prompt
stringlengths
54
1.42k
classes
sequencelengths
2
4
answer_index
int32
0
3
round
int32
2
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A timer with a precision of +/- 0.2 seconds takes a measurement of 58.9 seconds, and a radar-based method with a precision of +/- 300 meters reads 400 meters when measuring a distance. After multiplying the two values your computer yields the output 23560.000000000000. How can we express this output to the right level of precision? A. 23500 meter-seconds B. 20000 meter-seconds C. 23560.0 meter-seconds Answer:
[ " A", " B", " C" ]
1
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A hydraulic scale with a precision of +/- 0.002 grams takes a measurement of 6.624 grams, and a coincidence telemeter with a precision of +/- 2 meters measures a distance as 5 meters. Using a calculator, you multiply the former value by the latter and get the output 33.120000000000. Using the suitable level of precision, what is the result? A. 33.1 gram-meters B. 30 gram-meters C. 33 gram-meters Answer:
[ " A", " B", " C" ]
1
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- An opisometer with a precision of +/- 0.004 meters takes a measurement of 0.010 meters, and a radar-based method with a precision of +/- 100 meters reads 51300 meters when measuring a distance between two different points. Your calculator produces the output 513.000000000000 when multiplying the first number by the second number. How would this result look if we rounded it with the proper level of precision? A. 510 meters^2 B. 500 meters^2 C. 513.00 meters^2 Answer:
[ " A", " B", " C" ]
0
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A measuring tape with a precision of +/- 0.1 meters measures a distance of 21.4 meters and a caliper with a precision of +/- 0.03 meters measures a distance between two different points as 20.25 meters. You multiply the former value by the latter with a calculator app and get the output 433.350000000000. How can we round this output to the correct level of precision? A. 433.350 meters^2 B. 433 meters^2 C. 433.4 meters^2 Answer:
[ " A", " B", " C" ]
1
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- An analytical balance with a precision of +/- 0.04 grams measures a mass of 21.01 grams and an opisometer with a precision of +/- 0.3 meters reads 723.7 meters when measuring a distance. Using a calculator, you multiply the two numbers and get the output 15204.937000000000. If we express this output suitably with respect to the level of precision, what is the result? A. 15200 gram-meters B. 15204.9 gram-meters C. 15204.9370 gram-meters Answer:
[ " A", " B", " C" ]
0
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A timer with a precision of +/- 0.2 seconds takes a measurement of 468.5 seconds, and a ruler with a precision of +/- 0.01 meters measures a distance as 5.19 meters. You multiply the former value by the latter with a calculator app and get the solution 2431.515000000000. How can we round this solution to the suitable number of significant figures? A. 2431.515 meter-seconds B. 2430 meter-seconds C. 2431.5 meter-seconds Answer:
[ " A", " B", " C" ]
1
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A balance with a precision of +/- 0.02 grams takes a measurement of 1.64 grams, and an analytical balance with a precision of +/- 0.1 grams reads 9.8 grams when measuring a mass of a different object. You multiply the numbers with a computer and get the solution 16.072000000000. If we write this solution appropriately with respect to the level of precision, what is the result? A. 16 grams^2 B. 16.07 grams^2 C. 16.1 grams^2 Answer:
[ " A", " B", " C" ]
0
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- An odometer with a precision of +/- 4000 meters takes a measurement of 8000 meters, and a clickwheel with a precision of +/- 0.02 meters reads 1.23 meters when measuring a distance between two different points. Using a calculator app, you multiply the first number by the second number and get the output 9840.000000000000. Using the proper number of significant figures, what is the answer? A. 9000 meters^2 B. 10000 meters^2 C. 9840.0 meters^2 Answer:
[ " A", " B", " C" ]
1
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A balance with a precision of +/- 0.001 grams takes a measurement of 0.828 grams, and a spring scale with a precision of +/- 4000 grams reads 89000 grams when measuring a mass of a different object. You multiply the two numbers with a calculator app and get the output 73692.000000000000. If we write this output correctly with respect to the number of significant figures, what is the answer? A. 73000 grams^2 B. 74000 grams^2 C. 73692.00 grams^2 Answer:
[ " A", " B", " C" ]
1
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A coincidence telemeter with a precision of +/- 100 meters measures a distance of 100 meters and a timer with a precision of +/- 0.03 seconds measures a duration as 89.65 seconds. Using a calculator, you multiply the numbers and get the solution 8965.000000000000. When this solution is reported to the appropriate number of significant figures, what do we get? A. 8965.0 meter-seconds B. 8900 meter-seconds C. 9000 meter-seconds Answer:
[ " A", " B", " C" ]
2
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A clickwheel with a precision of +/- 0.4 meters measures a distance of 29.3 meters and a spring scale with a precision of +/- 0.03 grams reads 3.80 grams when measuring a mass. Using a calculator, you multiply the first number by the second number and get the output 111.340000000000. If we express this output suitably with respect to the level of precision, what is the answer? A. 111.340 gram-meters B. 111.3 gram-meters C. 111 gram-meters Answer:
[ " A", " B", " C" ]
2
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A meter stick with a precision of +/- 0.0004 meters measures a distance of 0.0116 meters and a measuring tape with a precision of +/- 0.1 meters reads 8.6 meters when measuring a distance between two different points. Using a calculator, you multiply the former value by the latter and get the solution 0.099760000000. If we express this solution suitably with respect to the level of precision, what is the result? A. 0.100 meters^2 B. 0.10 meters^2 C. 0.1 meters^2 Answer:
[ " A", " B", " C" ]
0
