
2
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A radar-based method with a precision of +/- 200 meters measures a distance of 850600 meters and a hydraulic scale with a precision of +/- 0.4 grams reads 4.0 grams when measuring a mass. Your calculator app yields the output 3402400.000000000000 when multiplying the numbers. How would this result look if we wrote it with the proper level of precision? A. 3400000 gram-meters B. 3402400.00 gram-meters C. 3402400 gram-meters Answer:
[ " A", " B", " C" ]
0
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- An opisometer with a precision of +/- 0.2 meters measures a distance of 359.2 meters and a timer with a precision of +/- 0.01 seconds reads 5.00 seconds when measuring a duration. You multiply the numbers with a calculator and get the solution 1796.000000000000. When this solution is rounded to the appropriate number of significant figures, what do we get? A. 1796.0 meter-seconds B. 1796.000 meter-seconds C. 1800 meter-seconds Answer:
[ " A", " B", " C" ]
2
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A stopwatch with a precision of +/- 0.3 seconds takes a measurement of 26.5 seconds, and a Biltmore stick with a precision of +/- 0.1 meters reads 247.4 meters when measuring a distance. You multiply the two numbers with a calculator app and get the solution 6556.100000000000. If we express this solution properly with respect to the number of significant figures, what is the answer? A. 6556.1 meter-seconds B. 6560 meter-seconds C. 6556.100 meter-seconds Answer:
[ " A", " B", " C" ]
1
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A radar-based method with a precision of +/- 3 meters measures a distance of 54 meters and a balance with a precision of +/- 40 grams measures a mass as 740 grams. Your calculator app yields the output 39960.000000000000 when multiplying the first value by the second value. If we express this output to the proper level of precision, what is the answer? A. 40000 gram-meters B. 39960.00 gram-meters C. 39960 gram-meters Answer:
[ " A", " B", " C" ]
0
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- An analytical balance with a precision of +/- 10 grams takes a measurement of 30 grams, and a storage container with a precision of +/- 20 liters measures a volume as 90 liters. After multiplying the two numbers your computer gets the output 2700.000000000000. When this output is reported to the proper level of precision, what do we get? A. 2700 gram-liters B. 2700.0 gram-liters C. 3000 gram-liters Answer:
[ " A", " B", " C" ]
2
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- An analytical balance with a precision of +/- 4 grams takes a measurement of 4030 grams, and a storage container with a precision of +/- 0.3 liters reads 293.4 liters when measuring a volume. You multiply the two numbers with a calculator app and get the output 1182402.000000000000. How can we express this output to the right number of significant figures? A. 1182402 gram-liters B. 1182000 gram-liters C. 1182402.0000 gram-liters Answer:
[ " A", " B", " C" ]
1
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A coincidence telemeter with a precision of +/- 20 meters takes a measurement of 30 meters, and a measuring stick with a precision of +/- 0.1 meters measures a distance between two different points as 24.1 meters. Using a calculator app, you multiply the two values and get the solution 723.000000000000. If we write this solution to the correct level of precision, what is the answer? A. 723.0 meters^2 B. 700 meters^2 C. 720 meters^2 Answer:
[ " A", " B", " C" ]
1
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A stopwatch with a precision of +/- 0.2 seconds measures a duration of 829.4 seconds and a measuring flask with a precision of +/- 0.004 liters measures a volume as 7.134 liters. After multiplying the first number by the second number your calculator yields the solution 5916.939600000000. How can we express this solution to the appropriate number of significant figures? A. 5916.9396 liter-seconds B. 5916.9 liter-seconds C. 5917 liter-seconds Answer:
[ " A", " B", " C" ]
2
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A hydraulic scale with a precision of +/- 200 grams measures a mass of 27400 grams and a rangefinder with a precision of +/- 0.04 meters reads 65.50 meters when measuring a distance. Your calculator app gives the output 1794700.000000000000 when multiplying the former value by the latter. Using the appropriate number of significant figures, what is the result? A. 1790000 gram-meters B. 1794700 gram-meters C. 1794700.000 gram-meters Answer:
[ " A", " B", " C" ]
0
