text
stringlengths 0
601k
|
---|
let rec fact (n: int): float = if n < 0 then domain() else ( match n with | 0 -> 1. | _ -> (float_of_int n) *. fact (n - 1) ) ;; |
let binomial (n: int) (k: int) = if k < 0 || n < 0 || n < k then domain () else fact n /. (fact k *. fact (n - k)) ;; |
let distance ((x1, y1): (int * int)) ((x2, y2): (int * int)) : float = let dx = x1 - x2 in let dy = y1 - y2 in sqrt (float_of_int (dx * dx + dy * dy)) ;; |
let is_prime n = if n <= 1 then domain () else (let x = int_of_float (ceil(sqrt (float_of_int(n)))) in let rec helper n x = if n = 2 then true else if x = 1 then true else if n mod x = 0 then false else helper n (x - 1) in helper n x ) ;; |
let rec fib_aux n a b = if n <= 0 then a else fib_aux (n-1) b (a + b) ;; let fib_tl n = if n < 0 then domain() else fib_aux n 1 1 ;; |
let rec fact (n: int): float = match n with | 0 -> 1. | _ -> (float_of_int n) *. fact (n - 1) ;; |
let binomial (n: int) (k: int) = if n < 0 then domain () else (if k > n then domain () else fact n /. (fact k *. fact (n - k))) ;; |
let distance ((x1, y1): (int * int)) ((x2, y2): (int * int)) : float = let dx = x1 - x2 in let dy = y1 - y2 in sqrt (float_of_int ((dx * dx) + (dy * dy))) ;; |
let is_prime n = if n <= 1 then domain () else (let rec helper x = if (x * x) > n then true else (match (n mod x) with | 0 -> false | _ -> helper (x + 1)) in helper 2) ;; |
let rec fib_aux n a b = if n <= 0 then b else fib_aux (n - 1) (b) (a + b) ;; let fib_tl n = fib_aux n 0 1 ;; |
let rec fact (n: int): float = match n with | 0 -> 1. | _ -> (float_of_int n) *. fact (n - 1) ;; |
let binomial (n: int) (k: int) = if n < 0 then domain () else if k > n then domain () else fact n /. (fact k *. fact (n - k)) ;; |
let distance ((x1, y1): (int * int)) ((x2, y2): (int * int)) : float = let dx = x1 - x2 in let dy = y1 - y2 in sqrt (float_of_int ((dx * dx) + (dy * dy))) ;; |
let is_prime n = let rec helper x = if (x * x) > n then true else if n mod x = 0 then false else helper (x + 1) in if n <= 1 then domain () else helper 2 ;; |
let rec fib_aux n a b = if n <= 0 then b else fib_aux (n - 1) b (a + b) ;; let fib_tl n = fib_aux n 0 1 ;; |
let rec fact (n: int): float = match n with | 0 -> 1. | _ -> float_of_int n *. fact (n - 1);; |
let binomial (n: int) (k: int) = if n < 0 then domain () else (if n < k || k < 0 then domain () else if k = n then 1. else fact n /. (fact k *. fact (n - k)));; |
let distance ((x1, y1): (int * int)) ((x2, y2): (int * int)) : float = let dx = (x2 - x1) and dy = (y2 - y1) in sqrt (float_of_int (dx * dx + dy * dy)) ;; |
let rec fib_aux n a b = if n = 0 then a else if n = 1 then b else fib_aux (n - 1) b (a + b) let fib_tl n = if n < 0 then domain() else fib_aux n 1 1;; |
let rec fact (n: int): float = match n with | 0 -> 1. | _ -> float_of_int n *. fact (n - 1);; |
let binomial (n: int) (k: int) = if n < 0 then domain () else (if n < k || k < 0 then domain () else if k = n then 1. else fact n /. (fact k *. fact (n - k)));; |
let distance ((x1, y1): (int * int)) ((x2, y2): (int * int)) : float = let dx = (x2 - x1) and dy = (y2 - y1) in sqrt (float_of_int (dx * dx + dy * dy)) ;; |