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- An analytical balance with a precision of +/- 0.3 grams takes a measurement of 653.9 grams, and a graduated cylinder with a precision of +/- 0.002 liters measures a volume as 0.062 liters. Using a calculator, you multiply the former value by the latter and get the output 40.541800000000. Round this output using the correct number of significant figures. A. 41 gram-liters B. 40.5 gram-liters C. 40.54 gram-liters Answer:
[ " A", " B", " C" ]
0
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A spring scale with a precision of +/- 0.2 grams takes a measurement of 7.4 grams, and a timer with a precision of +/- 0.02 seconds measures a duration as 3.11 seconds. Your computer gets the solution 23.014000000000 when multiplying the values. How would this result look if we wrote it with the suitable number of significant figures? A. 23 gram-seconds B. 23.0 gram-seconds C. 23.01 gram-seconds Answer:
[ " A", " B", " C" ]
0
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A hydraulic scale with a precision of +/- 0.3 grams takes a measurement of 9.5 grams, and a spring scale with a precision of +/- 0.4 grams reads 79.3 grams when measuring a mass of a different object. You multiply the former number by the latter with a calculator app and get the output 753.350000000000. Report this output using the proper number of significant figures. A. 753.4 grams^2 B. 750 grams^2 C. 753.35 grams^2 Answer:
[ " A", " B", " C" ]
1
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A measuring flask with a precision of +/- 0.001 liters takes a measurement of 1.735 liters, and an opisometer with a precision of +/- 0.003 meters measures a distance as 7.473 meters. Your calculator app yields the output 12.965655000000 when multiplying the first number by the second number. If we report this output suitably with respect to the number of significant figures, what is the result? A. 12.9657 liter-meters B. 12.966 liter-meters C. 12.97 liter-meters Answer:
[ " A", " B", " C" ]
2
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A measuring rod with a precision of +/- 0.0002 meters measures a distance of 0.0042 meters and an odometer with a precision of +/- 100 meters reads 37300 meters when measuring a distance between two different points. Using a computer, you multiply the first value by the second value and get the solution 156.660000000000. If we express this solution properly with respect to the number of significant figures, what is the answer? A. 160 meters^2 B. 100 meters^2 C. 156.66 meters^2 Answer:
[ " A", " B", " C" ]
0
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A ruler with a precision of +/- 0.003 meters measures a distance of 0.049 meters and a storage container with a precision of +/- 20 liters measures a volume as 9710 liters. After multiplying the first number by the second number your computer produces the solution 475.790000000000. Round this solution using the proper level of precision. A. 470 liter-meters B. 480 liter-meters C. 475.79 liter-meters Answer:
[ " A", " B", " C" ]
1
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A timer with a precision of +/- 0.4 seconds measures a duration of 860.3 seconds and a spring scale with a precision of +/- 0.001 grams reads 8.248 grams when measuring a mass. You multiply the values with a calculator and get the solution 7095.754400000000. Express this solution using the appropriate number of significant figures. A. 7095.8 gram-seconds B. 7096 gram-seconds C. 7095.7544 gram-seconds Answer:
[ " A", " B", " C" ]
1
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A graduated cylinder with a precision of +/- 0.001 liters takes a measurement of 0.733 liters, and a timer with a precision of +/- 0.2 seconds measures a duration as 809.7 seconds. After multiplying the former value by the latter your calculator app gets the output 593.510100000000. Write this output using the right number of significant figures. A. 593.510 liter-seconds B. 593.5 liter-seconds C. 594 liter-seconds Answer:
[ " A", " B", " C" ]
2
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A stadimeter with a precision of +/- 100 meters measures a distance of 19800 meters and an odometer with a precision of +/- 100 meters reads 161800 meters when measuring a distance between two different points. Using a calculator, you multiply the values and get the output 3203640000.000000000000. If we express this output to the appropriate number of significant figures, what is the answer? A. 3203640000 meters^2 B. 3200000000 meters^2 C. 3203640000.000 meters^2 Answer:
[ " A", " B", " C" ]
1
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- An analytical balance with a precision of +/- 4 grams takes a measurement of 5181 grams, and a measuring tape with a precision of +/- 0.02 meters measures a distance as 0.02 meters. Using a computer, you multiply the first value by the second value and get the solution 103.620000000000. How would this answer look if we reported it with the suitable level of precision? A. 103.6 gram-meters B. 103 gram-meters C. 100 gram-meters Answer:
[ " A", " B", " C" ]
2
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A coincidence telemeter with a precision of +/- 20 meters measures a distance of 310 meters and a rangefinder with a precision of +/- 20 meters measures a distance between two different points as 750 meters. Your computer yields the output 232500.000000000000 when multiplying the two numbers. Report this output using the appropriate number of significant figures. A. 230000 meters^2 B. 232500 meters^2 C. 232500.00 meters^2 Answer:
[ " A", " B", " C" ]
0
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A storage container with a precision of +/- 10 liters measures a volume of 1660 liters and an odometer with a precision of +/- 3000 meters reads 83000 meters when measuring a distance. Your computer produces the solution 137780000.000000000000 when multiplying the numbers. How would this answer look if we wrote it with the appropriate number of significant figures? A. 137780000.00 liter-meters B. 137780000 liter-meters C. 140000000 liter-meters Answer:
[ " A", " B", " C" ]
2
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A clickwheel with a precision of +/- 0.003 meters measures a distance of 0.632 meters and an odometer with a precision of +/- 100 meters reads 98700 meters when measuring a distance between two different points. Using a computer, you multiply the two values and get the output 62378.400000000000. Using the right level of precision, what is the answer? A. 62378.400 meters^2 B. 62300 meters^2 C. 62400 meters^2 Answer:
[ " A", " B", " C" ]
2
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A measuring stick with a precision of +/- 0.2 meters takes a measurement of 61.5 meters, and a tape measure with a precision of +/- 0.0004 meters measures a distance between two different points as 0.0604 meters. Using a calculator app, you multiply the two values and get the solution 3.714600000000. How would this result look if we expressed it with the appropriate level of precision? A. 3.7 meters^2 B. 3.715 meters^2 C. 3.71 meters^2 Answer:
[ " A", " B", " C" ]
2
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A radar-based method with a precision of +/- 1 meters takes a measurement of 358 meters, and a spring scale with a precision of +/- 100 grams measures a mass as 81400 grams. After multiplying the values your calculator app gets the output 29141200.000000000000. If we write this output to the right number of significant figures, what is the answer? A. 29141200.000 gram-meters B. 29100000 gram-meters C. 29141200 gram-meters Answer:
[ " A", " B", " C" ]
1
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A ruler with a precision of +/- 0.0002 meters takes a measurement of 0.6911 meters, and an opisometer with a precision of +/- 1 meters measures a distance between two different points as 509 meters. After multiplying the first number by the second number your calculator app produces the solution 351.769900000000. When this solution is written to the right level of precision, what do we get? A. 351 meters^2 B. 352 meters^2 C. 351.770 meters^2 Answer:
[ " A", " B", " C" ]
1
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A coincidence telemeter with a precision of +/- 200 meters measures a distance of 23000 meters and a spring scale with a precision of +/- 0.0001 grams measures a mass as 0.0400 grams. Using a calculator app, you multiply the first number by the second number and get the solution 920.000000000000. Express this solution using the right level of precision. A. 900 gram-meters B. 920.000 gram-meters C. 920 gram-meters Answer:
[ " A", " B", " C" ]
2
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A measuring stick with a precision of +/- 0.03 meters takes a measurement of 67.55 meters, and an analytical balance with a precision of +/- 200 grams measures a mass as 8100 grams. Your calculator yields the solution 547155.000000000000 when multiplying the values. If we round this solution to the suitable number of significant figures, what is the answer? A. 547100 gram-meters B. 547155.00 gram-meters C. 550000 gram-meters Answer:
[ " A", " B", " C" ]
2
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A cathetometer with a precision of +/- 0.00001 meters takes a measurement of 0.00271 meters, and a rangefinder with a precision of +/- 0.3 meters reads 793.6 meters when measuring a distance between two different points. After multiplying the former value by the latter your calculator app gives the solution 2.150656000000. Using the right number of significant figures, what is the answer? A. 2.15 meters^2 B. 2.2 meters^2 C. 2.151 meters^2 Answer:
[ " A", " B", " C" ]
0
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A coincidence telemeter with a precision of +/- 20 meters takes a measurement of 80 meters, and a chronograph with a precision of +/- 0.01 seconds measures a duration as 7.27 seconds. Using a calculator app, you multiply the former value by the latter and get the output 581.600000000000. How can we write this output to the correct level of precision? A. 581.6 meter-seconds B. 580 meter-seconds C. 600 meter-seconds Answer:
[ " A", " B", " C" ]
2
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A chronograph with a precision of +/- 0.03 seconds takes a measurement of 0.69 seconds, and a spring scale with a precision of +/- 10 grams measures a mass as 80 grams. You multiply the two numbers with a calculator app and get the solution 55.200000000000. If we round this solution correctly with respect to the level of precision, what is the answer? A. 50 gram-seconds B. 55.2 gram-seconds C. 60 gram-seconds Answer:
[ " A", " B", " C" ]
2
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A balance with a precision of +/- 300 grams takes a measurement of 400 grams, and a clickwheel with a precision of +/- 0.3 meters measures a distance as 69.1 meters. You multiply the first value by the second value with a calculator app and get the output 27640.000000000000. If we report this output suitably with respect to the number of significant figures, what is the answer? A. 30000 gram-meters B. 27640.0 gram-meters C. 27600 gram-meters Answer:
[ " A", " B", " C" ]
0
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A balance with a precision of +/- 10 grams measures a mass of 40 grams and a radar-based method with a precision of +/- 3 meters reads 830 meters when measuring a distance. You multiply the numbers with a computer and get the output 33200.000000000000. If we write this output to the correct number of significant figures, what is the answer? A. 30000 gram-meters B. 33200.0 gram-meters C. 33200 gram-meters Answer:
[ " A", " B", " C" ]
0
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A storage container with a precision of +/- 40 liters takes a measurement of 67780 liters, and a chronometer with a precision of +/- 0.0001 seconds measures a duration as 0.0048 seconds. Your computer produces the output 325.344000000000 when multiplying the first number by the second number. Report this output using the suitable number of significant figures. A. 325.34 liter-seconds B. 330 liter-seconds C. 320 liter-seconds Answer:
[ " A", " B", " C" ]
1
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A caliper with a precision of +/- 0.03 meters takes a measurement of 0.66 meters, and an odometer with a precision of +/- 200 meters measures a distance between two different points as 900 meters. Using a computer, you multiply the first number by the second number and get the solution 594.000000000000. When this solution is reported to the suitable number of significant figures, what do we get? A. 500 meters^2 B. 594.0 meters^2 C. 600 meters^2 Answer:
[ " A", " B", " C" ]
2
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A spring scale with a precision of +/- 0.02 grams takes a measurement of 0.10 grams, and a stadimeter with a precision of +/- 2 meters measures a distance as 896 meters. You multiply the numbers with a computer and get the solution 89.600000000000. If we round this solution to the proper level of precision, what is the answer? A. 89 gram-meters B. 89.60 gram-meters C. 90 gram-meters Answer:
[ " A", " B", " C" ]
2
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A stopwatch with a precision of +/- 0.003 seconds measures a duration of 0.910 seconds and a measuring tape with a precision of +/- 0.02 meters reads 18.23 meters when measuring a distance. After multiplying the numbers your computer gives the output 16.589300000000. When this output is reported to the appropriate number of significant figures, what do we get? A. 16.59 meter-seconds B. 16.6 meter-seconds C. 16.589 meter-seconds Answer:
[ " A", " B", " C" ]
1
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A measuring rod with a precision of +/- 0.04 meters measures a distance of 34.91 meters and a clickwheel with a precision of +/- 0.03 meters reads 0.03 meters when measuring a distance between two different points. Using a calculator, you multiply the numbers and get the solution 1.047300000000. If we write this solution to the correct level of precision, what is the result? A. 1 meters^2 B. 1.0 meters^2 C. 1.05 meters^2 Answer:
[ " A", " B", " C" ]
0
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A rangefinder with a precision of +/- 40 meters takes a measurement of 620 meters, and a radar-based method with a precision of +/- 100 meters measures a distance between two different points as 99300 meters. Your calculator gets the output 61566000.000000000000 when multiplying the values. Write this output using the appropriate level of precision. A. 61566000 meters^2 B. 61566000.00 meters^2 C. 62000000 meters^2 Answer:
[ " A", " B", " C" ]
2
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A cathetometer with a precision of +/- 0.0001 meters takes a measurement of 0.0084 meters, and a rangefinder with a precision of +/- 2 meters reads 358 meters when measuring a distance between two different points. After multiplying the numbers your computer produces the solution 3.007200000000. When this solution is reported to the proper number of significant figures, what do we get? A. 3.01 meters^2 B. 3.0 meters^2 C. 3 meters^2 Answer:
[ " A", " B", " C" ]
1
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A measuring tape with a precision of +/- 0.2 meters takes a measurement of 75.4 meters, and an odometer with a precision of +/- 200 meters reads 843500 meters when measuring a distance between two different points. After multiplying the numbers your calculator app yields the output 63599900.000000000000. If we express this output appropriately with respect to the number of significant figures, what is the result? A. 63599900 meters^2 B. 63600000 meters^2 C. 63599900.000 meters^2 Answer:
[ " A", " B", " C" ]
1
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A stadimeter with a precision of +/- 0.4 meters takes a measurement of 259.4 meters, and an odometer with a precision of +/- 200 meters measures a distance between two different points as 46200 meters. After multiplying the former value by the latter your calculator gives the solution 11984280.000000000000. When this solution is rounded to the appropriate number of significant figures, what do we get? A. 11984280.000 meters^2 B. 12000000 meters^2 C. 11984200 meters^2 Answer:
[ " A", " B", " C" ]
1
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A measuring tape with a precision of +/- 0.3 meters takes a measurement of 620.4 meters, and a hydraulic scale with a precision of +/- 3 grams measures a mass as 63 grams. You multiply the first value by the second value with a calculator and get the output 39085.200000000000. When this output is written to the proper number of significant figures, what do we get? A. 39000 gram-meters B. 39085.20 gram-meters C. 39085 gram-meters Answer:
[ " A", " B", " C" ]
0
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A graduated cylinder with a precision of +/- 0.001 liters measures a volume of 0.217 liters and an opisometer with a precision of +/- 3 meters reads 487 meters when measuring a distance. Your computer gives the output 105.679000000000 when multiplying the two values. If we report this output to the right level of precision, what is the answer? A. 105 liter-meters B. 106 liter-meters C. 105.679 liter-meters Answer:
[ " A", " B", " C" ]
1
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- An odometer with a precision of +/- 400 meters measures a distance of 50900 meters and an opisometer with a precision of +/- 0.0001 meters reads 0.0831 meters when measuring a distance between two different points. You multiply the former number by the latter with a computer and get the output 4229.790000000000. Using the suitable number of significant figures, what is the result? A. 4230 meters^2 B. 4229.790 meters^2 C. 4200 meters^2 Answer:
[ " A", " B", " C" ]
0
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A balance with a precision of +/- 0.02 grams takes a measurement of 0.03 grams, and a spring scale with a precision of +/- 0.04 grams measures a mass of a different object as 38.92 grams. You multiply the two numbers with a calculator and get the output 1.167600000000. If we write this output to the appropriate number of significant figures, what is the answer? A. 1.2 grams^2 B. 1 grams^2 C. 1.17 grams^2 Answer:
[ " A", " B", " C" ]
1
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A ruler with a precision of +/- 0.4 meters takes a measurement of 20.8 meters, and a measuring tape with a precision of +/- 0.3 meters measures a distance between two different points as 6.1 meters. Your calculator app gives the output 126.880000000000 when multiplying the former number by the latter. How would this result look if we expressed it with the right number of significant figures? A. 130 meters^2 B. 126.88 meters^2 C. 126.9 meters^2 Answer:
[ " A", " B", " C" ]
0
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- An analytical balance with a precision of +/- 0.03 grams measures a mass of 13.31 grams and an odometer with a precision of +/- 2000 meters measures a distance as 302000 meters. After multiplying the first number by the second number your computer gets the solution 4019620.000000000000. How would this answer look if we rounded it with the right number of significant figures? A. 4020000 gram-meters B. 4019000 gram-meters C. 4019620.000 gram-meters Answer:
[ " A", " B", " C" ]
0