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A clickwheel with a precision of +/- 0.2 meters takes a measurement of 3.2 meters, and a balance with a precision of +/- 100 grams reads 303000 grams when measuring a mass. Your calculator app gets the output 969600.000000000000 when multiplying the former value by the latter. If we round this output to the appropriate number of significant figures, what is the answer? A. 969600 gram-meters B. 969600.00 gram-meters C. 970000 gram-meters Answer:
[ " A", " B", " C" ]
2
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A stadimeter with a precision of +/- 1 meters takes a measurement of 7176 meters, and a tape measure with a precision of +/- 0.004 meters reads 0.040 meters when measuring a distance between two different points. Your computer gets the output 287.040000000000 when multiplying the former value by the latter. If we report this output to the right number of significant figures, what is the result? A. 287 meters^2 B. 290 meters^2 C. 287.04 meters^2 Answer:
[ " A", " B", " C" ]
1
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- An odometer with a precision of +/- 400 meters measures a distance of 121800 meters and an analytical balance with a precision of +/- 0.4 grams reads 4.5 grams when measuring a mass. Your computer gives the output 548100.000000000000 when multiplying the former value by the latter. Report this output using the correct level of precision. A. 548100.00 gram-meters B. 548100 gram-meters C. 550000 gram-meters Answer:
[ " A", " B", " C" ]
2
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A storage container with a precision of +/- 4 liters takes a measurement of 578 liters, and a measuring rod with a precision of +/- 0.01 meters measures a distance as 0.08 meters. Your calculator yields the output 46.240000000000 when multiplying the former value by the latter. When this output is expressed to the right level of precision, what do we get? A. 46.2 liter-meters B. 46 liter-meters C. 50 liter-meters Answer:
[ " A", " B", " C" ]
2
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A chronometer with a precision of +/- 0.00004 seconds takes a measurement of 0.06483 seconds, and a spring scale with a precision of +/- 1 grams reads 9358 grams when measuring a mass. After multiplying the values your computer produces the solution 606.679140000000. If we report this solution to the proper level of precision, what is the result? A. 606 gram-seconds B. 606.6791 gram-seconds C. 606.7 gram-seconds Answer:
[ " A", " B", " C" ]
2
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- An opisometer with a precision of +/- 0.4 meters takes a measurement of 971.6 meters, and a radar-based method with a precision of +/- 200 meters measures a distance between two different points as 41500 meters. Your calculator yields the solution 40321400.000000000000 when multiplying the two values. Express this solution using the suitable number of significant figures. A. 40300000 meters^2 B. 40321400.000 meters^2 C. 40321400 meters^2 Answer:
[ " A", " B", " C" ]
0
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- An odometer with a precision of +/- 1000 meters measures a distance of 9657000 meters and a Biltmore stick with a precision of +/- 0.01 meters reads 34.38 meters when measuring a distance between two different points. You multiply the two values with a calculator app and get the solution 332007660.000000000000. Express this solution using the appropriate number of significant figures. A. 332007000 meters^2 B. 332000000 meters^2 C. 332007660.0000 meters^2 Answer:
[ " A", " B", " C" ]
1
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A stadimeter with a precision of +/- 20 meters takes a measurement of 64060 meters, and a Biltmore stick with a precision of +/- 0.1 meters measures a distance between two different points as 62.9 meters. Using a computer, you multiply the first number by the second number and get the output 4029374.000000000000. If we report this output suitably with respect to the level of precision, what is the answer? A. 4029370 meters^2 B. 4030000 meters^2 C. 4029374.000 meters^2 Answer:
[ " A", " B", " C" ]
1
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A spring scale with a precision of +/- 3000 grams takes a measurement of 32000 grams, and a timer with a precision of +/- 0.02 seconds measures a duration as 9.32 seconds. Using a calculator, you multiply the numbers and get the solution 298240.000000000000. If we round this solution to the proper number of significant figures, what is the answer? A. 298240.00 gram-seconds B. 298000 gram-seconds C. 300000 gram-seconds Answer:
[ " A", " B", " C" ]
2
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A biltmore stick with a precision of +/- 0.2 meters takes a measurement of 4.4 meters, and a stopwatch with a precision of +/- 0.01 seconds reads 5.76 seconds when measuring a duration. Using a calculator, you multiply the two numbers and get the output 25.344000000000. If we express this output to the suitable number of significant figures, what is the result? A. 25 meter-seconds B. 25.3 meter-seconds C. 25.34 meter-seconds Answer:
[ " A", " B", " C" ]
0
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A ruler with a precision of +/- 0.04 meters measures a distance of 0.09 meters and a hydraulic scale with a precision of +/- 400 grams reads 17500 grams when measuring a mass. Using a computer, you multiply the numbers and get the solution 1575.000000000000. When this solution is expressed to the appropriate level of precision, what do we get? A. 2000 gram-meters B. 1575.0 gram-meters C. 1500 gram-meters Answer:
[ " A", " B", " C" ]
0
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A balance with a precision of +/- 40 grams takes a measurement of 80 grams, and a balance with a precision of +/- 0.0004 grams measures a mass of a different object as 0.9670 grams. Your computer gets the output 77.360000000000 when multiplying the values. Using the right level of precision, what is the answer? A. 70 grams^2 B. 77.4 grams^2 C. 80 grams^2 Answer:
[ " A", " B", " C" ]
2
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A spring scale with a precision of +/- 100 grams takes a measurement of 9300 grams, and a coincidence telemeter with a precision of +/- 0.1 meters reads 0.4 meters when measuring a distance. You multiply the two values with a computer and get the solution 3720.000000000000. When this solution is expressed to the suitable level of precision, what do we get? A. 3700 gram-meters B. 3720.0 gram-meters C. 4000 gram-meters Answer:
[ " A", " B", " C" ]
2
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A rangefinder with a precision of +/- 10 meters takes a measurement of 20 meters, and a measuring flask with a precision of +/- 0.04 liters reads 6.98 liters when measuring a volume. You multiply the first value by the second value with a computer and get the output 139.600000000000. When this output is reported to the suitable level of precision, what do we get? A. 139.6 liter-meters B. 100 liter-meters C. 130 liter-meters Answer:
[ " A", " B", " C" ]
1
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A meter stick with a precision of +/- 0.0001 meters measures a distance of 0.0602 meters and a coincidence telemeter with a precision of +/- 10 meters reads 600 meters when measuring a distance between two different points. You multiply the former value by the latter with a computer and get the solution 36.120000000000. How can we round this solution to the correct number of significant figures? A. 36.12 meters^2 B. 30 meters^2 C. 36 meters^2 Answer:
[ " A", " B", " C" ]
2
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- An odometer with a precision of +/- 4000 meters measures a distance of 7000 meters and a spring scale with a precision of +/- 2000 grams reads 381000 grams when measuring a mass. After multiplying the first value by the second value your computer yields the output 2667000000.000000000000. If we express this output to the right level of precision, what is the result? A. 2667000000 gram-meters B. 3000000000 gram-meters C. 2667000000.0 gram-meters Answer:
[ " A", " B", " C" ]
1
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A biltmore stick with a precision of +/- 0.01 meters measures a distance of 60.65 meters and a Biltmore stick with a precision of +/- 0.03 meters reads 5.02 meters when measuring a distance between two different points. After multiplying the former value by the latter your calculator yields the output 304.463000000000. How would this result look if we expressed it with the appropriate level of precision? A. 304.46 meters^2 B. 304.463 meters^2 C. 304 meters^2 Answer:
[ " A", " B", " C" ]
2
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A measuring tape with a precision of +/- 0.02 meters measures a distance of 2.57 meters and a ruler with a precision of +/- 0.1 meters measures a distance between two different points as 92.7 meters. After multiplying the two numbers your calculator produces the solution 238.239000000000. Report this solution using the correct number of significant figures. A. 238.2 meters^2 B. 238.239 meters^2 C. 238 meters^2 Answer:
[ " A", " B", " C" ]
2
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A coincidence telemeter with a precision of +/- 2 meters takes a measurement of 837 meters, and a spring scale with a precision of +/- 2000 grams measures a mass as 9000 grams. You multiply the two values with a computer and get the output 7533000.000000000000. When this output is written to the right level of precision, what do we get? A. 7533000 gram-meters B. 7533000.0 gram-meters C. 8000000 gram-meters Answer:
[ " A", " B", " C" ]
2