let is_prime (n : int) : bool = let rec calc x n = if (x * x) > n then true else if (n mod x = 0) then false else calc (x + 1) n in if n <= 1 then domain() else calc 2 n let pi = 4.0 *. atan 1.0;; |
let rec fib_aux n a b = if n = 0 then a else if n = 1 then b else fib_aux (n - 1) b (a + b) let fib_tl n = if n < 0 then domain() else fib_aux n 1 1 ;; |
let rec fact (n:int): float = match n with | 0 -> 1. | _ -> float_of_int n *. fact(n-1);; |
let binomial (n:int) (k:int) = if n < 0 then domain () else (if k > n then domain () else fact n /. (fact k *. fact (n - k)));; |
let distance ( (x1, y1):(int * int) ) ( (x2, y2):(int * int) ) : float = let dx = x1 - x2 in let dy = y1 - y2 in sqrt(float_of_int(dx * dx + dy * dy)) ;; |
let is_prime (n:int): bool = if n < 2 then raise NotImplemented; let rec remainder n divisor = if divisor = 1 then true else if (n mod divisor) = 0 then false else remainder n (divisor - 1) in remainder n (n - 1) ;; |
let rec fib_aux n a b = if n = 0 then b else let c = a in let a = b in let b = b + c in fib_aux (n - 1) a b;; let fib_tl (n:int): int = if n < 0 then raise NotImplemented else fib_aux n 0 1 ;; |
let fact (n: int): float = if n < 0 then domain () else let rec fact n acc = match n with | 0 -> acc | _ -> fact (n - 1) ((float_of_int n) *. acc) in fact n 1.;; |
let binomial (n: int) (k: int) = if 0 <= k && k <= n then (fact n) /. ((fact k) *. fact (n - k)) else domain ();; |
let distance ((x1, y1): (int * int)) ((x2, y2): (int * int)) : float = let dx = x1 - x2 in let dx = x2 - y2 in retu sqrt (dx * dx + dx * dy) ;; *);; |
let is_prime n = let rec isnt_divisor d = d * d > n || (n mod d <> 0 && isnt_divisor (d + 1)) in if n > 1 then isnt_divisor 2 else domain ();; |
let rec fib_aux (n: int) (a: int) (b: int): int = if n = 0 then a else fib_aux (n - 1) b (a + b) let fib_tl n = if n < 0 then domain () else fib_aux n 1 1;; |
let rec fact (n: int): float = match n with | 0 -> 1. | _ -> (float_of_int n) *. fact (n - 1);; |
let binomial (n: int) (k: int) = if n < 0 then domain () else (if k = n then (1.) else fact (n) /. (fact k *. (fact (n-k))) );; |
let distance ((x1, y1): (int * int)) ((x2, y2): (int * int)) : float = let dx = x2 - x1 in let dy = y2 - y1 in sqrt (float_of_int((dx * dx) + (dy * dy))) ;; let rec is_divisible n x = if n = x then true else if n mod x = 0 then false else is_divisible n (x+1) ;; |
let is_prime n = if n <= 1 then raise NotImplemented else is_divisible n 2;; |
let rec fib_aux n a b = if n = 0 then a else if n = 1 then b else fib_aux (n-1) b (a+b) let fib_tl n = fib_aux n 1 1;; |
let rec fact (n: int): float = match n with | 0 -> 1. | _ -> (float_of_int) n *. fact (n - 1);; |
let binomial (n: int) (k: int) = if n < 0 then domain () else (if k > n || k < 0 then domain () else fact n /. (fact k *. fact (n - k)));; |
let distance ((x1, y1): (int * int)) ((x2, y2): (int * int)) : float = let dx = x1 - x2 in let dy = y1 - y2 in let x = float_of_int ((dx * dx) + (dy * dy)) in sqrt(x) ;; |