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A clickwheel with a precision of +/- 0.002 meters takes a measurement of 5.295 meters, and a measuring stick with a precision of +/- 0.3 meters reads 80.3 meters when measuring a distance between two different points. Using a computer, you multiply the former value by the latter and get the solution 425.188500000000. Express this solution using the correct number of significant figures. A. 425.2 meters^2 B. 425.188 meters^2 C. 425 meters^2 Answer:
[ " A", " B", " C" ]
2
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A storage container with a precision of +/- 0.2 liters takes a measurement of 972.8 liters, and a balance with a precision of +/- 0.02 grams reads 40.77 grams when measuring a mass. Your computer gives the output 39661.056000000000 when multiplying the first value by the second value. If we round this output to the right level of precision, what is the answer? A. 39660 gram-liters B. 39661.1 gram-liters C. 39661.0560 gram-liters Answer:
[ " A", " B", " C" ]
0
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A coincidence telemeter with a precision of +/- 1 meters measures a distance of 846 meters and a radar-based method with a precision of +/- 4 meters measures a distance between two different points as 12 meters. Your calculator app produces the solution 10152.000000000000 when multiplying the two values. If we round this solution to the appropriate number of significant figures, what is the answer? A. 10152 meters^2 B. 10152.00 meters^2 C. 10000 meters^2 Answer:
[ " A", " B", " C" ]
2
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A hydraulic scale with a precision of +/- 400 grams measures a mass of 456200 grams and a stadimeter with a precision of +/- 0.3 meters reads 2.9 meters when measuring a distance. After multiplying the values your calculator app gets the output 1322980.000000000000. How can we write this output to the appropriate number of significant figures? A. 1322900 gram-meters B. 1322980.00 gram-meters C. 1300000 gram-meters Answer:
[ " A", " B", " C" ]
2
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A measuring tape with a precision of +/- 0.4 meters takes a measurement of 66.6 meters, and an odometer with a precision of +/- 200 meters measures a distance between two different points as 4600 meters. Your computer produces the solution 306360.000000000000 when multiplying the first number by the second number. Using the proper number of significant figures, what is the result? A. 310000 meters^2 B. 306360.00 meters^2 C. 306300 meters^2 Answer:
[ " A", " B", " C" ]
0
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A timer with a precision of +/- 0.02 seconds measures a duration of 0.50 seconds and a storage container with a precision of +/- 0.2 liters reads 56.8 liters when measuring a volume. You multiply the two values with a calculator app and get the solution 28.400000000000. How can we round this solution to the suitable level of precision? A. 28.4 liter-seconds B. 28 liter-seconds C. 28.40 liter-seconds Answer:
[ " A", " B", " C" ]
1
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A hydraulic scale with a precision of +/- 400 grams measures a mass of 80600 grams and a measuring flask with a precision of +/- 0.04 liters reads 3.72 liters when measuring a volume. You multiply the first number by the second number with a calculator and get the solution 299832.000000000000. Report this solution using the appropriate number of significant figures. A. 300000 gram-liters B. 299832.000 gram-liters C. 299800 gram-liters Answer:
[ " A", " B", " C" ]
0
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A graduated cylinder with a precision of +/- 0.002 liters measures a volume of 7.308 liters and an opisometer with a precision of +/- 3 meters reads 5 meters when measuring a distance. Using a calculator app, you multiply the two numbers and get the output 36.540000000000. Using the proper number of significant figures, what is the result? A. 36 liter-meters B. 36.5 liter-meters C. 40 liter-meters Answer:
[ " A", " B", " C" ]
2
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A stadimeter with a precision of +/- 300 meters takes a measurement of 55700 meters, and a caliper with a precision of +/- 0.03 meters measures a distance between two different points as 71.80 meters. Your computer gives the solution 3999260.000000000000 when multiplying the two values. How can we report this solution to the suitable number of significant figures? A. 3999260.000 meters^2 B. 3999200 meters^2 C. 4000000 meters^2 Answer:
[ " A", " B", " C" ]
2
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A clickwheel with a precision of +/- 0.02 meters measures a distance of 28.60 meters and a timer with a precision of +/- 0.01 seconds measures a duration as 6.26 seconds. Your calculator app produces the output 179.036000000000 when multiplying the first number by the second number. Report this output using the proper number of significant figures. A. 179.04 meter-seconds B. 179 meter-seconds C. 179.036 meter-seconds Answer:
[ " A", " B", " C" ]
1
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A rangefinder with a precision of +/- 0.02 meters takes a measurement of 35.68 meters, and a caliper with a precision of +/- 0.03 meters reads 9.89 meters when measuring a distance between two different points. After multiplying the two numbers your calculator gets the output 352.875200000000. If we write this output suitably with respect to the number of significant figures, what is the result? A. 352.875 meters^2 B. 353 meters^2 C. 352.88 meters^2 Answer:
[ " A", " B", " C" ]
1
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- An odometer with a precision of +/- 400 meters takes a measurement of 596500 meters, and an analytical balance with a precision of +/- 3 grams reads 806 grams when measuring a mass. Using a computer, you multiply the first number by the second number and get the output 480779000.000000000000. When this output is rounded to the correct level of precision, what do we get? A. 481000000 gram-meters B. 480779000.000 gram-meters C. 480779000 gram-meters Answer:
[ " A", " B", " C" ]
0
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A biltmore stick with a precision of +/- 0.4 meters takes a measurement of 0.6 meters, and a storage container with a precision of +/- 3 liters reads 9811 liters when measuring a volume. After multiplying the first number by the second number your calculator yields the solution 5886.600000000000. When this solution is reported to the appropriate level of precision, what do we get? A. 6000 liter-meters B. 5886 liter-meters C. 5886.6 liter-meters Answer:
[ " A", " B", " C" ]
0
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A caliper with a precision of +/- 0.04 meters takes a measurement of 19.13 meters, and a graduated cylinder with a precision of +/- 0.003 liters measures a volume as 0.944 liters. Your computer produces the solution 18.058720000000 when multiplying the former number by the latter. How can we write this solution to the suitable level of precision? A. 18.06 liter-meters B. 18.1 liter-meters C. 18.059 liter-meters Answer:
[ " A", " B", " C" ]
1
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- An odometer with a precision of +/- 1000 meters takes a measurement of 7000 meters, and a hydraulic scale with a precision of +/- 1 grams measures a mass as 248 grams. Using a calculator, you multiply the former number by the latter and get the solution 1736000.000000000000. Using the correct number of significant figures, what is the answer? A. 1736000 gram-meters B. 1736000.0 gram-meters C. 2000000 gram-meters Answer:
[ " A", " B", " C" ]
2
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A storage container with a precision of +/- 10 liters measures a volume of 2690 liters and a rangefinder with a precision of +/- 4 meters measures a distance as 586 meters. Using a computer, you multiply the former number by the latter and get the solution 1576340.000000000000. How can we report this solution to the proper number of significant figures? A. 1580000 liter-meters B. 1576340.000 liter-meters C. 1576340 liter-meters Answer:
[ " A", " B", " C" ]
0
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A spring scale with a precision of +/- 0.02 grams takes a measurement of 55.50 grams, and a storage container with a precision of +/- 40 liters reads 640 liters when measuring a volume. Your calculator gets the solution 35520.000000000000 when multiplying the two values. Using the correct number of significant figures, what is the answer? A. 35520 gram-liters B. 36000 gram-liters C. 35520.00 gram-liters Answer:
[ " A", " B", " C" ]
1
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A graduated cylinder with a precision of +/- 0.002 liters takes a measurement of 0.064 liters, and a meter stick with a precision of +/- 0.0004 meters measures a distance as 0.0940 meters. After multiplying the two numbers your calculator gets the solution 0.006016000000. Write this solution using the right level of precision. A. 0.006 liter-meters B. 0.01 liter-meters C. 0.0060 liter-meters Answer:
[ " A", " B", " C" ]
2
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A cathetometer with a precision of +/- 0.00002 meters measures a distance of 0.00214 meters and a Biltmore stick with a precision of +/- 0.1 meters reads 31.7 meters when measuring a distance between two different points. You multiply the first value by the second value with a computer and get the solution 0.067838000000. How can we report this solution to the suitable level of precision? A. 0.0678 meters^2 B. 0.068 meters^2 C. 0.1 meters^2 Answer:
[ " A", " B", " C" ]
0
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- An analytical balance with a precision of +/- 300 grams takes a measurement of 2800 grams, and a balance with a precision of +/- 0.001 grams reads 0.734 grams when measuring a mass of a different object. Your calculator app gets the solution 2055.200000000000 when multiplying the former number by the latter. Using the suitable level of precision, what is the answer? A. 2000 grams^2 B. 2100 grams^2 C. 2055.20 grams^2 Answer:
[ " A", " B", " C" ]
1
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A coincidence telemeter with a precision of +/- 2 meters measures a distance of 34 meters and a caliper with a precision of +/- 0.002 meters measures a distance between two different points as 0.527 meters. Using a calculator app, you multiply the former number by the latter and get the output 17.918000000000. How can we express this output to the correct level of precision? A. 18 meters^2 B. 17.92 meters^2 C. 17 meters^2 Answer:
[ " A", " B", " C" ]
0
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A measuring rod with a precision of +/- 0.0004 meters measures a distance of 0.0306 meters and a tape measure with a precision of +/- 0.0002 meters measures a distance between two different points as 0.1690 meters. After multiplying the first number by the second number your calculator produces the output 0.005171400000. How can we express this output to the appropriate number of significant figures? A. 0.005 meters^2 B. 0.0052 meters^2 C. 0.00517 meters^2 Answer:
[ " A", " B", " C" ]
2
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A cathetometer with a precision of +/- 0.0003 meters takes a measurement of 0.0076 meters, and a caliper with a precision of +/- 0.003 meters reads 0.909 meters when measuring a distance between two different points. You multiply the numbers with a calculator and get the solution 0.006908400000. Using the suitable number of significant figures, what is the answer? A. 0.0069 meters^2 B. 0.007 meters^2 C. 0.01 meters^2 Answer:
[ " A", " B", " C" ]
0
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A meter stick with a precision of +/- 0.0004 meters takes a measurement of 0.9875 meters, and a stadimeter with a precision of +/- 10 meters reads 70 meters when measuring a distance between two different points. You multiply the former number by the latter with a calculator app and get the output 69.125000000000. How would this result look if we reported it with the suitable number of significant figures? A. 69.1 meters^2 B. 60 meters^2 C. 70 meters^2 Answer:
[ " A", " B", " C" ]
2
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A caliper with a precision of +/- 0.01 meters takes a measurement of 0.06 meters, and a coincidence telemeter with a precision of +/- 100 meters reads 24200 meters when measuring a distance between two different points. Using a computer, you multiply the first number by the second number and get the solution 1452.000000000000. How would this result look if we rounded it with the suitable number of significant figures? A. 1452.0 meters^2 B. 1400 meters^2 C. 1000 meters^2 Answer:
[ " A", " B", " C" ]
2