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A storage container with a precision of +/- 0.4 liters measures a volume of 80.5 liters and a stopwatch with a precision of +/- 0.2 seconds reads 1.1 seconds when measuring a duration. Using a computer, you multiply the values and get the output 88.550000000000. If we round this output properly with respect to the level of precision, what is the answer? A. 88.55 liter-seconds B. 88.6 liter-seconds C. 89 liter-seconds Answer:
[ " A", " B", " C" ]
2
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- An analytical balance with a precision of +/- 400 grams takes a measurement of 46400 grams, and an odometer with a precision of +/- 100 meters reads 55900 meters when measuring a distance. Using a calculator app, you multiply the first number by the second number and get the output 2593760000.000000000000. Report this output using the right level of precision. A. 2590000000 gram-meters B. 2593760000 gram-meters C. 2593760000.000 gram-meters Answer:
[ " A", " B", " C" ]
0
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A storage container with a precision of +/- 30 liters measures a volume of 80 liters and a stadimeter with a precision of +/- 300 meters reads 222800 meters when measuring a distance. Using a calculator app, you multiply the two values and get the solution 17824000.000000000000. How can we write this solution to the appropriate number of significant figures? A. 17824000 liter-meters B. 20000000 liter-meters C. 17824000.0 liter-meters Answer:
[ " A", " B", " C" ]
1
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A chronograph with a precision of +/- 0.4 seconds measures a duration of 0.5 seconds and a radar-based method with a precision of +/- 400 meters reads 7400 meters when measuring a distance. Your calculator yields the output 3700.000000000000 when multiplying the numbers. When this output is rounded to the suitable number of significant figures, what do we get? A. 3700.0 meter-seconds B. 3700 meter-seconds C. 4000 meter-seconds Answer:
[ " A", " B", " C" ]
2
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A measuring stick with a precision of +/- 0.4 meters measures a distance of 3.9 meters and a chronograph with a precision of +/- 0.3 seconds measures a duration as 7.2 seconds. Using a calculator app, you multiply the two values and get the solution 28.080000000000. How can we report this solution to the correct level of precision? A. 28.08 meter-seconds B. 28.1 meter-seconds C. 28 meter-seconds Answer:
[ " A", " B", " C" ]
2
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A rangefinder with a precision of +/- 0.3 meters measures a distance of 985.3 meters and a ruler with a precision of +/- 0.004 meters measures a distance between two different points as 1.925 meters. Your calculator gives the solution 1896.702500000000 when multiplying the two values. If we write this solution to the suitable number of significant figures, what is the answer? A. 1896.7025 meters^2 B. 1897 meters^2 C. 1896.7 meters^2 Answer:
[ " A", " B", " C" ]
1
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A coincidence telemeter with a precision of +/- 0.3 meters measures a distance of 226.7 meters and a ruler with a precision of +/- 0.01 meters measures a distance between two different points as 5.83 meters. Your computer produces the output 1321.661000000000 when multiplying the numbers. How would this result look if we expressed it with the suitable number of significant figures? A. 1321.7 meters^2 B. 1320 meters^2 C. 1321.661 meters^2 Answer:
[ " A", " B", " C" ]
1
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A radar-based method with a precision of +/- 1 meters takes a measurement of 856 meters, and a coincidence telemeter with a precision of +/- 2 meters reads 708 meters when measuring a distance between two different points. After multiplying the values your calculator yields the solution 606048.000000000000. If we report this solution correctly with respect to the level of precision, what is the answer? A. 606048.000 meters^2 B. 606000 meters^2 C. 606048 meters^2 Answer:
[ " A", " B", " C" ]
1
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A tape measure with a precision of +/- 0.004 meters measures a distance of 0.810 meters and a chronograph with a precision of +/- 0.1 seconds reads 276.7 seconds when measuring a duration. You multiply the first value by the second value with a computer and get the output 224.127000000000. How can we report this output to the proper level of precision? A. 224 meter-seconds B. 224.1 meter-seconds C. 224.127 meter-seconds Answer:
[ " A", " B", " C" ]
0
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A stadimeter with a precision of +/- 300 meters takes a measurement of 800 meters, and a measuring stick with a precision of +/- 0.2 meters measures a distance between two different points as 80.2 meters. Using a calculator app, you multiply the former number by the latter and get the solution 64160.000000000000. How would this answer look if we wrote it with the right level of precision? A. 64100 meters^2 B. 60000 meters^2 C. 64160.0 meters^2 Answer:
[ " A", " B", " C" ]
1
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A hydraulic scale with a precision of +/- 400 grams measures a mass of 93400 grams and a graduated cylinder with a precision of +/- 0.001 liters measures a volume as 8.776 liters. Using a calculator app, you multiply the former value by the latter and get the output 819678.400000000000. When this output is rounded to the correct number of significant figures, what do we get? A. 819600 gram-liters B. 819678.400 gram-liters C. 820000 gram-liters Answer:
[ " A", " B", " C" ]
2
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A clickwheel with a precision of +/- 0.004 meters takes a measurement of 0.837 meters, and a storage container with a precision of +/- 0.2 liters measures a volume as 651.2 liters. Using a calculator, you multiply the two numbers and get the output 545.054400000000. How would this result look if we wrote it with the right number of significant figures? A. 545.054 liter-meters B. 545 liter-meters C. 545.1 liter-meters Answer:
[ " A", " B", " C" ]
1
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A caliper with a precision of +/- 0.03 meters takes a measurement of 6.05 meters, and a storage container with a precision of +/- 2 liters reads 202 liters when measuring a volume. You multiply the numbers with a calculator and get the solution 1222.100000000000. How can we write this solution to the appropriate level of precision? A. 1220 liter-meters B. 1222 liter-meters C. 1222.100 liter-meters Answer:
[ " A", " B", " C" ]
0
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A coincidence telemeter with a precision of +/- 2 meters measures a distance of 2138 meters and a radar-based method with a precision of +/- 3 meters measures a distance between two different points as 593 meters. Your computer yields the solution 1267834.000000000000 when multiplying the former number by the latter. How would this result look if we expressed it with the appropriate level of precision? A. 1270000 meters^2 B. 1267834 meters^2 C. 1267834.000 meters^2 Answer:
[ " A", " B", " C" ]
0
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A spring scale with a precision of +/- 4 grams measures a mass of 3792 grams and a chronograph with a precision of +/- 0.004 seconds measures a duration as 2.908 seconds. You multiply the numbers with a calculator app and get the solution 11027.136000000000. If we round this solution to the right level of precision, what is the result? A. 11030 gram-seconds B. 11027.1360 gram-seconds C. 11027 gram-seconds Answer:
[ " A", " B", " C" ]
0
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A stadimeter with a precision of +/- 200 meters takes a measurement of 708800 meters, and a measuring stick with a precision of +/- 0.1 meters reads 40.2 meters when measuring a distance between two different points. After multiplying the two values your computer gives the output 28493760.000000000000. If we report this output appropriately with respect to the number of significant figures, what is the result? A. 28500000 meters^2 B. 28493760.000 meters^2 C. 28493700 meters^2 Answer:
[ " A", " B", " C" ]
0
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A coincidence telemeter with a precision of +/- 0.2 meters takes a measurement of 37.6 meters, and a stadimeter with a precision of +/- 0.1 meters reads 37.2 meters when measuring a distance between two different points. Using a calculator, you multiply the former number by the latter and get the output 1398.720000000000. When this output is expressed to the appropriate level of precision, what do we get? A. 1398.720 meters^2 B. 1398.7 meters^2 C. 1400 meters^2 Answer:
[ " A", " B", " C" ]
2
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A graduated cylinder with a precision of +/- 0.004 liters measures a volume of 3.810 liters and a clickwheel with a precision of +/- 0.4 meters measures a distance as 9.0 meters. After multiplying the former number by the latter your calculator gets the output 34.290000000000. If we report this output to the proper number of significant figures, what is the answer? A. 34.3 liter-meters B. 34.29 liter-meters C. 34 liter-meters Answer:
[ " A", " B", " C" ]
2
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A spring scale with a precision of +/- 0.02 grams measures a mass of 91.80 grams and a rangefinder with a precision of +/- 3 meters measures a distance as 386 meters. Your computer yields the output 35434.800000000000 when multiplying the former number by the latter. Using the appropriate number of significant figures, what is the answer? A. 35434.800 gram-meters B. 35434 gram-meters C. 35400 gram-meters Answer:
[ " A", " B", " C" ]
2
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A storage container with a precision of +/- 40 liters takes a measurement of 300 liters, and a measuring tape with a precision of +/- 0.4 meters reads 90.6 meters when measuring a distance. After multiplying the former value by the latter your computer produces the solution 27180.000000000000. Using the proper number of significant figures, what is the answer? A. 27180 liter-meters B. 27000 liter-meters C. 27180.00 liter-meters Answer:
[ " A", " B", " C" ]
1
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- An analytical balance with a precision of +/- 4 grams measures a mass of 449 grams and a balance with a precision of +/- 1 grams measures a mass of a different object as 71 grams. Your computer gets the output 31879.000000000000 when multiplying the values. If we express this output properly with respect to the level of precision, what is the result? A. 31879 grams^2 B. 32000 grams^2 C. 31879.00 grams^2 Answer:
[ " A", " B", " C" ]
1
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A stopwatch with a precision of +/- 0.04 seconds measures a duration of 0.96 seconds and a measuring tape with a precision of +/- 0.2 meters reads 74.3 meters when measuring a distance. After multiplying the first number by the second number your calculator yields the output 71.328000000000. How can we round this output to the suitable level of precision? A. 71 meter-seconds B. 71.3 meter-seconds C. 71.33 meter-seconds Answer:
[ " A", " B", " C" ]
0
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A stadimeter with a precision of +/- 10 meters measures a distance of 43820 meters and a stopwatch with a precision of +/- 0.03 seconds measures a duration as 0.05 seconds. You multiply the numbers with a calculator and get the output 2191.000000000000. When this output is written to the appropriate number of significant figures, what do we get? A. 2000 meter-seconds B. 2191.0 meter-seconds C. 2190 meter-seconds Answer:
[ " A", " B", " C" ]
0
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A spring scale with a precision of +/- 3000 grams takes a measurement of 8000 grams, and a measuring tape with a precision of +/- 0.4 meters measures a distance as 2.0 meters. You multiply the former number by the latter with a calculator app and get the output 16000.000000000000. How can we express this output to the correct number of significant figures? A. 16000.0 gram-meters B. 20000 gram-meters C. 16000 gram-meters Answer:
[ " A", " B", " C" ]
1
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A ruler with a precision of +/- 0.02 meters takes a measurement of 66.58 meters, and a Biltmore stick with a precision of +/- 0.1 meters reads 9.8 meters when measuring a distance between two different points. After multiplying the numbers your calculator app produces the solution 652.484000000000. If we express this solution appropriately with respect to the level of precision, what is the answer? A. 652.5 meters^2 B. 652.48 meters^2 C. 650 meters^2 Answer:
[ " A", " B", " C" ]
2
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A chronometer with a precision of +/- 0.0004 seconds takes a measurement of 0.0793 seconds, and a stadimeter with a precision of +/- 1 meters reads 669 meters when measuring a distance. Using a calculator app, you multiply the first value by the second value and get the output 53.051700000000. How would this answer look if we wrote it with the right number of significant figures? A. 53.052 meter-seconds B. 53.1 meter-seconds C. 53 meter-seconds Answer:
[ " A", " B", " C" ]
1
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A stadimeter with a precision of +/- 30 meters measures a distance of 5520 meters and a Biltmore stick with a precision of +/- 0.1 meters reads 510.2 meters when measuring a distance between two different points. Your calculator gives the output 2816304.000000000000 when multiplying the values. If we write this output to the correct number of significant figures, what is the result? A. 2816304.000 meters^2 B. 2820000 meters^2 C. 2816300 meters^2 Answer:
[ " A", " B", " C" ]
1
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A rangefinder with a precision of +/- 0.02 meters takes a measurement of 20.18 meters, and a stopwatch with a precision of +/- 0.02 seconds measures a duration as 0.05 seconds. After multiplying the former number by the latter your computer produces the solution 1.009000000000. How can we write this solution to the suitable level of precision? A. 1.01 meter-seconds B. 1 meter-seconds C. 1.0 meter-seconds Answer:
[ " A", " B", " C" ]
1