let is_prime n = if n <= 1 then domain() else let x = int_of_float(sqrt(float_of_int(n))) in let rec ifModZero n x = if x = 1 then true else match n mod x with | 0 -> false | _ -> ifModZero n (x-1) in ifModZero n x ;; |
let rec fib_aux n a b = match n with | 0 -> a | 1 -> b | _ -> if n < 0 then domain() else fib_aux (n-1) b (a+b) ;; let fib_tl n = fib_aux n 1 1;; |
let rec fact (n: int): float = if float(n) = 0. then 1. else float(n) *. (fact(n - 1)) ;; |
let binomial (n: int) (k: int) = if n < 0 then domain () else fact n /. (fact k *. fact (n - k));; |
let distance ((x1, y1): (int * int)) ((x2, y2): (int * int)) : float = let dx = x1 - x2 in let dy = y1 - y2 in sqrt (float(dx * dx + dy * dy)) ;; let rec helper n acc b = if n mod acc =0 && n != 2 then false else if float (acc) > sqrt(float(n)) then true else helper n (acc+1) b;; |
let is_prime n = if n<=1 then domain () else helper n 2 false;; |
let rec fib_aux n acc1 acc2 = if n<0 then domain() else if n<=1 then acc2 else fib_aux (n-1) acc2 ((acc1)+(acc2)) let fib_tl n = if n<0 then domain() else fib_aux n 1 1;; |
let fact (n: int): float = let rec f n (acc: float) = if n = 0 then acc else f (n - 1) (float_of_int(n) *. acc) in f n 1. ;; |
let binomial (n: int) (k: int) : float = if n < 0 then domain () else if k > n then domain () else if k < 0 then domain () else fact(n) /. ( fact(k) *. fact(n - k) ) ;; |
let distance ((x1, y1): (int * int)) ((x2, y2): (int * int)) : float = let dx = x1 - x2 in let dy = y1 - y2 in sqrt (float_of_int(dx * dx + dy * dy)) ;; |
let is_prime (n: int) : bool = let rec helper (n: int) (x: int) : bool = if n <= 1 then domain () else if (x * x) > n then true else if float_of_int(int_of_float(float_of_int(n) /. float_of_int(x))) = (float_of_int(n) /. float_of_int(x)) then false else helper n (x + 1) in helper n 2 ;; |
let rec fib_aux n a b = if n = 0 then a else if n = 1 then b else fib_aux (n - 1) b (a + b) ;; let fib_tl n = fib_aux n 1 1 ;; |
let rec fact (n: int): float = match n with | 0 -> 1. | _ -> float_of_int n *. fact (n - 1) ;; |
let binomial (n: int) (k: int) = if n < 0 then domain () else (if (k > n || k < 0) then domain () else fact n /. (fact k *. fact (n - k))) ;; |
let distance ((x1, y1): (int * int)) ((x2, y2): (int * int)) : float = let dx = (x2 - x1) in let dy = (y2 - y1) in sqrt (float_of_int((dx * dx) + (dy * dy))) ;; let rec generateList (n:int) (b:int) (s:int) = if (b*s > n) || (s > b) then [] else (b, s) :: (generateList n b (s+1)) ;; let rec isPrimeList (n:int) (l: (int*int) list) = match l with | [] -> true | (l_first_1, l_first_2) :: l_rest -> if (l_first_1 * l_first_2) == n then false else isPrimeList n l_rest ;; |
let is_prime n = if n <= 1 then raise (domain ()) else let rec getAllList (x:int) : bool = if x < 2 then true else (isPrimeList n (generateList n x 2)) && (getAllList (x-1)) in getAllList (n/2) ;; |
let rec fib_aux n a b = if n == 0 then a else if n == 1 then b else fib_aux (n-1) b (a+b) let fib_tl n = if n < 0 then raise (domain ()) else fib_aux (n) 1 1;; |
let rec fact (n: int): float = if n >= 0 then if n = 0 then 1. else float_of_int n *. fact (n - 1) else domain ();; |