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A radar-based method with a precision of +/- 30 meters takes a measurement of 420 meters, and an odometer with a precision of +/- 3000 meters measures a distance between two different points as 8000 meters. After multiplying the former number by the latter your computer gives the solution 3360000.000000000000. How would this result look if we rounded it with the suitable level of precision? A. 3360000.0 meters^2 B. 3360000 meters^2 C. 3000000 meters^2 Answer:
[ " A", " B", " C" ]
2
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A rangefinder with a precision of +/- 40 meters measures a distance of 2690 meters and a tape measure with a precision of +/- 0.003 meters measures a distance between two different points as 5.855 meters. After multiplying the two numbers your calculator app yields the output 15749.950000000000. Round this output using the proper number of significant figures. A. 15749.950 meters^2 B. 15740 meters^2 C. 15700 meters^2 Answer:
[ " A", " B", " C" ]
2
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- An odometer with a precision of +/- 1000 meters measures a distance of 262000 meters and an opisometer with a precision of +/- 0.4 meters reads 0.4 meters when measuring a distance between two different points. After multiplying the first number by the second number your calculator gives the output 104800.000000000000. Report this output using the correct level of precision. A. 104800.0 meters^2 B. 104000 meters^2 C. 100000 meters^2 Answer:
[ " A", " B", " C" ]
2
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A clickwheel with a precision of +/- 0.1 meters measures a distance of 76.9 meters and a radar-based method with a precision of +/- 20 meters reads 60 meters when measuring a distance between two different points. Using a computer, you multiply the first number by the second number and get the output 4614.000000000000. If we express this output suitably with respect to the number of significant figures, what is the answer? A. 4610 meters^2 B. 5000 meters^2 C. 4614.0 meters^2 Answer:
[ " A", " B", " C" ]
1
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- An opisometer with a precision of +/- 3 meters measures a distance of 31 meters and a ruler with a precision of +/- 0.03 meters reads 99.89 meters when measuring a distance between two different points. Your computer gets the output 3096.590000000000 when multiplying the first value by the second value. If we report this output correctly with respect to the level of precision, what is the answer? A. 3096 meters^2 B. 3096.59 meters^2 C. 3100 meters^2 Answer:
[ " A", " B", " C" ]
2
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A spring scale with a precision of +/- 2 grams measures a mass of 5672 grams and a timer with a precision of +/- 0.02 seconds measures a duration as 85.86 seconds. Using a calculator app, you multiply the former number by the latter and get the output 486997.920000000000. Express this output using the suitable number of significant figures. A. 486997 gram-seconds B. 487000 gram-seconds C. 486997.9200 gram-seconds Answer:
[ " A", " B", " C" ]
1
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A stadimeter with a precision of +/- 0.3 meters takes a measurement of 9.7 meters, and a measuring tape with a precision of +/- 0.3 meters measures a distance between two different points as 977.6 meters. Your calculator yields the output 9482.720000000000 when multiplying the first number by the second number. Write this output using the right number of significant figures. A. 9482.7 meters^2 B. 9482.72 meters^2 C. 9500 meters^2 Answer:
[ " A", " B", " C" ]
2
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A biltmore stick with a precision of +/- 0.01 meters takes a measurement of 5.56 meters, and a storage container with a precision of +/- 1 liters reads 3620 liters when measuring a volume. After multiplying the first value by the second value your calculator app gives the solution 20127.200000000000. How would this answer look if we expressed it with the appropriate level of precision? A. 20127 liter-meters B. 20100 liter-meters C. 20127.200 liter-meters Answer:
[ " A", " B", " C" ]
1
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A radar-based method with a precision of +/- 10 meters measures a distance of 200 meters and a caliper with a precision of +/- 0.01 meters reads 0.32 meters when measuring a distance between two different points. Using a calculator, you multiply the first number by the second number and get the solution 64.000000000000. Using the proper number of significant figures, what is the answer? A. 64.00 meters^2 B. 60 meters^2 C. 64 meters^2 Answer:
[ " A", " B", " C" ]
2
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A spring scale with a precision of +/- 4000 grams measures a mass of 7814000 grams and a storage container with a precision of +/- 3 liters measures a volume as 21 liters. Your calculator produces the output 164094000.000000000000 when multiplying the values. If we express this output correctly with respect to the number of significant figures, what is the answer? A. 164094000.00 gram-liters B. 160000000 gram-liters C. 164094000 gram-liters Answer:
[ " A", " B", " C" ]
1
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A meter stick with a precision of +/- 0.0003 meters measures a distance of 0.0565 meters and an analytical balance with a precision of +/- 1 grams reads 2403 grams when measuring a mass. Your computer gets the solution 135.769500000000 when multiplying the former number by the latter. If we write this solution properly with respect to the level of precision, what is the answer? A. 135 gram-meters B. 136 gram-meters C. 135.770 gram-meters Answer:
[ " A", " B", " C" ]
1
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A stadimeter with a precision of +/- 0.1 meters takes a measurement of 9.1 meters, and a caliper with a precision of +/- 0.02 meters reads 60.02 meters when measuring a distance between two different points. After multiplying the two values your computer gives the output 546.182000000000. How can we express this output to the appropriate level of precision? A. 550 meters^2 B. 546.18 meters^2 C. 546.2 meters^2 Answer:
[ " A", " B", " C" ]
0
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A stadimeter with a precision of +/- 30 meters takes a measurement of 870 meters, and a graduated cylinder with a precision of +/- 0.001 liters reads 0.045 liters when measuring a volume. You multiply the former value by the latter with a computer and get the output 39.150000000000. How would this answer look if we expressed it with the proper number of significant figures? A. 30 liter-meters B. 39 liter-meters C. 39.15 liter-meters Answer:
[ " A", " B", " C" ]
1
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A cathetometer with a precision of +/- 0.00001 meters measures a distance of 0.06857 meters and a measuring rod with a precision of +/- 0.0003 meters measures a distance between two different points as 0.0624 meters. Using a calculator, you multiply the first value by the second value and get the solution 0.004278768000. If we round this solution suitably with respect to the level of precision, what is the answer? A. 0.0043 meters^2 B. 0.004 meters^2 C. 0.00428 meters^2 Answer:
[ " A", " B", " C" ]
2
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A timer with a precision of +/- 0.2 seconds measures a duration of 96.9 seconds and a balance with a precision of +/- 0.02 grams measures a mass as 0.92 grams. After multiplying the former number by the latter your computer produces the solution 89.148000000000. Express this solution using the suitable number of significant figures. A. 89.15 gram-seconds B. 89.1 gram-seconds C. 89 gram-seconds Answer:
[ " A", " B", " C" ]
2
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A stadimeter with a precision of +/- 0.1 meters measures a distance of 99.8 meters and a stadimeter with a precision of +/- 2 meters reads 8242 meters when measuring a distance between two different points. After multiplying the former number by the latter your computer gives the solution 822551.600000000000. How can we express this solution to the correct number of significant figures? A. 823000 meters^2 B. 822551 meters^2 C. 822551.600 meters^2 Answer:
[ " A", " B", " C" ]
0
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A rangefinder with a precision of +/- 0.1 meters takes a measurement of 9.1 meters, and an odometer with a precision of +/- 200 meters reads 6900 meters when measuring a distance between two different points. After multiplying the values your calculator gets the solution 62790.000000000000. Using the correct number of significant figures, what is the answer? A. 62700 meters^2 B. 62790.00 meters^2 C. 63000 meters^2 Answer:
[ " A", " B", " C" ]
2
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A rangefinder with a precision of +/- 0.03 meters takes a measurement of 48.15 meters, and a measuring stick with a precision of +/- 0.2 meters reads 485.3 meters when measuring a distance between two different points. Your computer yields the output 23367.195000000000 when multiplying the values. How can we report this output to the proper number of significant figures? A. 23367.2 meters^2 B. 23370 meters^2 C. 23367.1950 meters^2 Answer:
[ " A", " B", " C" ]
1
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A cathetometer with a precision of +/- 0.0002 meters measures a distance of 0.5335 meters and a coincidence telemeter with a precision of +/- 30 meters reads 90 meters when measuring a distance between two different points. Using a calculator, you multiply the two numbers and get the solution 48.015000000000. How can we report this solution to the proper level of precision? A. 48.0 meters^2 B. 50 meters^2 C. 40 meters^2 Answer:
[ " A", " B", " C" ]
1
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A graduated cylinder with a precision of +/- 0.004 liters measures a volume of 0.146 liters and a Biltmore stick with a precision of +/- 0.1 meters measures a distance as 801.0 meters. You multiply the numbers with a calculator and get the output 116.946000000000. When this output is rounded to the correct level of precision, what do we get? A. 117 liter-meters B. 116.946 liter-meters C. 116.9 liter-meters Answer:
[ " A", " B", " C" ]
0
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A hydraulic scale with a precision of +/- 0.0003 grams measures a mass of 0.0475 grams and a cathetometer with a precision of +/- 0.00003 meters measures a distance as 0.04421 meters. Your calculator produces the output 0.002099975000 when multiplying the former value by the latter. Write this output using the right number of significant figures. A. 0.002 gram-meters B. 0.00210 gram-meters C. 0.0021 gram-meters Answer:
[ " A", " B", " C" ]
1
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- An opisometer with a precision of +/- 0.0004 meters takes a measurement of 0.0394 meters, and a measuring rod with a precision of +/- 0.0001 meters reads 0.0961 meters when measuring a distance between two different points. Your calculator gives the output 0.003786340000 when multiplying the first value by the second value. If we report this output properly with respect to the number of significant figures, what is the result? A. 0.00379 meters^2 B. 0.004 meters^2 C. 0.0038 meters^2 Answer:
[ " A", " B", " C" ]
0
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A coincidence telemeter with a precision of +/- 20 meters measures a distance of 1300 meters and a rangefinder with a precision of +/- 0.4 meters reads 353.5 meters when measuring a distance between two different points. Using a calculator, you multiply the former value by the latter and get the output 459550.000000000000. If we round this output to the right level of precision, what is the result? A. 459550 meters^2 B. 459550.000 meters^2 C. 460000 meters^2 Answer:
[ " A", " B", " C" ]
2
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A measuring stick with a precision of +/- 0.02 meters takes a measurement of 53.46 meters, and a timer with a precision of +/- 0.1 seconds measures a duration as 295.9 seconds. You multiply the former number by the latter with a calculator app and get the solution 15818.814000000000. Using the suitable level of precision, what is the answer? A. 15818.8140 meter-seconds B. 15820 meter-seconds C. 15818.8 meter-seconds Answer:
[ " A", " B", " C" ]
1
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A spring scale with a precision of +/- 2000 grams takes a measurement of 897000 grams, and an odometer with a precision of +/- 2000 meters reads 52000 meters when measuring a distance. You multiply the two values with a calculator and get the output 46644000000.000000000000. When this output is rounded to the appropriate level of precision, what do we get? A. 46644000000 gram-meters B. 47000000000 gram-meters C. 46644000000.00 gram-meters Answer:
[ " A", " B", " C" ]
1
2