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A spring scale with a precision of +/- 20 grams measures a mass of 30 grams and a measuring rod with a precision of +/- 0.001 meters reads 7.065 meters when measuring a distance. You multiply the first number by the second number with a calculator and get the output 211.950000000000. When this output is rounded to the correct number of significant figures, what do we get? A. 200 gram-meters B. 210 gram-meters C. 212.0 gram-meters Answer:
[ " A", " B", " C" ]
0
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A radar-based method with a precision of +/- 300 meters takes a measurement of 3000 meters, and a radar-based method with a precision of +/- 400 meters measures a distance between two different points as 39100 meters. Using a computer, you multiply the numbers and get the solution 117300000.000000000000. Round this solution using the suitable number of significant figures. A. 117300000.00 meters^2 B. 117300000 meters^2 C. 120000000 meters^2 Answer:
[ " A", " B", " C" ]
2
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A meter stick with a precision of +/- 0.0004 meters measures a distance of 0.0985 meters and a graduated cylinder with a precision of +/- 0.001 liters measures a volume as 0.086 liters. Your calculator gives the solution 0.008471000000 when multiplying the first value by the second value. Using the appropriate level of precision, what is the answer? A. 0.0085 liter-meters B. 0.008 liter-meters C. 0.01 liter-meters Answer:
[ " A", " B", " C" ]
0
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- An analytical balance with a precision of +/- 1 grams takes a measurement of 2728 grams, and a caliper with a precision of +/- 0.04 meters measures a distance as 0.06 meters. You multiply the former number by the latter with a computer and get the solution 163.680000000000. If we round this solution to the proper number of significant figures, what is the result? A. 163.7 gram-meters B. 200 gram-meters C. 163 gram-meters Answer:
[ " A", " B", " C" ]
1
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A clickwheel with a precision of +/- 0.004 meters takes a measurement of 6.904 meters, and a clickwheel with a precision of +/- 0.001 meters reads 0.008 meters when measuring a distance between two different points. Your calculator app produces the output 0.055232000000 when multiplying the two values. If we write this output appropriately with respect to the number of significant figures, what is the answer? A. 0.055 meters^2 B. 0.1 meters^2 C. 0.06 meters^2 Answer:
[ " A", " B", " C" ]
2
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A chronometer with a precision of +/- 0.00003 seconds takes a measurement of 0.00619 seconds, and an opisometer with a precision of +/- 0.0001 meters reads 0.6414 meters when measuring a distance. After multiplying the values your calculator gives the solution 0.003970266000. Using the correct number of significant figures, what is the result? A. 0.0040 meter-seconds B. 0.00397 meter-seconds C. 0.004 meter-seconds Answer:
[ " A", " B", " C" ]
1
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A caliper with a precision of +/- 0.01 meters takes a measurement of 0.45 meters, and a radar-based method with a precision of +/- 4 meters reads 28 meters when measuring a distance between two different points. Using a calculator app, you multiply the former value by the latter and get the solution 12.600000000000. Using the suitable number of significant figures, what is the result? A. 12.60 meters^2 B. 12 meters^2 C. 13 meters^2 Answer:
[ " A", " B", " C" ]
2
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A biltmore stick with a precision of +/- 0.1 meters takes a measurement of 0.3 meters, and a coincidence telemeter with a precision of +/- 10 meters measures a distance between two different points as 910 meters. Your calculator gets the output 273.000000000000 when multiplying the former value by the latter. How would this answer look if we expressed it with the right level of precision? A. 300 meters^2 B. 270 meters^2 C. 273.0 meters^2 Answer:
[ " A", " B", " C" ]
0
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- An odometer with a precision of +/- 100 meters takes a measurement of 3600 meters, and an analytical balance with a precision of +/- 10 grams reads 400 grams when measuring a mass. Using a calculator app, you multiply the former value by the latter and get the output 1440000.000000000000. How can we report this output to the right number of significant figures? A. 1440000 gram-meters B. 1400000 gram-meters C. 1440000.00 gram-meters Answer:
[ " A", " B", " C" ]
1
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A ruler with a precision of +/- 0.002 meters measures a distance of 0.802 meters and a storage container with a precision of +/- 0.1 liters measures a volume as 387.2 liters. Using a calculator app, you multiply the values and get the solution 310.534400000000. If we round this solution to the appropriate number of significant figures, what is the result? A. 310.5 liter-meters B. 310.534 liter-meters C. 311 liter-meters Answer:
[ " A", " B", " C" ]
2
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A meter stick with a precision of +/- 0.0003 meters takes a measurement of 0.1411 meters, and a hydraulic scale with a precision of +/- 3000 grams measures a mass as 92000 grams. Your calculator produces the solution 12981.200000000000 when multiplying the two values. How would this result look if we expressed it with the appropriate number of significant figures? A. 12000 gram-meters B. 13000 gram-meters C. 12981.20 gram-meters Answer:
[ " A", " B", " C" ]
1
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- An analytical balance with a precision of +/- 400 grams takes a measurement of 7600 grams, and a measuring rod with a precision of +/- 0.001 meters measures a distance as 3.220 meters. Using a calculator, you multiply the first number by the second number and get the solution 24472.000000000000. How can we write this solution to the proper number of significant figures? A. 24400 gram-meters B. 24472.00 gram-meters C. 24000 gram-meters Answer:
[ " A", " B", " C" ]
2
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A storage container with a precision of +/- 10 liters takes a measurement of 9560 liters, and a balance with a precision of +/- 20 grams measures a mass as 70250 grams. After multiplying the two values your calculator yields the output 671590000.000000000000. How would this result look if we wrote it with the appropriate number of significant figures? A. 671590000.000 gram-liters B. 672000000 gram-liters C. 671590000 gram-liters Answer:
[ " A", " B", " C" ]
1
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A clickwheel with a precision of +/- 0.1 meters measures a distance of 649.1 meters and a stopwatch with a precision of +/- 0.04 seconds measures a duration as 0.92 seconds. After multiplying the values your calculator produces the output 597.172000000000. If we report this output to the appropriate level of precision, what is the result? A. 600 meter-seconds B. 597.2 meter-seconds C. 597.17 meter-seconds Answer:
[ " A", " B", " C" ]
0
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- An odometer with a precision of +/- 100 meters measures a distance of 204400 meters and a chronograph with a precision of +/- 0.4 seconds measures a duration as 2.7 seconds. Your computer produces the output 551880.000000000000 when multiplying the former value by the latter. When this output is expressed to the suitable level of precision, what do we get? A. 551800 meter-seconds B. 551880.00 meter-seconds C. 550000 meter-seconds Answer:
[ " A", " B", " C" ]
2
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A timer with a precision of +/- 0.01 seconds takes a measurement of 21.46 seconds, and a balance with a precision of +/- 0.002 grams reads 0.881 grams when measuring a mass. Your calculator app gives the output 18.906260000000 when multiplying the first value by the second value. If we write this output to the right level of precision, what is the result? A. 18.91 gram-seconds B. 18.906 gram-seconds C. 18.9 gram-seconds Answer:
[ " A", " B", " C" ]
2
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A measuring tape with a precision of +/- 0.4 meters takes a measurement of 59.4 meters, and a stopwatch with a precision of +/- 0.1 seconds measures a duration as 6.3 seconds. You multiply the first value by the second value with a calculator app and get the solution 374.220000000000. If we round this solution correctly with respect to the level of precision, what is the answer? A. 374.2 meter-seconds B. 374.22 meter-seconds C. 370 meter-seconds Answer:
[ " A", " B", " C" ]
2
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A spring scale with a precision of +/- 0.4 grams takes a measurement of 42.2 grams, and a storage container with a precision of +/- 2 liters reads 901 liters when measuring a volume. Using a calculator app, you multiply the first value by the second value and get the solution 38022.200000000000. If we express this solution appropriately with respect to the number of significant figures, what is the result? A. 38022.200 gram-liters B. 38000 gram-liters C. 38022 gram-liters Answer:
[ " A", " B", " C" ]
1
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A balance with a precision of +/- 4 grams takes a measurement of 71 grams, and a measuring tape with a precision of +/- 0.01 meters reads 0.05 meters when measuring a distance. Your calculator app gets the output 3.550000000000 when multiplying the numbers. How would this answer look if we reported it with the appropriate level of precision? A. 3.6 gram-meters B. 4 gram-meters C. 3 gram-meters Answer:
[ " A", " B", " C" ]
1
2