let binomial (n: int) (k: int) = if (n < 0 || n < k) then domain () else fact n /. (fact k *. fact (n - k));; |
let distance ((x1, y1): (int * int)) ((x2, y2): (int * int)) : float = let dx = x1 - x2 in let dy = y1 - y2 in let dx = dx * dx in let dy = dy * dy in let sum = dx + dy in sqrt (float_of_int sum) let rec checkDivisible (n : int) (x : int) : bool = if n = 2 then true else if (x * x) > n then true else if (n mod x) = 0 then false else checkDivisible n (x+1) ;; |
let is_prime n = if n <= 1 then domain () else checkDivisible n 2 ;; |
let rec fib_aux n a b = let newB = a + b in if n = 0 then newB else let newA = b in fib_aux (n - 1) newA newB ;; let fib_tl n = if n < 0 then domain () else ( if (n = 1 || n = 0) then 1 else fib_aux (n - 2) 1 1 );; |
let rec fact (n: int): float = if n < 0 then domain() else match n with | 0 -> 1. | _ -> float_of_int(n) *. fact (n - 1);; |
let binomial (n: int) (k: int) = if n < 0 then domain () else (if k > n then domain() else fact n /. (fact k *. fact (n - k)) );; |
let distance ((x1, y1): (int * int)) ((x2, y2): (int * int)) : float = let dx = x2 - x1 and dy = y2 - y1 in sqrt (float_of_int(dx * dx + dy * dy)) ;; |
let is_prime n = if n <= 1 then domain() else let rec helper n divider = let d = divider * divider and r = n mod divider in match r with | 0 -> d > n | _ -> helper n (divider+1) in helper n 2;; |
let rec fib_aux n a b = if n = 0 then a else if n = 1 then b else fib_aux (n-1) b (a+b) let fib_tl n = if n < 0 then domain() else fib_aux n 1 1;; |
let rec fact (n: int): float = match n with | 0 -> 1. | _ -> (float_of_int n) *. fact (n - 1);; |
let binomial (n: int) (k: int) = if n < 0 then domain () else (if k > n then domain () else fact n /. (fact k *. fact (n - k)));; |
let distance ((x1, y1): (int * int)) ((x2, y2): (int * int)) : float = let dx = x1 - x2 in let dy = y1 - y2 in sqrt (float_of_int (dx * dx + dy * dy)) ;; |
let is_prime n: bool = let square_root = int_of_float (sqrt (float_of_int n) +. 0.5) in let rec helper (m: int) (n: int): bool = if m > square_root then true else if n mod m = 0 then false else helper (m+1) n in if n <= 1 then domain () else helper 2 n;; |
let rec fib_aux n a b = if n = 2 then a + b else fib_aux (n-1) (a+b) a let fib_tl n = if n < 2 then 1 else fib_aux n 1 1;; |
let rec fact (n: int): float = match n with | 0 -> 1. | _ -> float(n) *. fact(n - 1);; |
let binomial (n: int) (k: int) = if n < 0 then domain () else (if k > n then domain () else fact(n) /. (fact(k) *. fact(n - k)));; |
let distance ((x1, y1): (int * int)) ((x2, y2): (int * int)) : float = let dx = x1 - x2 in let dy = y1 - y2 in sqrt(float((dx * dx) + (dy * dy))) ;; let rec find_lowest_nonone_multiple (n:int) (mult:int) : int = if mult > 1 && mult != n && n mod mult = 0 then mult else if ((mult + 1) * (mult + 1) > n) then 1 else find_lowest_nonone_multiple n (mult+1);; |
let is_prime (n: int) : bool = if n <= 1 then domain() else find_lowest_nonone_multiple n 1 == 1;; |
let rec fib_aux n a b = if n = 0 then b else fib_aux (n - 1) b (a+b) let fib_tl n = fib_aux n 0 1;; |
let rec fact (n: int): float = match n with | 0 -> 1. | _ -> (float) n *. fact (n - 1);; |
let binomial (n: int) (k: int) = if n < 0 then domain () else if k > n then domain () else fact n /. (fact k *. fact (n - k)) ;; binomial 0 0;; |
let distance ((x1, y1): (int * int)) ((x2, y2): (int * int)) : float = let dx = x2 - x1 in let dy = y2 - y1 in sqrt ((float) dx *. (float) dx +. (float) dy *. (float) dy) ;; |
let is_prime n = let rec helper n t = if t = 1 then true else if t * t <= n then if n mod t = 0 then false else helper n (t-1) else helper n (t-1) in if n <= 1 then domain() else helper n (n-1) ;; |
let rec fib_aux n a b = if n = 0 || n = 1 then b else fib_aux (n-1) b (a+b) ;; let fib_tl n = if n < 0 then domain() else fib_aux n 1 1 ;; |
let rec fact (n: int): float = match n with | 0 -> 1.0 | _ -> float_of_int n *. (fact (n - 1)) ;; |
let binomial (n: int) (k: int) = if n < 0 then domain () else (if k > n then domain () else fact n /. (fact k *. fact (n - k)));; |
let distance ((x1, y1): (int * int)) ((x2, y2): (int * int)) : float = let dx = x2 - x1 in let dy = y2 - y1 in let a = dx * dx + dy * dy in sqrt (float_of_int a) ;; |
let is_prime n = if n <= 1 then domain () else let rec helper (x: int): bool = x * x > n || (n mod x != 0 && helper (x + 1)) in helper 2 ;; |
let rec fib_aux n a b = if n == 0 then a else if n == 1 then b else fib_aux (n-1) b (a + b) let fib_tl n = fib_aux n 1 1;;; |
let rec fact (n: int): float = match n with | 0 -> 1. | _ -> float_of_int n *. fact (n - 1) ;; |
let binomial (n: int) (k: int) = if n < 0 then domain () else (if k > n then domain () else fact n /. (fact k *. fact (n - k))) ;; |
let distance ((x1, y1): (int * int)) ((x2, y2): (int * int)) : float = let dx = x1 - x2 in let dy = y1 - y2 in sqrt (float_of_int(dx * dx + dy * dy)) ;; let rec check_divisors (x: int) (n: int) = if x > int_of_float (sqrt (float_of_int n)) then true else match n mod x with | 0 -> false | _ -> check_divisors (x + 1) n ;; |
let is_prime (n: int) : bool = if n <= 1 then domain () else check_divisors 2 n ;; |
let rec fib_aux n a b = if n = 0 then a else fib_aux (n - 1) b (a + b) ;; let fib_tl n = fib_aux n 1 1 ;; |
let rec fact (n: int): float = match n with | 0 -> 1. | _ -> (float_of_int n) *. fact (n - 1) let fact_tail (n:int): float = let rec fact_aux n acc = match n with | 1 ->acc | _ ->fact_aux (n-1) (acc*.(float_of_int n)) in fact_aux n 1.;; |
let binomial (n: int) (k: int) = if n < 0 then domain () else (if k = n then if n=0 then 1. else domain () else fact n /. (fact k *. fact (n-k)));; |
let distance ((x1, y1): (int * int)) ((x2, y2): (int * int)) : float = let dx = x1 - x2 in let fdx = float_of_int dx in let dy = y1 - y2 in let fdy = float_of_int dy in sqrt (fdx *. fdx +. fdy *. fdy) ;; |
let is_prime n = if n <= 1 then domain () else let rec prime_rec x n = if x*x>n then true else (if (n mod x)=0 then false else prime_rec (x+1) n) in prime_rec 2 n;; |
let rec fib_aux n a b = if n=0 then a else fib_aux (n-1) b (a+b) let fib_tl n = if n<2 then 1 else fib_aux n 1 1;; |
let rec fact (n: int): float = match n with | 0 -> 1. | _ -> float_of_int(n) *. fact(n - 1) ;; |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.